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Global systematics of octupole excitations in even-even nuclei
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We present a computational methodology for a theory of the lowest axially symmetric octupole excitations
applicable to all even-even nuclei beyond the lightest. The theory is the well-known generator-coordinate
extension (GCM) of the Hartree-Fock-Bogoliubov (HFB) self-consistent mean field theory. We use the
discrete-basis Hill-Wheeler (HW) method to compute the wave functions with an interaction from the
Gogny family of Hamiltonians. Comparing to the compiled experimental data on octupole excitations,
we find that the performance of the theory depends on the deformation characteristics of the nucleus.
For nondeformed nuclei, the theory reproduces the energies to about ±20% apart from an overall scale
factor of ≈1.6. The performance is somewhat poorer for (quadrupole) deformed nuclei, and for both
together the dispersion of the scaled energies about the experimental values is about ±25%. This compares
favorably with the performance of similar theories of the quadrupole excitations. Nuclei having static
octupole deformations in HFB theory form a special category. These nuclei have the smallest measured
octupole excitation energies as well as the smallest predicted energies. However, in these cases the energies
are seriously underpredicted by the theory. We find that a simple two-configuration approximation, the
minimization after projection (MAP) method, is almost as accurate as the full HW treatment, provided that
the octupole-deformed nuclei are omitted from the comparison. This article is accompanied by a tabulation of
the predicted octupole excitations for 818 nuclei extending from drip-line to drip-line, computed with several
variants of the Gogny interaction.
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I. INTRODUCTION

The octupole excitations of nuclei have been well-studied
theoretically on a case-by-case basis but there has never
been a global study for a fixed Hamiltonian and well-defined
computational methodology. Such studies are important for
several reasons. Seeing the systematic trends, one can better
assess the deficiencies in the Hamiltonian or the underlying
theory, which could hopefully lead to improvements on both
sides. Also, the predictive power of the theory with the
given Hamiltonians can be measured by the comparison to
a large body of nuclear data. In this work we carry out a
study of this kind using the Hartree-Fock-Bogoliubov (HFB)
approximation extended by the generator coordinate method
(GCM). Earlier studies of the octupole degree of freedom using
this and similar methods are in Refs. [1–6]. A competing
methodology is based on the quasiparticle random phase
approximation; recent application to octupole modes may be
found in Refs. [7–9]. For a general review of the theory of
octupole deformations and collective excitations, see Ref. [10].

A global theory not only needs to treat the consequences of
static octupole deformations in HFB ground states but also to
treat the more ordinary situation where the degree of freedom
appears more as a collective vibration of a symmetric HFB
ground state. The latter is typically treated by RPA or QRPA
[7–9], but the most of the studies consider a small body of nu-
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clei chosen by considerations emphasizing one characteristic
or another, for example semimagic isotope chains. Our study is
the first to encompass not only magic and semimagic ordinary
nuclei, but the quadrupole- and octupole-deformed nuclei as
well. This follows in spirit the studies of the nuclear quadrupole
degrees of freedom in Refs. [11,12]. We mention that our GCM
coordinate is a one-dimensional variable labeled by the mass
octupole moment. A two-dimensional treatment of the oc-
tupole deformations treating the quadrupole deformation as a
separate degree of freedom is important in the theory of fission
[13], and is likely to play a role in spectroscopy as well [14].

The HFB fields and quasiparticle wave functions are
assumed to have the following symmetries: time reversal,
axial symmetry, and the z component of isospin. We can
only consider even-even nuclei under these restrictions. The
restriction to axial symmetry is harmless in spherical nuclei,
but for deformed nuclei it causes two problems. The first is that
theory only treats the K = 0 excitations of deformed nuclei.
As we will see, some of the identified octupole excitations very
likely have nonzero K quantum number. The second difficulty
that arises with deformed nuclei is that angular momentum is
not a good quantum number of the HFB/GCM wave function.
On a practical level, we shall compare the calculated exci-
tation energies with the spectroscopic 0+ → 3− transitions,
assuming that the rotational inertias can be neglected.

The calculations are carried with Gogny’s form of the
interaction in the Hamiltonian. Specific results for the D1S
interaction will be presented below. That interaction has been
well-tested in many HFB calculations and also gives good
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results in (Q)RPA [15] and GCM extensions of HFB [16].
Results for other Gogny interactions are provided in the
supplementary material accompanying this article.

II. IMPLEMENTING THE GCM

A. GCM

In the GCM, an external field is added to the Hamiltonian
to generate a set of mean-field configurations to be used as
a basis for the HW minimization. We take for the generating

field the mass octupole operator, Q̂3 =
√

4π
7 r3Y 3

0 (r̂) = z3 −
3
2z(x2 + y2). We label the solutions of the HFB equations in
the presence of the field λQ̂3 by the expectation value of Q̂3,

〈q|Q̂3|q〉 = q. (1)

For convenience, we will use the nominal value of β3 instead
of q in discussing the wave functions. These are related by the
formula q = √

9/28π (1.2)3A2β3. We also fix the (average)
center-of-mass of the nucleus at the origin with the constraint
〈|ẑ|〉 = 0 to avoid a spurious octupole moment associated with
the position of the nucleus. For each octupole-constrained
wave function the quadrupole moment is determined self-
consistently to minimize the HFB energy.

The GCM wave function is constructed by combining the
configurations |q〉 to build a correlated wave function |σ 〉.
This is expressed formally in the GCM as an integral over
configurations

|σ 〉 =
∫

dq fσ (q)|q〉. (2)

The function f in Eq. (2) is to be determined by applying the
variational principle to the expression

E = 〈σ |H |σ 〉
〈σ |σ 〉 . (3)

While Eqs. (2) and (3) define the GCM formally, further
approximations are required to arrive at a well-defined compu-
tational methodology. One way common in the literature is to
keep the formal integral Eq. (2) and use the Gaussian overlap
approximation to calculate the matrix elements in Eq. (3), as
was done in Ref. [12] to map the quadrupole deformation onto
a collective Hamiltonian, and in Ref. [17] for the octupole
degree of freedom. A quite different way is the discrete basis
Hill-Wheeler (HW) method, first carried out for the octupole
excitations in Ref. [1]. This method, which we will follow here,
approximates the integral using a discrete set of configurations.
The minimization of the GCM energy is equivalent to solving
the matrix eigenvalue equation∑

j

〈qi |H |qj 〉cj = E〈qi |qj 〉cj . (4)

The states will have good parity if the basis is reflection
symmetric, i.e., if both |−qi〉 and |qi〉 are in the basis.

For either method one needs the overlap integrals between
configurations 〈q|q ′〉, the matrix elements of the Hamiltonian
〈q|H |q ′〉 and the matrix elements of one-body operators such
as 〈q|Q̂3|q ′〉. The basic overlap integral is computed with

the Onishi formula [18]. The matrix elements of one-body
and two-body operators are then evaluated using the Balian-
Brezin’s theorem [19]. Unfortunately, the Gogny interaction
cannot be expressed in operator form due to its ρ1/3(�r) density
dependence. This gives rise to well-known ambiguities in
treating the interaction as a Hamiltonian in a multiconfigu-
ration space. Of the various prescriptions available, we use
the “mixed density” method. Here the ρ in the ρ1/3 factor is
replaced by ρqq ′ (�r) given by

ρqq ′ (�r) = 〈q|ρ̂(�r)|q ′〉
〈q|q ′〉 (5)

and the resulting �r-dependent interaction is evaluated in the
usual way. The mixed-density prescription was introduced
in Ref. [20] and first applied to parity-projected HFB as
“Prescription 2” in Ref. [3]. It is consistent with the mean field
limit and is a scalar under symmetry transformations [21].
Another prescription which seems plausible at first sight is
to use the projected density for ρ1/3. However, this gives
unphysical results for octupole deformations [22].

While the configurations |q〉 constructed with the octupole
constraint have mixed parity, the HW solutions restore the
parity quantum number, as was discussed above. In effect, the
parity projection needed to calculate spectroscopic properties
can be obtained from the HW minimization without any extra
effort. However, as a practical matter, it is easier to define
the parity operator in the harmonic oscillator basis and use
it to construct |−q〉 from |q〉 thus avoiding a separate HFB
minimization for the −q configuration.

The HW states of interest are the lowest-lying even- and
odd-parity states of the spectrum, which we call |e〉 and |o〉.
Taking them to be normalized, the energies of ground state Ee,
the odd parity state Eo, and the excitation energy difference
E3 are given by

Ee = 〈e|H |e〉; Eo = 〈o|H |o〉; E3 = Eo − Ee. (6)

We follow the usual procedure to solve the matrix equation
Eq. (4), using if necessary the singular value decomposition of
the overlap matrix to avoid difficulties with an overcomplete
space.

One first diagonalizes the overlap matrix and transforms
all of the matrices to the diagonalized basis. Often there will
be vectors which very small norms and the basis is truncated
to exclude them when the norms are less than a certain value
nmin. The Hamiltonian is diagonalized in this basis, called the
collective space, to give the HW energies. The eigenvectors of
the Hamiltonian are used to calculate matrix elements of other
operators between energy eigenstates.

The main problem with the discrete Hill-Wheeler method is
that the calculated values cannot be considered reliable unless
both the range of deformations has been fully covered and
that the singular value decomposition has been set to a robust
truncation. For most of the nuclei, we shall take as a basis the
set of β3 from −0.5 to +0.5 in steps of 0.025. For lighter nuclei,
the range is extended from −1.2 to +1.2. The calculations
are carried out as a function of the dimension Nbasis of the
singular-value truncation. There is generally a broad range of
Nbasis for which the excitation energies have converged to some

054302-2



GLOBAL SYSTEMATICS OF OCTUPOLE EXCITATIONS IN . . . PHYSICAL REVIEW C 84, 054302 (2011)

value; we take the value on this plateau as the HW result. An
example is shown in detail in the next section.

The computation of the HW starting matrices is not trivial,
requiring N (N + 1)/2 Hamiltonian matrix elements for a basis
size N . While this is not an important issue here, if one
were to attempt GCM calculations in more than one variable,
the number of states Nbasis could be large. It is therefore of
interest to investigate the accuracy of simpler approximations
using fewer configurations. One of the simplest treatments is
to take two configurations, |qe〉 and |qo〉, for the even-parity
and odd-parity state, respectively. The values of q are chosen
to minimize the projected energies of the configuration. We
follow Ref. [11] calling this the minimization after projection
(MAP) procedure. The deformations and energies at the
minima are denoted β3p, Ep and β3m,Em for the two projected
states. The MAP excitation energy is defined as

EMAP
3 = Em − Ep. (7)

One last general point of the computational procedure needs
to be mentioned. While the individual HFB configurations
are constructed with the desired proton and neutron particle
numbers, the mixed configurations in the HW wave function
may have slightly different expectation values of N and Z. The
energy depends strongly on 〈N〉 and 〈Z〉, and changes must
be corrected for. We do this by adding to the HW Hamiltonian
the term λp(Ẑ − Z) + λn(N̂ − N ), where λp,n are the nucleus’
chemical potentials at β3p [20].

B. HFB

The constrained HFB calculations were carried out using
the code HFBAXIAL written by one of us (L.M.R.). It uses a
harmonic oscillator basis specified by the length parameters
bz and b⊥ of the oscillator potential and the number of shells
Nosc in the basis. For the calculations reported here we have
taken a fixed spherical basis for all nuclei with oscillator
length parameters bz = b⊥ = 2.1 fm. The number of oscillator
shells included in the basis is 10, 12, and 14 for nuclei in
the ranges Z = [8, 50], [52, 82], and [84, 100], respectively.
This is more than enough to provide converged results for
energy differences. We report on the results for the D1S Gogny
interaction in sections below. More detailed results for the D1S
as well as for other interactions of the Gogny form are given
in the supplemental material [23].

III. EXAMPLES

In this section we will go through the details for four
examples illustrating the application to a spherical nucleus,
208Pb, a well-deformed nucleus, 158Gd, the nucleus 226Ra
whose HFB ground state has a static octupole deformation,
and a light nucleus having a very large transitional octupole
moment, 20Ne. A summary of the results for these nuclei is
given in Table II at the end of this section.
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FIG. 1. Energy of 208Pb as a function of octupole deformation
β3. Open circles: HFB energy of constrained configurations; solid
squares: energy Ee of the even-parity projected wave function; solid
circles: the odd-parity projected energy Eo. See the Appendix for
explanation of the fitted lines.

A. 208Pb

The nucleus 208Pb is a paradigm for a doubly magic nucleus.
It is one of the very few nuclei whose first excited state
has Jπ = 3− quantum numbers. The excitation energy is
2.62 MeV and the transition rate is strongly collective with a
strength of B(E3,↑) = 0.611 e2b3 or 34 Weisskopf units [24].
For the theory, we first shown HFB and projected energies of
the GCM configurations in Fig. 1. Note that the negative parity
energy Eo is well defined in the limit β3 → 0 [3].

The minimum energy projected configurations, i.e., the
MAP states, are at β3p ≈ 0.0375 and β3m ≈ 0.075. One sees
that the energy of the ground state is lower by projecting from
a nonzero β3; the associated correlation energy has the order of
magnitude of 1 MeV. The MAP approximation to the excitation
energy E3 is given by the difference of the minima of the plus-
and minus-projected energy curves, which is about 4.2 MeV.

To see how the GCM calculated E3 depends on the basis, we
show it in Fig. 2 as a function of Nbasis. The difference of MAP
energies is the open square, and solid circles show the results
with various truncations. The full basis set is comprised of the
41 configurations between β3 = −0.5 to β3 = +0.5 in steps
of 0.025. The truncation is carried out by the singular-value
decomposition.

One sees that the energy has converged at about Nbasis ≈ 14
and the numerics remain stable up to much larger values. The
converged energy, 4.0 MeV, is fairly close to the difference
of MAP energies. In fact, one can do even better in the four-
dimensional space allowing the MAP configurations to mix.
This is shown as the solid square in the figure. We note that
our excitation energy of 4.0 MeV is close to the value found
in Ref. [2] using the GCM/HW method but with the Skyrme
SLy4 interaction.

We see here that the MAP could be a very useful
simplification, but its validity depends on the circumstances.
It is also instructive to examine the GCM/HW wave function
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FIG. 2. Excitation energy E3 in 208Pb as a function of the
configuration space choice. Solid circles: HW using the singular value
decomposition to keep Nbasis states; solid square: HW with the two
MAP states; open square: energy difference of the two MAP states.

and compare it with MAP. These are shown in Fig. 3, for both
the ground state and the odd-parity excited state. The wave
function amplitudes are formally defined by the integral

gσ (β3) =
∫

dβ ′
3N 1/2(β3, β

′
3)fσ (β ′

3), (8)

where f is normalized 1 = ∫
dβ3 dβ ′

3N (β3, β
′
3)fσ (β ′

3)fσ (β3).
The above relation establishes the connection between the
standard GCM amplitudes f with the amplitudes g enter-
ing the expansion of the GCM wave functions in terms
of orthogonal states |q〉orth = ∫

dq ′N−1/2(q, q ′)|q ′〉. The
square root of the norm overlap is defined by the relation∫

dq ′′N 1/2(q, q ′′)N 1/2(q ′′, q ′) = N (q, q ′). The ground and
excited state wave functions can be distinguished by the
amplitude at β3 = 0, which is finite for the even-parity ground
state and zero for the odd-parity excited state. The HW wave
function and the MAP approximation are shown as solid and
dashed lines, respectively. It is clear that the MAP configura-
tion is a good approximation to the full wave function of both
the ground and excited states, for this particular nucleus.

More insight into the collective physics of the octupole
degree of freedom can be obtained comparing with simple
models of the excitation (see Appendix). If the configuration
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FIG. 3. Wave function amplitudes. See text for explanation.
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FIG. 4. Energy of 158Gd as a function of octupole deformation
β3. Open circles: HFB energy of constrained configurations; solid
squares: energy Ee of the even-parity projected wave function; solid
circles: the odd-parity projected energy Eo. The line along the
HFB values is the function Eq = E0 + K1β

2
3 with K1 = 48.8 MeV

fitted to the values β3 � 0.05. The line along the Ee values is
the fit motivated by the Gaussian overlap approximation, Ee =
Eq − K2β

2/[1.0 + exp(αβ2)], with K2 and α fitted.

energies and interactions can be treated as quadratic functions
of the deformation coordinate, and the matrix elements
between different configurations can be treated by the GOA,
the GCM/HW reduces to the RPA and is exact. The line
through the HFB energy curve in Fig. 1 is a quadratic fit that
reproduces well the computed energy. Also, the energy of the
even-parity projected configuration follows well the predicted
dependence according to the GOA, Eq. (A4). This is shown as
the line through the even-parity projected energies in the figure.
Thus two of the conditions are met to reduce the GCM/HW
theory to an RPA of a single collective state.

B. 158Gd

Our example of a strongly deformed nucleus is 158Gd.
It has a 3− excited state at 1.04 MeV with a transition
strength B(E3 ↑) = 0.12 e2b3. The energies from the GCM
calculation are shown in Fig. 4. Overall, the energy curves
look quite similar to those for 208Pb. The HFB curve is also
well fit by a quadratic dependence on β3 but the curvature
here is much shallower. The projected energy function Ee(β3)
also has a similar shape to the curve for 208Pb, and can be
fitted by the same functional form, Eq. (A2). The ratio of
MAP minimum points is found to be β3p/β3m ≈ 2, similar to
the situation for 208Pb. The excitation energy E3 comes out to
about 1.7 MeV, much smaller than the 208Pb value. This is to
be expected in view of the softer HFB curve. The correlation
energy of the ground state, E0 − Ee, is similar to the 208Pb
value, about one MeV.

Experimentally, the situation is complicated by the de-
formation and the splitting of the octupole strength into
different K bands. There are three negative parity bands known
experimentally at low energy. There is a K = 1− with an 1−
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FIG. 5. Energy of 226Ra as a function of octupole deformation β3

as in Figs. 1, 4(g). A very similar plot is shown in Fig. 3 of Ref. [3].

state at 977 keV, a K = 0− with the 1− state at 1263 keV and
finally a K = 2− with a 2− state at 1793 keV. Our excitation
energy of 1.7 MeV should be compared with the 1263 keV
of the 1− state of the K = 0− band. The theoretical value
is stretched by a factor 1.4 with respect to the experimental
value (see discussion below). Note that the measured octupole
transition at 1.04 MeV is not relevant for the comparison
because it corresponds to a different K value.

C. 226Ra
226Ra has the lowest 3− excitation energy of any nucleus

in the compilation of Ref. [25], E3 = 320 keV. It also has
the highest transition strength in the compilation, W (E3) =
54 Weisskopf units [24]. On the theory side, the nucleus is
predicted to deform both in the quadrupole (β2 ≈ 0.3) and the
octupole degrees of freedom. The HFB/GCM energy curve,
shown in Fig. 5, has a minimum at β3 ≈ 0.13.

This nucleus is very interesting for our survey, not only
because of the static octupole deformation, but because the
theory is seen to fail badly if the large amplitude fluctuations
are not properly accounted for. The predicted excitation
energies for different treatments of the GCM configurations are
shown in Table I. The most naive theory (top line) would ignore
the GCM construction and simply take the HFB minimum and
project from that. The overlap 〈−q|q〉 at the HFB minimum
is essentially zero and the E3 comes out less than 1 keV. In
the next approximation we consider (second line), we take the

TABLE I. Calculated energies of 226Ra with various choices of
the configuration set.

Nq β3 Ee (MeV) Eo (MeV) E3 (MeV)

1 0.15 −1722.63 −1722.63 0.00
1 0.05 −1722.71 −1721.01 1.7
2 0.05, 0.15 −1723.43 0.37
3 0.05, 0.1, 0.15 −1723.45 0.31
4 0.025, 0.075, 0.125, 0.175 −1723.53 0.22
12 [−0.5,0.5] 0.16
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FIG. 6. Energy of 20Ne as a function of octupole deformation β3

as in Figs. 1, 4 and 5.

single configuration that gives the MAP ground state. Here the
deformation is much closer to zero. However, the E3 calculated
as the difference between the even and odd projected states
is now far too large, 1.7 MeV. Of course in the full MAP
approximation we should take the configurations at different
β3 for odd and even projections. This is done in line 3 of
the table, and now the E3 has the correct order of magnitude.
Adding more configurations, the valued do not change much
on an absolute MeV scale, but on a relative scale there is a
considerable change. The most complete HW treatment, on
the bottom line, underpredicts the energy by a factor of ≈ 2.

We also show the HW and MAP wave functions in Fig. 3.
It is clear that the full wave functions are far from harmonic
and that the MAP approximation fails badly.

D. 20Ne
20Ne illustrates some differences that one sees in treating

light nuclei by the GCM/HW, first studied by this method in
Ref. [1]. Due to the incipient alpha clustering, the equilibrium
octupole deformation of the projected configurations can be
very large. The HFB and projected energies are shown in
Fig. 6. Note that the HFB energy deviates from a quadratic
dependence on the deformation, and looks almost linear at
large β3. Figure 7 shows the density distribution at the two
projected minima. One sees a compact localized density,
suggestive of an alpha particle, outside a nearly spherical
core. Since the α emission threshold is rather low in this
nucleus, one should expect a softness in with respect to the
generator coordinate corresponding to alpha cluster separation.
In a multipole representation, this requires changing both the
quadrupole and the octupole deformation. This is in fact what
occurs in our GCM wave functions. Figure 8 shows their
deformations in the two multipolarities. The coupling of the
multipolarities can cause problems, however. We will come
back to this in the Appendix, referring to the coupling in 16O,
also shown on the figure.

In Table II the results for all the examples considered are
collected. For the B(E3) transition probabilities two formulas
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FIG. 7. Nucleon density distribution in 20Ne at β3p (left) and β3m

(right).

are used depending on the quadrupole deformation (see next
section). .

IV. SYSTEMATICS

We have applied the HFB/GCM/HW theory across the chart
of nuclides including 818 nuclei between 8 � Z � 110. About
6% of them are octupole deformed in the HFB ground state.
The nuclei are shown in Fig. 9. Favorable conditions for static
octupole deformation occur when a high-j intruder orbital
is close to an opposite-parity orbital with three units less of
orbital angular momentum near the Fermi energy [10], which
happens for Z and N values around 36, 56, 88, and 134. The
regions around Ba and Ra are well known in earlier studies. We
also find static deformations near 80Zr and near Z ≈ N ≈ 56
(for this region, see also Ref. [5]). There are also calculations
in the literature reporting static octupole deformations in other
regions as well [26,27]. In any case, the HFB deformation is
not an observable. Physically, one can only measure excitation

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0  0.1  0.2  0.3  0.4  0.5  0.6

β 2

β3

16O

20Ne

FIG. 8. Deformation of the octupole-constrained HFB configura-
tions for 16O and 20Ne.

TABLE II. Summary of results for the four examples discussed
in the text. References for column 4, other theory.

Nucleus E3 (MeV) W (E3)

Exp. Present Other Theory Eq. Exp.

20Ne 5.6 6.7 5.2a 12 (11) 13
208Pb 2.6 4.0 4.0b 53 (12) 34
158Gd 1.04 1.93 11.6 (11) 12
226Ra 0.32 0.16 43 (11) 54

aReference [1].
bReference [2].

energies and transitions strength. These are compared with
experiment in the two subsections following.

A. Excitation energies

We now compare theory with the experimental data from
the review by Kibédi and Spear [25]. The excitation energies
of the 284 tabulated nuclei with Z � 8 are shown in Fig. 10,
plotted as a function of A. The data show a strong overall
A- dependence as well as shell-related fluctuations. The line
shows a fit to the smooth trend in A with the phenomeno-
logical parametrization E(A) = 103/A0.85 MeV. The most
pronounced fluctuation about the trend is the rise and sudden
drop near A = 208; the drop to low values is due to the extreme
softness in the octupole mode. The theoretical energies, shown
as triangles, replicate the overall trend with A and the dramatic
fluctuation at A ∼ 208. However, overall the theoretical
energies are too high, particularly in the light nuclei.

A more detailed comparison of theory and experiment may
be seen on the scatter plot Fig. 11. For excitation energies above
1 MeV, the theoretical values track the experimental but scaled
by a factor. Around 1 MeV and below the theoretical values
become closer to experiment. The lowest energy measured
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FIG. 9. Chart of the nuclides showing those calculated in the
present study. Those in black have static octupole deformations in
HFB. Except for the nuclei near N ∼ Z ∼ 40, the nucleon numbers
correspond well to the numbers 56, 88, and 136 listed in Ref. [10] as
especially favorable for octupole deformation.
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FIG. 10. Octupole excitation energies as a function of mass
number A. Circles: experiment; triangles: theory.

excitations are in the Ra isotopes, where the theoretical HFB
wave functions have static octupole deformations. The theory
reproduces the low energies to several hundred keV on an
absolute energy scale, but does not do well on the logarithmic
energy scale shown in the figure.

We also make some quantitative assessment of the perfor-
mance of the theory, which should be useful in the future for
comparing with other theories. We use the same performance
measures as was used to assess theories of quadrupole
excitations [11,12], namely to compare ratios of theoretical
to experimental quantities on a logarithmic scale. In terms of
RE = log[E(th)/E(exp)] we determine the average value

R̄E = 〈RE〉 (9)
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FIG. 11. Octupole excitation energies, comparing the theory with
experiment. Filled circles are excitations with measured B(E3)
strengths; open circles are other identified octupole transitions [25].

TABLE III. Performance of the HW theory for excitation energies
compared to the experimental data tabulated in Ref. [25]. The
performance measures rE and σE are given in Eqs. (9) and (10)
of the text. The performance of MAP is shown as well on lines 2–4
for subsets of nuclei selected by deformation criteria.

Selection Number HW MAP

R̄e σe R̄e σe

all 284 0.45 0.40
β3 = 0 277 0.55 0.23 0.59 0.22
β3 = 0, def. 59 0.62 0.32 0.75 0.26
β3 = 0, sph. 196 0.52 0.19 0.53 0.17

and the dispersion about the average,

σE = 〈(RE − R̄E)2〉1/2. (10)

The results are shown in Table III. The first line shows the
comparison taking the full HW treatment on the theoretical
side and the full data set on the experimental side. One
sees that the predicted energy is systematically too high,
by a factor of e0.45 ≈ 1.6. This is similar to the situation
with the quadrupole excitations. There the understanding is
that the wave function is missing components that would be
included in collective theories using Thouless-Valatin inertial
parameters. There may be other reasons for the systematic
overprediction here that we will come back to in Sec. V.
The dispersion in the values is σE ≈ 0.4, corresponding to
errors in the ratio of theory to experiment of −30% to
+50%. This is larger than the global dispersion found for
the GCM-based theories of quadrupole excitations. However,
we saw in Fig. 11 that there are differences in the nuclear
structure that are responsible for the variable performance of
the theory. Most importantly, the nuclei with calculated static
octupole deformations should be treated separately. Taking out
these nuclei, the dispersion decreases dramatically, as shown
on the second line of the table. A further distinction can be
made between well-deformed and other nuclei, spherical and
soft, respect to ordinary quadrupole deformations. A good
theoretical indicator for deformed nuclei is the ratio of 4+ to
2+ excitation energies, called R42. The values are available for
the Gogny D1S interaction from the global study [12], and we
use them to set the condition R42 > 2.9 to define the set of well-
deformed nuclei. The results are shown in the third and fourth
rows of the table. One sees that the dispersion becomes even
narrower for the nuclei in the nondeformed set. Thus, we can
claim that the HFB/GCM/HW methodology is quite successful
for nondeformed nuclei, when allowing for the overall scale
factor. On the other hand, the deformed set is significantly
poorer, with the average predicted energies higher and a larger
dispersion. A possible cause of this poorer performance could
be the misidentification of transitions in deformed nuclei. We
have assumed here that all transitions are associated with the
axially symmetric octupole operator (K = 0). As discussed in
the next section, it is clear that some of the measured energies
are for transitions with K �= 0 (see also the 158Gd example).
Since all the K values in spherical nuclei are degenerate, this
would explain the better overall agreement there.
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FIG. 12. Ratio of theoretical octupole transition strength to
experimental, with the theoretical strength obtained using Eq. (11).
The horizontal axis is the ratio R42 from the theory of Ref. [12].
Experimental B(E3) values are from Ref. [25].

B. Transition strengths

The octupole transition strength is computed from the
proton octupole transition matrix element 〈o|Q̂3

1+tz
2 |e〉. In

a strongly deformed nucleus, the excitation is in a K = 0
odd-parity band and the spectroscopic matrix element from
the 3− state in the band is given by

B(E3, 3− → 0+) = e2

4π
〈o|Q̂3

1 + tz

2
|e〉2. (11)

This formula was used in Ref. [3] to estimate the octupole
transition strengths in Ra isotopes and other possible octupole-
deformed nuclei. On the other hand, if the state |e〉 is spherical,
then the excitation induced by Q3 gives a state |o〉 that has
good angular momentum and the transition strength can be
calculated directly as

B(E3, 3− → 0+) = 7e2

4π
〈o|Q̂3

1 + tz

2
|e〉2. (12)

Notice that this is a factor of 7 larger than Eq. (11). The
reason for the difference is that Eq. (12) gives a total octupole
transition strength, while Eq. (11) only gives the transition
strength for the K = 0 components.

Besides these limiting cases, there are soft nuclei which
should fall in between. Thus, it is imperative to restore good
angular for the theory to have a global applicability. While
angular momentum projection has been carried out in the past
[28–30], it is beyond the scope of this article. Instead, we
examine here the range of predicted values using a theoretical
marker of the deformation to distinguish nuclei falling in the
different categories. Figure 12 shows the ratios of theoretical
to experimental B(E3) values, using the experimental data set
from Ref. [25] and Eq. (11) for the theory. The data is plotted as
a function of the quantity R42, the ratio of the lowest 4+ to 2+
excitation energies. Values around 2 or less are characteristic of
spherical nuclei, while strongly deformed nuclei have R42 � 3.

TABLE IV. Ratio of theoretical to experimental B(E3) strengths.
The second column is the number of nuclei in the data set.

Selection Number R̄ σ

Deformed, R42 > 2.9 41 0.34 0.5
Other, R42 < 2.9 112 −0.99 0.7

We take the values for R42 from the spectroscopic calculations
of Ref. [12], based on HFB/GCM with the same Gogny D1S
interaction used for the theory here. The plot show a lot of
scatter, but one can see two groups of nuclei, the left hand
representing deformed nuclei. There is a trend visible in the
B(E3) ratios consistent with the above discussion.

To make the analysis more quantitative, we examine the
logarithmic averages R̄ dividing the nuclei into two groups
according to R42. The results are shown in Table IV. Since
we use Eq. (11) to determine R, we should find R̄ = 0 for
the first row of the table. In fact, the average is about 408%
high. For the second row, if all the nuclei were spherical, the
strength should be a factor of 7 larger. This implies that the
R̄ calculated with the deformed formula should give a value
0.33 − log(7) = −1.6. The value found, −0.99, shows that
there is an important effect of the deformation but that it is too
simplistic to assume that these nuclei are all spherical.

We note that the enhancement of the B(E3) for the less
deformed nuclei is evident in the projected calculations for
16O [28] and Pb isotopes near A = 208 [30]. Also, in Ref. [31]
the authors remark on a strong disagreement between theory
and experiment for 96Zr. This is the case if one uses Eq. (11),
but that nucleus is spherical according to the R42 criterion
and Eq. (12) gives a satisfactory agreement. We note also that
96Zr was predicted to be unstable with respect to octupole
deformations in Ref. [32].

It is of interest to examine the nuclei that deviate most
strongly from the theory. In Fig. 12 there is a group of
three outlier nuclei in the upper right-hand corner. The nuclei
are 170Er and its neighbors. In these cases, the experimental
transitions are likely to be to excited states with K �= 0. The
lowest 1− excitation in 170Er at 1.26 MeV has a K = 1−
character, and the first K = 0− is higher by 0.6 MeV. There are
some studies in the literature in which the K dependence of the
octupole excitation is examined [4,33,34]. In Refs. [33,34] the
K = 0− bands were found to be higher in energy than other
K values.

The other glaring anomaly is the nucleus 64Zn at R42 ≈ 2.4,
which has a grossly underpredicted B(E3). It turns out that the
quadrupole deformation of this nucleus changes sign as β3 is
increased. The ground state at β3 = 0 is oblate, but it switches
to another minimum with a prolate shape at moderate values of
β3. The very small predicted B(E3) is due to the small overlap
between the oblate and prolate configurations. Clearly, the
GCM must include explicitly both quadrupole and octupole
degrees of freedom to properly treat this nucleus. A few other
nuclei with similar Z values show the same behavior. We note
that the B(E3) comes out much closer to experiment if both
even and odd states are taken from configurations having the
same sign of quadrupole moment.
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V. DISCUSSION

We have demonstrated that a global theory of the oc-
tupole degree of freedom can be constructed using the
HFB/GCM/HW methodology. The theory reproduces the
secular trend of the excitations, the effects of an incipient
static octupole deformation, and the most visible shell effects.
However, the theory has obvious deficiencies. Most notably,
we require a overall scaling factor of 1.6 to make quantitative
comparison with experiment. It is urgent to understand what
physics is needed to make predictions on an absolute energy
scale. There are several possible reasons for the absolute errors.
One is the Hamiltonian itself. Besides the Gogny interac-
tion, there have been calculations with the BCP interaction,
interactions from the Skyrme family and from relativistic
mean-field theory. Reference [17] found that the D1S Gogny
interaction and the BCP interaction gave significant differences
in the odd-parity excitations of Ra isotopes. The Gogny
interaction is guided by nuclear Hartree-Fock theory, and one
of the characteristics is a nucleon effective mass less than
the physical mass. This implies that single-particle excitation
energies will be higher than for a noninteracting system, and
these effects could carry over to the collective excitations as
well. We note that the calculation of the 208Pb in Ref. [2]
using a Skyrme interaction with a similar effective mass
to D1S agrees with our results. However, the relativistic
mean field Hamiltonian also has a small effective mass, but
excellent agreement was obtained for E3 in an isotone chain by
(Q)RPA [9].

This brings up another source of systematic error in the
GCM/HW, the restriction of the degrees of freedom in the
excitation to a single variable. It is well known in the
theory of quadrupole excitations that time-odd components
must be included in the wave function to obtain good
moments of inertia [38]. For large amplitude deformations,
this can be achieved by self-consistent cranking. When no
time-odd components are allowed in the angular momentum
projected (AMP) GCM calculation the excitation energy is
stretched with respect to standard cranking calculations by
a factor of around 1.4. This correction factor is compatible
with the discrepancies observed between our results and
the experiment in the case of 158Gd as well as with the
overall 1.6 factor for the negative parity excitation energies
discussed previously. The single-operator approximation is
also problematic due to the fragmentation of octupole strength
in the full spectrum. Roughly speaking, the octupole strength
has two important branches: the low collective excitation that
is under study here, and the high-lying excitation characterized
as 3h̄ω in the harmonic oscillator model. Our generating
field introduces amplitudes of both into the constrained wave
function.

More generally, one can introduce methods that would
reduce to (Q)RPA in the small amplitude limit. The raises
the question of how well (Q)RPA would perform in a global
context. As shown in the Appendix, for a large fraction of
nuclei the GCM/HW methodology is essentially equivalent to
(Q)RPA in a single collective variable. For these nuclei, the
(Q)RPA is justified and is very likely to give lower excitation
energies.

The interaction of the octupole with the quadrupole degree
of freedom is an interesting problem that appears in several
contexts in our study. First, the HFB static quadrupole defor-
mation of many nuclei invalidates a spectroscopic interpreta-
tion of the observables for the physical angular momentum
eigenstates of the system. We saw this most directly in the
discussion of the B(E3) transition strengths. The solution is
to carry out angular momentum projection. Another aspect
missing from our study is the inclusion of K �= 0 excitations
in deformed nuclei. This has been done in HFB-BCS in
Refs. [4,33,39] and in HFB in Ref. [34]. Since K �= 0 bands can
fall below the K = 0 octupole excitation band, it is essential
for a complete theory of the octupole excitations in deformed
nuclei. We note that collective models can be constructed
that provide formulas relating the quadrupole excitation
energies to the octupole energies, and octupole energies to the
B(E3) transition strengths [35,36]. The interaction between
quadrupole and octupole degrees of freedom might also play
a role in parity-violating transitions [37].

Some aspects of the quadrupole-octupole mixing may
require a two-dimensional GCM to describe properly. It was
clear in the light nuclei that octupole and quadrupole deforma-
tions are strongly coupled in forming α clusters. Also we found
that the severe problem describing the B(E3) in 64Zn could be
traced to the coupling. We note that the two-dimensional GCM
has been implemented in the past. In Refs. [14] the coupled
GCM was applied to the complex spectroscopy of the nucleus
194Pb. Also, the microscopic theory of asymmetric fission [13]
requires at least a two-dimensional GCM.

One last aspect of the theory should be mentioned. We have
seen in the examples that the correlation energy of the ground
state associated with the K = 0 octupole excitation is of the
order of one MeV. This can have an important influence on
the theory of the nuclear masses. We plan to investigate the
systematics of the correlation energy in a future publication.
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APPENDIX: SIMPLIFIED APPROXIMATIONS
AND LIMITS

It is important to understand the limiting behavior of any
computationally demanding theory, both to check the reliabil-
ity of the calculations as well as to see whether approximations
are justified that would simplify the calculations. For the
GCM/HW methodology, the theory becomes analytic or nearly
so if a few conditions are met. One requirement is that there
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be only a single degree of freedom necessary to describe the
excitation of the system. There are simple Hamiltonians that
satisfy this condition. Examples are the Lipkin model [40,41],
where the degree of freedom is the number of particles in
the excited orbital, and the two-particle problem treated in
Ref. [42] where the degree of freedom is the center-of-mass
displacement. In the last model and other like it the theory
becomes analytic and reduces to the RPA if the overlap
integrals satisfy the Gaussian overlap approximation and the
matrix elements of the Hamiltonian reduce to a quadratic
functions times the overlap. In fact the relation to RPA remains
even if there are many degrees of freedom in the GCM [43,44].

To make the discussion concrete, let us assume that there is
a single continuous degree of freedom q and we can write the
overlap integral and the Hamiltonian matrix element as

〈q ′|q〉 = e−(q−q ′)2/q2
s , (A1)

〈q ′|H |q〉
〈q ′|q〉 = E0 + 1

2
v(q + q ′)2 − 1

2
w(q − q ′)2. (A2)

The solution obtained by the Hill-Wheeler construction is
identical to the solution of the RPA equation for the operator
Q̂ that generates the GCM states |q〉. The HW wave functions
have the form of Gaussians in the variable q and the excitation
energy is given by

h̄ωRPA = q2
s

√
vw. (A3)

Let us now compare with the MAP approximation. Here one
first calculates projected energies as a function of q,

〈e|H |e〉
〈e|e〉 = 2vq2 v − we−4(q/qs )2

1 + e−4(q/qs )2 (A4)

and

〈o|H |o〉
〈o|o〉 = 2vq2 v + we−4(q/qs )2

1 − e−4(q/qs )2 . (A5)

The energies are then minimized with respect to q. The results
for a range of values of the ratio w/v are given in Table V. The
ratios q0/qe are close to

√
3, which may reflect the harmonic

oscillator character of the exact HW wave functions. In the
last columns we compare the MAP excitations energy with the
RPA values. They are remarkably close.

As a general conclusion, we find that if the MAP conditions
are satisfied, the energies are close to the RPA performed with
a single collective variable. For those nuclei, it would better to
extend the space for the calculation using more RPA degrees of
freedom than by going to large amplitudes in a single collective
variable.

TABLE V. The MAP solution in the harmonic limit. Deformations
are in units of qs and energies are in units of vq2

s . The last column
shows the (Q)RPA excitation energy, Eq. (A3).

w/v qe Ee qo Eo Eo − Ee h̄ωRPA

1.5 0.226 −0.0125 0.390 1.212 1.225 1.225
2.0 0.292 −0.0421 0.509 1.373 1.415 1.414
4.0 0.400 −0.232 0.716 1.782 2.01 2.00
8.0 0.469 −0.721 0.870 2.207 2.93 2.83
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FIG. 13. Ratio of MAP deformations β3p/β3m for nuclei with
measured E3 [25].

It would be nice to find a criterion to test for validity of
the simplified treatment. The first condition we can check is
the ratio qo/qe. This is graphed in Fig. 13 for the 284 nuclei
tabulated in Ref. [25].

There is a strong peak at β3m/β3p ≈ 1.9. This is slightly
higher than the single-mode (Q)RPA, but still close enough
to make a further investigation of the quadratic Hamiltonian
approximation. There are also wings on the distribution
extending from 0.9 (16O) to 3.2 (230U). Excluding the wings
below 1.7 and above 2.2, the peak contains 80% of the
measured nuclei.

To examine the validity of the quadratic approximation,
we compared the extracted coefficients vq2

s and wq2
s at the

two deformations β3p and β3m. If the quadratic approximation
is valid, they should be equal. For example, the values of
β3p and β3m at the closest mesh points are 0.0375 and 0.075,
respectively. The values of vβ2

3p and wβ2
3p extracted at that

mesh point are 0.23 MeV and 1.72 MeV, respectively. The
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FIG. 14. Ratio of MAP deformations β3m/β3p for nuclei with
measured E3 [25].
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corresponding numbers for β3m are 0.94 MeV and 7.20 MeV,
very close to 4 times the values at β3p. This is just what is
expected given β3m/β3p = 2, showing that 208Pb satisfies the
conditions for the quadratic Hamiltonian. With these values
for v and w, the RPA energy formula Eq. (A3) gives 3.9 MeV,
close to the GCM/HW value of 4.0 MeV. The results for the
nuclei within the peak of Fig. 14 is shown as a scatter plot of the

ratios. In general, the w term follows a quadratic dependence
very well. The v term can have large deviations, particularly
for nuclei that are soft to octupole deformations. However, for
most of the nuclei, the quadratic approximation is valid to an
accuracy far better than needed, given the overall performance
of the theory in nonoctupole deformed nuclei at the 25% level
in the scaled energies.
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