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Antiproton scattering off 3He and 4He nuclei at low and intermediate energies
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Antiproton scattering off 3He and 4He targets is considered at beam energies below 300 MeV within the Glauber-
Sitenko approach, utilizing the N̄N amplitudes of the Jülich model as input. A good agreement with available
data on differential p̄ 4He cross sections and on p̄ 3He and p̄ 4He reaction cross sections is obtained. Predictions
for polarized total p̄ 3He cross sections are presented, calculated within the single-scattering approximation and
including Coulomb-nuclear interference effects. The kinetics of the polarization buildup is discussed.

DOI: 10.1103/PhysRevC.84.054011 PACS number(s): 13.75.Cs, 24.70.+s, 25.43.+t, 29.27.Hj

I. INTRODUCTION

One of the projects suggested for the future FAIR facility in
Darmstadt comes from the PAX collaboration [1]. Its aim is to
measure the proton transversity in the interaction of polarized
antiprotons with protons. In order to produce an intense beam
of polarized antiprotons, the collaboration intends to use
antiproton elastic scattering off a polarized hydrogen target
(1H) in a storage ring [2]. The basic idea is connected to the
result of the FILTEX experiment [3], where a sizable effect
of polarization buildup was achieved in a storage ring by
scattering of unpolarized protons off polarized hydrogen atoms
at low beam energies of 23 MeV. Recent theoretical analyses
[4–7] have shown that the polarization buildup observed in
Ref. [3] can be understood quantitatively. According to those
authors it is solely due to the spin dependence of the hadronic
(proton-proton) interaction which leads to the so-called spin-
filtering mechanism, i.e., to a different rate of removal of beam
protons from the ring for different polarization states of the
target proton.

The antinucleon-nucleon (N̄N ) interaction has been studied
quite extensively over the past 3 decades or so [8–14], not
least because of the wealth of data collected at the Low
Energy Antiproton Ring (LEAR) facility at CERN (cf. the
reviews [15–17]). Still, one has to concede that, in contrast
to the NN case, up to now the spin dependence of the N̄N

interaction is fairly poorly known. Therefore, it is an open
question whether any sizable polarization buildup can also
be achieved in case of an antiproton beam based on the
spin-filtering mechanism. Indeed, recently several theoretical
studies were performed with the aim to estimate the expected
polarization buildup for antiprotons, employing different p̄p

interactions [18–20]. In addition to using polarized protons as
target one could also use light nuclei as possible source for the
antiproton polarization buildup. Corresponding investigations
for antiproton scattering on a polarized deuteron target were
presented in Refs. [19,21,22]. As was shown in Refs. [19,21]
on the basis of the Glauber-Sitenko theory [23,24] with
elementary p̄N amplitudes taken from the Jülich N̄N models
[11,13,25,26], the p̄d interaction could provide a comparable

or even more effective way than the p̄p interaction to obtain
polarized antiprotons. This conjecture can be checked at a
planned experiment [27] at the Antiproton Decelerator (AD)
facility at CERN.

Yet another option could be the scattering of antiprotons
off a polarized 3He target. Since the polarization of the 3He
nucleus is carried mainly by the neutron, the p̄n amplitudes
are expected to dominate the spin observables of this reaction.
In the present work we calculate spin-dependent cross sections
for the p̄ 3He interaction on the basis of an approach similar
to that developed in Ref. [19]. Experimental information
on p̄ 3He scattering is rather sparse [28,29]. Thus, in order
to examine the validity of the employed Glauber-Sitenko
approach [24,30] at low and intermediate energies we consider
here also the p̄ 4He system where the PS179 collaboration has
performed several measurements [31–38] at the LEAR facility
at CERN. In particular, we calculate differential cross sections
for elastic scattering and compare them with data available
at beam momenta of 200 MeV/c [37] and 600 MeV/c [36].
As far as we know, this is the first time that those PS179
data are analyzed within an approach that utilizes elementary
N̄N amplitudes taken from a microscopic model of the N̄N

interaction. Though a few investigations of p̄ 3He and p̄ 4He
scattering have been performed before [39,40] based on the
Glauber-Sitenko theory, none of them connects directly with
amplitudes generated from potential models that are fitted to
N̄N data.

The article is structured as follows: In Sec. II some details of
the formalism are given. In particular, we define the amplitudes
and their relation to the cross sections and we provide the
relation between the amplitudes of the p̄ 3He system with those
of the elementary N̄N interaction within the single-scattering
approximation. Expressions required for the inclusion of the
Coulomb interaction are also provided. In Sec. III predictions
for p̄ 3He and p̄ 4He are given, obtained within the Glauber-
Sitenko approach. The results are compared with the available
data for those systems. In Sec. IV the polarization efficiency
for p̄ 3He is studied. We introduce the pertinent quantities
and then present and discuss the numerical results. The article
closes with a short summary.
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II. FORMALISM

A. Forward elastic p̄ 3He scattering amplitude and total cross
sections

In order to calculate the total unpolarized and spin-
dependent p̄ 3He cross sections we use the optical theorem.
If F̂ (θ = 0) is the operator of forward elastic scattering for
p̄ 3He and ρ is the spin-density matrix of the p̄ 3He system,
then the total cross section, σ , is given by

σ = 4π

kp̄τ

Im
TrρF̂ (0)

Trρ
, (1)

where kp̄τ is the modulus of the center-of-mass (c.m.)
momentum in the p̄ 3He system. The spin-density matrix for
the p̄ 3He system is

ρ = 1 + σ p̄Pp̄

2

1 + σ τ Pτ

2
, (2)

where σ p̄ and σ τ are Pauli matrices acting on the p̄ and
3He spin states, respectively, and Pp̄ (Pτ ) is the polarization
vector of the antiproton (3He). While, in general, elastic
scattering of two nonidentical spin- 1

2 particles involves six
complex amplitudes [41], only three of those contribute at
forward direction. Thus, the operator F̂ (0) can be written in
the form [42],

F̂ (0) = F0 + F1σ p̄ · σ τ + F2(σ p̄ · k̂)(σ τ · k̂), (3)

where F0, F1, F2 are complex amplitudes and k̂ is the unit
vector along the beam direction. Inserting Eqs. (2) and (3) into
Eq. (1) one obtains

σ = σ0 + σ1Pp̄ · Pτ + σ2(Pp̄ · k̂)(Pτ · k̂), (4)

where the total unpolarized cross section σ0 and the total spin-
dependent cross sections σ1 and σ2 are introduced as

σ0 = 4π

kp̄τ

ImF0, (5)

σ1 = 4π

kp̄τ

ImF1, (6)

σ2 = 4π

kp̄τ

ImF2. (7)

B. Single-scattering approximation

For the ground state of the 3He nucleus we use the
completely antisymmteric wave function �A(1, 2, 3) defined
within the isospin formalism. Only the fully symmetric spatial
part, �S

X, and the antisymmetric spin-isospin part, ξa , are kept
here [43],

�A = �S
X ξa, (8)

ξa = 1√
2

(χ ′ζ ′′ − χ ′′ζ ′), (9)

where χ ′, χ ′′ are spin functions and ζ ′, ζ ′′ are those for the
isospin. For the z projection of the 3He spin, MS = + 1

2 , one

has the following spin-wave functions,

χ ′ = 1√
2
α(1)[α(2)β(3) − β(2)α(3)], (10)

χ ′′ = 1√
6
α(1)[α(2)β(3) + β(2)α(3)] −

√
2

3
β(1)α(2)α(3),

(11)

where χ ′ is antisymmetric and χ ′′ is symmtric with respect to
the permutation of the nucleons with the numbers 2 and 3. In
Eqs. (10) and (11) the quantity α(i) [β(i)] corresponds to the
eigenvalue of the σz operator +1 (−1) for the i th nucleon.
For the 3He spin projection MS = − 1

2 one should interchange
α(1) and β(1) in Eqs. (10) and (11) and replace α(2) → β(2),
α(3) → β(3) in Eq. (11). The isospin-wave functions ζ ′ and
ζ ′′ are similar to those in Eqs. (10) and (11).

In the single-scattering approximation the operator F̂ of
p̄ 3He scattering is taken within the isospin formalism as the
following sum:

F̂ = mτ

mN

√
sp̄N

sp̄τ

[f̂ (1) + f̂ (2) + f̂ (3)], (12)

where the f̂ (j )’s (j = 1,2,3) are operators in the p̄N spin-
isospin space,

f̂ (j ) = 1
2 (1 + τz j )f̂ p + 1

2 (1 − τz j )f̂ n . (13)

Here mN (mτ ) is the mass of the nucleon (3He),
√

sp̄N (
√

sp̄τ )
the invariant mass of the p̄N (p̄3He) system and f̂ p (f̂ n) is
the operator related to p̄p (p̄n) scattering with the same spin
structure as given in Eq. (3), namely

f̂ N (0) = f N
0 + f N

1 σ p̄ · σN + f N
2 (σ p̄ · k̂)(σN · k̂), (14)

where fi (i = 0,1,2) are complex amplitudes. The matrix
element of the operator F̂ at zero scattering angle is

〈σ ′
p̄M ′

S |Fp̄ 3He|σp̄MS〉

= 3
mτ

mN

√
sp̄N

sp̄τ

〈
�s

x

∣∣�s
x

〉
×

(
1

6
〈χ ′|f̂ p|χ ′〉 + 1

2
〈χ ′′|f̂ p|χ ′′〉 + 1

3
〈χ ′|f̂ n|χ ′〉

)
.

(15)

The spin algebra gives, from Eqs. (12), (13), (15) using (8),
(9), (10), and (11),

F0 = kp̄τ

kp̄N

(
2f

p

0 + f n
0

)
, F1 = − kp̄τ

kp̄N

f n
1 ,

F2 = kp̄τ

kp̄N

(
2f n

1 + f n
2

)
. (16)

Here kp̄N is the center-of-mass momentum in the p̄N system
which is related to the p̄ 3He momentum kp̄τ by

mτ

mN

√
sp̄N

sp̄τ

= kp̄τ

kp̄N

, (17)

which is valid for equal (p̄) beam momenta in the p̄N -
and p̄ 3He systems. One can see from Eq. (16) that within
the single-scattering approximation the spin-dependent cross
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sections σ1 and σ2 are determined only by p̄ scattering off
the neutron. This result is in agreement with the fact that the
matrix element of the operator of the z projection of the 3He
spin, Sz, written as

Sz =
j=3∑
j=1

{
sp
z (j )

1

2
[1 + τz(j )] + sn

z (j )
1

2
[1 − τz(j )]

}
(18)

and sandwiched between the ground-state wave function (8)
of 3He, is completely determined by the contribution of the z

projection of the spin operator of the neutron, sn
z , whereas the

proton operator s
p
z gives zero contribution: 〈�A

MS
|Sz|�A

MS
〉 =

MS , where MS = ± 1
2 .

When substituting Eqs. (16) into Eqs. (5), (6), and (7), one
can find for the total p̄ 3He cross sections in single-scattering
approximation (impulse approximation)

σ IA
0 = (

2σ
p̄p

0 + σ
p̄n

0

)
w̃, (19)

σ IA
1 = −σ

p̄n

1 w̃, (20)

σ IA
2 = (

2σ
p̄n

1 + σ
p̄n

2

)
w̃, (21)

where w̃ = 〈�s
x |�s

x〉. In the actual calculation we set
〈�s

x |�s
x〉 = 1. The total p̄N cross sections σ

p̄N

i (i = 0, 1, 2)
are determined in Ref. [42] in the same way as in Eq. (4) and
their relations with the zero-angle elastic-scattering amplitudes
f0, f1, f2 can be found in Ref. [42]. Note that in Ref. [4]
a different definition for the total polarized cross sections
σi (i = 1,2) is used where then those quantities actually
correspond directly to the transversal and longitudinal cross
sections. Their cross sections (σi (MS)) are related to ours via
σ1 = σ1 (MS), σ2 = σ2 (MS) − σ1 (MS). Eqs. (19) and (20) are not
changed when being rewritten in terms of σi (MS), but Eq. (21)
takes then the form σ IA

2 (MS) = σ
p̄n

2 (MS).

C. Coulomb effects

Coulomb effects are sizable at low energies, i.e., for Tlab �
25 MeV, as can be seen from the analysis of the FILTEX
experiment [2] in which protons were scattered off polarized
hydrogen at 23 MeV. For p̄ 3He scattering, Coulomb effects
could be even more important due to the twice-as-large electric
charge of 3He.

The Coulomb amplitude of elastic p̄ 3He scattering is [44]

fc(θ ) = −
[

η

2kp̄τ sin2 (θ/2)

]
exp [iη ln sin−2(θ/2) + 2iσ̃0].

(22)

Here η = Z1Z2αμp̄τ /kp̄τ , with Z1Z2 = −2, α is the fine
structure constant and μp̄τ is the reduced mass of the p̄ 3He
system. The Coulomb phase is given by σ̃0 = arg �(1 + iη),
where �(z) is the gamma function.

The total unpolarized Coulomb cross section σC
0 is esti-

mated here following Ref. [4], where proton-proton scattering
in storage rings was analyzed. It leads to the following result:

σC
0 = π

(
4αμp̄τ

k2
p̄τ θacc

)2

. (23)

Here θacc � 1 is the beam acceptance angle. According to
definition of θacc, for scattering at smaller angles θ � θacc the
antiprotons remain in the beam. The polarized total Coulomb
cross sections σC

1 and σC
2 are zero for p̄ 3He scattering, since

the nonrelativistic Coulomb elastic-scattering amplitude does
not depend on the spins of p̄ and 3He and, in contrast to
pp scattering, does not contain antisymmetrization terms. The
remaining part of the Coulomb effects is related to Coulomb-
nuclear interference. The spin structure of the p̄ 3He scattering
amplitude is similar to that for pp scattering. Therefore, the
cross sections due to the interference terms, σ int

0 , σ int
1 , and σ int

2 ,
are calculated here on the basis of the formalism developed
in Refs. [4,19]. The final result for p̄ 3He can be obtained
from the one for p̄p scattering given in Eq. (27) of Ref. [19]
via the following substitutions: α → 2α, mp/2 → μp̄τ , χ0 →
σ̃0. Furthermore, the zero-angle helicity amplitudes M

p

i (0)
(i = 1,2,3) of the hadronic p̄p scattering have to be replaced
by the corresponding helicity amplitudes of zero-angle p̄ 3He
scattering. When using the single-scattering approximation
given by Eqs. (16), one finds the following expressions for the
contribution of the Coulomb-nuclear interference terms to the
total cross sections:

σ int
0 = − 2π

kp̄N

{cos 2σ̃0[− sin �ReM̃0 + (1 − cos �)ImM̃0]

− sin 2σ̃0[sin �ImM̃0 + (1 − cos �)ReM̃0]},
σ int

1 = −2π

kp̄N

{
cos 2σ̃0

[
sin �ReMn

2 (0)−(1 − cos �)ImMn
2 (0)

]
+ sin 2σ̃0

[
sin �ImMn

2 (0) + (1 − cos �)ReMn
2 (0)

]}
,

σ int
2 = − 2π

kp̄N

{cos 2σ̃0[− sin �ReM̃2 + (1 − cos �)ImM̃2]

+ sin 2σ̃0[sin �ImM̃2 − (1 − cos �)ReM̃2]}, (24)

where the following notations are used:

M̃0 = 2M
p

1 (0) + 2M
p

3 (0) + Mn
1 (0) + Mn

3 (0),

M̃2 = Mn
2 (0) + Mn

3 (0) − Mn
1 (0),

� = 2η ln sin θacc/2. (25)

III. RESULTS FOR p̄ 3He AND p̄ 4He BASED ON THE
GLAUBER-SITENKO APPROACH

In the present investigation we use two N̄N models
developed by the Jülich group. Specifically, we use the models
A(BOX) introduced in Ref. [11] and D described in Ref. [13].
Starting point for both models is the full Bonn NN potential
[45]; it includes not only traditional one-boson-exchange
diagrams but also explicit 2π - and πρ-exchange processes
as well as virtual � excitations. The G-parity transform of
this meson-exchange NN model provides the elastic part
of the considered N̄N interaction models. In the case of
model A(BOX) [11] (in the following referred to as model A)
a phenomenological spin-, isospin-, and energy-independent
complex potential of Gaussian form is added to account
for the N̄N annihilation. It contains only three free parameters
(the range and the strength of the real and imaginary parts of the
annihilation potential), fixed in a fit to the available total and
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integrated NN cross sections. In case of model D [13], the most
complete N̄N model of the Jülich group, the N̄N annihilation
into two-meson decay channels is described microscopically,
including all possible combinations of π , ρ, ω, a0, f0, a1, f1,
a2, f2, K , K∗—see Ref. [13] for details—and only the decay
into multimeson channels is simulated by a phenomenological
optical potential. Results for the total and integrated elastic
(p̄p) and charge-exchange (p̄p → n̄n) cross sections and also
for angular-dependent observables for both models can be
found in Refs. [11,13,26]. Evidently, with model A as well
as with D a very good overall reproduction of the low- and
intermediate-energy N̄N data was achieved.

The unpolarized cross sections for p̄ 3He and p̄ 4He are
calculated using the multiple-scattering theory of Glauber-
Sitenko [24,30]. It is known that for proton scattering on
nuclei this theory is only valid at fairly high energies, say,
for energies from ∼1 GeV upward. This differs in case
of the antiproton-nucleus interaction. Strong annihilation
effects in the elementary p̄N interaction lead to a peaking
of the p̄N elastic-scattering amplitude in forward direction
already at very low energies and, therefore, render it suitable
for application of the eikonal approximation, which is the
basis of the Glauber-Sitenko theory. As a consequence, for
antiproton reactions this theory can be applied at much
lower energies, namely ∼50 MeV or even less [46]. For
example, for p̄d scattering we found that the Glauber-Sitenko
theory even seems to work at Tlab ∼ 25 MeV [19]. However,
since the radii of 3He and 4He are smaller than that of the
deuteron, it is possible that for p̄ 3He, and especially for
p̄ 4He, scattering the onset of applicability of the Glauber-
Sitenko theory could occur at somewhat higher energies.
Thus, in order to explore the reliability of this theory it
would be desirable to confront our results with experimental
information. Unfortunately, for p̄ 3He, the only published
experimental result in the considered energy region is a p̄ 3He
reaction cross section at the beam energy of 19.6 MeV [28].
There is one more data point, namely the p̄ 3He annihilation
cross section close to threshold [35], but this is certainly
outside of the region where the Glauber-Sitenko theory can be
used.

Indeed, the experimental situation for p̄ 4He is much better.
In this case the PS179 collaboration has published results for
integrated [31–35] as well as differential cross sections [36,37].
Thus, as a test we performed also calculations for this system
within the Glauber-Sitenko approach. In those calculations
we employ a Gaussian representation of the p̄N -scattering
amplitude in the form

fp̄N (q) = kp̄Nσ
p̄N
tot (i + αp̄N )

4π
exp

( − β2
p̄Nq2/2

)
, (26)

where q is the transferred three-momentum. The parameters
σ

p̄N
tot , αp̄N , and β2

p̄N are fixed from the spin-averaged ampli-
tudes fp̄N of the models A and D and given in Ref. [19]. We
utilize the formalism of Ref. [30], where a Gaussian nuclear
density is used and corrections from the center-of-mass motion
are included. Furthermore, we take into account explicitly
that the p̄p- and p̄n-scattering amplitudes differ. We adopt
the nuclear radius r = 1.37 fm for 4He [30] and 1.5 fm for
3He [47]. The differential cross section we obtained for p̄ 4He
scattering at 179.6 MeV is in rather good agreement with
the data of Ref. [36] (see Fig. 1). We want to emphasize
that no free parameters are involved in our calculation. For
comparison, we examined also the formalism of Ref. [47],
where the p̄N -scattering amplitudes are evaluated exactly
for the single-scattering mechanism but taken out of the
loop integrals for pN (p̄N) rescattering of higher order. This
approximation works rather well for proton-3He scattering at
a few hundred MeV [47], but in the case of p̄ 4He scattering
at 179.6 MeV its applicability seems to be limited to much
smaller scattering angles (θc.m. < 30◦) as compared to the
approach of Ref. [30], as is demonstrated in Fig. 1 (cf. the
dash-dotted curve).

Results at 19.6 MeV are also shown in Fig. 1 and compared
with experimental information from Ref. [37]. Obviously,
even at this fairly low energy, corresponding to a beam
momentum of plab = 192.8 MeV/c, the data are remarkably
well reproduced. There is, however, an overestimation of the
differential cross section at very forward angles. We included
the Coulomb amplitude given by Eq. (22) in addition to the
hadronic Glauber-Sitenko p̄3He amplitude and found that
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FIG. 1. (Color online) Differential cross
section for p̄ 4He versus the center-of-mass
scattering angle at Tlab = 19.6 and 179.6 MeV.
The solid and dashed lines are results for the N̄N

models D and A, respectively, obtained on the
basis of the approach [30]. The dash-dotted line
is the result obtained within the approximation
[47] for the Jülich model D. Data are taken from
Refs. [37] (19.6 MeV) and [36] (179.6 MeV).
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FIG. 2. (Color online) Integrated elastic (σel,
lower curves) and total reaction (σR , upper
curves) cross sections for p̄ 3He and p̄ 4He versus
the beam kinetic energy Tlab. The solid and
dashed lines are results for the N̄N models D
and A, respectively, obtained on the basis of the
Glauber-Sitenko approach [30]. Data for p̄ 4He
are taken from Refs. [32] (filled circles), [36]
(squares), and [37] (open circles). The data point
for p̄ 3He is taken from Ref. [28].

at 19.6 MeV and scattering angles θc.m. less than ≈2◦ the
Coulomb contribution is important but negligible at larger
angles θc.m. > 5◦ and, therefore, does not allow one to explain
the observed deviation in forward direction at 20◦–40◦.

The total cross section can be evaluated by using the optical
theorem. At Tlab = 19.6 MeV where the p̄ 3He reaction cross
section was measured by the PS179 collaboration [28] we
obtain σ0 = 609 mb for model A and 644 mb for model D.
Evaluating the differential cross section for elastic p̄ 3He
scattering allows us to compute also the integrated elastic cross
section σel. Here we find σel = 217 mb (A) and 219 mb (D).
The reaction cross section is then given by σR = σ0 − σel (we
adopt here the notation of Ref. [33]). Thus, we get 392 mb
for model A and 425 mb for model D. The experimental
result is 392±23.8 mb [28]. It is quite remarkable that the
Glauber-Sitenko theory combined with the Jülich models for
the p̄N interaction agrees so well with the measurement at this
low energy.

For p̄ 4He scattering experimental results for the reaction
cross section [33] as well as for the integrated elastic cross
section [36,37] have been published. Those data points are

displayed in Fig. 2, together with the predictions of our
calculations. One can see from the figure that the model results
are well in line with the energy dependence exhibited by the
data. But, in general, they overestimate the measured cross
sections by 5 to 10% (model A) and 10 to 20% (model D).
In the case of p̄ 3He, also shown in Fig. 2, the predictions
for both considered N̄N models agree with the experiment
within the error bars, as was already pointed out above. For
completeness, predictions for the differential cross section for
p̄ 3He scattering at two energies are displayed in Fig. 3. The
results are qualitatively rather similar to those for the p̄ 4He
system.

Finally, let us discuss here the so-called shadowing effects,
i.e., the corrections that arise in the multiple-scattering
approach of Glauber-Sitenko as employed in our calculation of
the p̄ 3He and p̄ 4He scattering observables presented above.
To determine the magnitude of the p̄N multiple-scattering
contributions quantitatively, let us consider the ratio of the
total p̄ 3He cross section obtained within the single-scattering
approximation to the one accounting for all allowed orders of
rescattering, R = σ IA

0 /σ0. We found that this ratio is roughly
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FIG. 3. (Color online) Differential cross sec-
tion for p̄ 3He versus the center-of-mass scatter-
ing angle at Tlab = 19.6 and 179.6 MeV. The solid
and dashed lines are results for the N̄N models D
and A, respectively, obtained on the basis of the
approach [30].
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1.45 at low energies ∼25 MeV and smoothly decreases to
R = 1.33 when the beam energy is increased to 179.6 MeV.
For p̄d scattering this ratio was found to be smaller, namely
∼1.1–1.15 [19]. The reason for this difference is the more
compact structure of the 3He as compared to the loosely bound
deuteron, which leads to an increase of the shadowing effects.
Indeed, this can be easily verified by simply increasing the
radius of the Gaussian density r to 4 fm in our calculation.
The ratio R then smoothly reduces to 1.15 at 19.6 and 1.09 at
179.6 MeV.

IV. POLARIZED CROSS SECTIONS FOR p̄ 3He

According to the analysis of the kinetics of polarization
[4,6], the polarization buildup is determined mainly by the ratio
of the polarized total cross sections (σ1, σ2) to the unpolarized
one (σ0) [4]. Let us define the unit vector ζ = PT /PT , where
PT = Pτ is the target polarization vector, which enters Eq. (4).
The nonzero antiproton beam polarization vector Pp̄, produced
by the polarization buildup, is collinear to the vector ζ for any
directions of PT and can be calculated from consideration
of the kinetics of polarization. The general solution for the
kinetic equation for p̄p scattering is given in Ref. [4]. Here we
assume that this solution is valid for p̄ 3He scattering as well.
Therefore, for the spin-filtering mechanism of the polarization
buildup the polarization degree at the time t is given by [4,20]

Pp̄(t) = tanh

[
t

2
(�out

− − �out
+ )

]
, (27)

where

�out
± = nf {σ0 ± PT [σ1 + (ζ · k̂)2σ2]}. (28)

Here n is the areal density of the target and f is the beam
revolving frequency. Assuming the condition |�out

− − �out
+ | �

(�out
− + �out

+ ), which was found in Refs. [4,20] for p̄p

scattering in storage rings at n = 1014 cm−2 and f = 106 c−1,

one can simplify Eq. (27). If one denotes the number of
antiprotons in the beam at the time moment t as N (t), then the
figure of merit is P 2

p̄ (t)N (t). This value is maximal at the time
t0 = 2τ , where τ is the beam lifetime, which is determined by
the total cross section σ0 of the interaction of the antiprotons
with the nuclear target,

τ = 1

nf σ0
. (29)

To estimate the efficiency of the polarization buildup mecha-
nism it is instructive to calculate the polarization degree Pp̄ at
the time t0 [20]. With our definition of σ1 and σ2 this quanitity
is given by

Pp̄(t0) = −2PT

σ1

σ0
, if ζ · k̂ = 0,

Pp̄(t0) = −2PT

σ1 + σ2

σ0
, if |ζ · k̂| = 1. (30)

Let us first look at the spin-dependent cross sections
themselves which are presented in Fig. 4. Note that here
the corresponding calculations are all done in the single-
scattering approximation only, as described in Secs. II B
and IIIC. The center-of-mass acceptance angle used in those
calculations is θacc = 10 mrad. In principle, the corrections
from multiple scattering to the spin-dependent cross sections
could be worked out by extending the formalism described
in Refs. [48] to the p̄ 3He case. We expect that the multiple-
scattering effects on those quantities are roughly of the same
magnitude (i.e., around 30% for energies above 20 MeV) as
for the spin-independent cross sections. This was found in
the case of p̄d, at least, reported in Ref. [22]. Therefore,
we believe that the single-scattering approximation provides a
reasonable estimation for the magnitude of the polarization-
build-up effect in p̄ 3He scattering and we refrain from a
thorough evaluation of the involved multiple-scattering effects
in the present analysis. After all, one has to keep in mind that
the differences between the N̄N models A and D introduce
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FIG. 4. (Color online) Total cross sections σ0, σ1, and σ2 versus the antiproton laboratory energy Tlab for p̄ 3He scattering. Results based
on the purely hadronic amplitude, σh

i [(solid line) model D; (dashed line) model A] and for the Coulomb-nuclear interference term, σ int
i

[(dash-dotted line) model A; (dotted line) model D], are presented. In case of σ0 the Coulomb cross section [cf. Eq. (23)] is shown too
(dash-double-dotted line). The employed acceptance angle is θacc = 10 mrad.
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FIG. 5. (Color online) Dependence of the longitudinal polarization P|| (i.e., Pp̄(t0) for ζ · k̂ = 1) on the beam energy for the target
polarization PT = 1 in the different reactions p̄p, p̄d , and p̄ 3He. The results are for models A (dashed line) and D (solid line). The employed
acceptance angle is θacc = 10 mrad.

significantly larger variations in the cross sections σ1 and σ2,
cf. Fig. 4.

Our results suggest that the magnitude of the spin-
dependent cross sections σ1 and σ2 for p̄ 3He are comparable
to those for p̄p and p̄d, at least as far as the hadronic part
is concerned. However, due to the larger charge of 3He,
Coulomb-nuclear interference effects turn out to be more
important. Indeed, the Coulomb-nuclear interference cross
sections σ int

i are comparable to the corresponding polarized
hadronic cross sections σ1 and σ2 even at 100–200 MeV.

The unpolarized cross section σh
0 (cf. left panel of Fig. 4)

is roughly a factor 3 larger than the one for p̄p [19], as
expected. Moreover, the Coulomb cross section is significantly
larger than in the p̄p case. Indeed, the latter is still of similar
magnitude as the purely hadronic cross section σh

0 at beam
energies around 100 MeV.

The polarization degree Pp̄(t0) for ζ · k̂ = 1 (P||) at PT =
P d = 1 for p̄ 3He is shown in Fig. 5 versus the beam energy.
The results for ζ · k̂ = 0 (P⊥) are displayed in Fig. 6. For the
ease of comparison the polarization degree for the p̄p and p̄d

cases [21] are included as well. The magnitudes of P|| and P⊥
in the region of the beam energy 0–300 MeV are in the order
of 5% . In the case of P|| they tend to be smaller than those
predicted for p̄p [20,21] and p̄d [21,22], whereas for P⊥ they
are comparable to the ones for those other antiproton reactions.

Since the polarization degree for p̄n was found to be on
the order of 20% [21] one might naively expect that it could
be similar for 3He because, as mentioned above, in the latter
the polarization is carried mainly by the neutron. However,
the polarization degree is determined by the ratios of the spin-
dependent cross sections σi = σh

i + σ int
i (i = 1,2) to σ0 =

σh
0 + σ int

0 + σC
0 , cf. Eq. (30) and, thus, is reduced by the larger
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FIG. 6. (Color online) Dependence of the transversal polarization P⊥ [i.e., Pp̄(t0) for ζ · k̂ = 0] on the beam energy for the target polarization
PT = 1 in the different reactions p̄p, p̄d , and p̄ 3He. The results are for models A (dashed line) and D (solid line). The employed acceptance
angle is θacc = 10 mrad.
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unpolarized cross section σ0 and, in particular, the larger total
Coulomb cross section σC

0 in the p̄ 3He system. In this context,
note that also the beam lifetime decreases with increasing σ0;
see Eq. (29).

As discussed in Sec. III, if one goes beyond the single-
scattering approximation the hadronic part of the unpolarized
cross section σh

0 decreases by a factor of ≈1.4 which, in
principle, would lead to an increase of the polarization
efficiency by the same factor. However, in the case of p̄d it
also has been found that the spin-dependent cross sections are
reduced [22] by a similar amount so there is practically no net
effect. It is likely that the same will happen for p̄ 3He as well.

V. SUMMARY

In the present article we employed two N̄N potential
models developed by the Jülich group for a calculation of
p̄ 3He and p̄ 4He scattering within the Glauber-Sitenko theory.
One of the aims was to examine in how far antiproton scattering
off a polarized 3He target would be suitable for obtaining a
polarized antiproton beam via the spin-filtering method. The
predicted spin-dependent cross sections for p̄ 3He, evaluated
in the single-scattering approximation for the Jülich N̄N

models A and D, are comparable to those for the scattering
of antiprotons on polarized 1H or deuteron targets. However,
since the total cross section is larger in the case of 3He, the
resulting efficiency of the polarization buildup tends to be
somewhat smaller than those for p̄p and p̄d so one has to
conclude that the use of a polarized 3He target might be less
favorable for obtaining a polarized beam of antiprotons as
required for the PAX experiment.

In addition to the issue of the polarization buildup for
antiprotons, p̄ 3He scattering is interesting for studying the
spin dependence of the elementary p̄N amplitudes. Since the
spin-dependent part of p̄ 3He scattering is determined mainly
by the p̄n amplitude, scattering of antiprotons on a polarized
p̄ 3He target could reveal valuable additional information
on this amplitude. It would supplement the constraints that
could be provided by the expected data on p̄d scattering
from the AD experiment [27], since in the latter a stronger
interplay between the p̄p and p̄n amplitudes has to be
expected. Our results for unpolarized observables (integrated
and differential cross sections) for p̄ 3He and p̄ 4He, obtained
within the Glauber-Sitenko approach, agree rather well with
the available experimental information in the energy range
from 20 MeV upward. We view this as a strong indication
that this formalism is suited for analyzing data for those
reactions in the low- and intermediate-energy regions. Of
course, once concrete measurements with polarizated beam
or target are planned, our calculations have to be improved
and, specifically, corrections due to multiple scattering have to
be also taken into account in the computation of polarization
observables.
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