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3IPHC, IN2P3-CNRS/Université Louis Pasteur BP 28, F-67037 Strasbourg Cedex 2, France
4CEA-Saclay, IRFU/SPhN, F-91191 Gif-sur-Yvette, France

5Department of Physics, University of Pisa, I-56127 Pisa, Italy
(Received 16 September 2011; published 28 November 2011)

The n-3H and p-3He elastic phase shifts below the trinucleon disintegration thresholds are calculated by solving
the four-nucleon problem with three different realistic nucleon-nucleon interactions (the I-N3LO model by Entem
and Machleidt, the Argonne v18 potential model, and a low-k model derived from the CD-Bonn potential). Three
different methods—Alt-Grassberger-Sandhas, hyperspherical harmonics, and Faddeev-Yakubovsky—have been
used and their respective results are compared. For both n-3H and p-3He we observe a rather good agreement
between the three different theoretical methods. We also compare the theoretical predictions with the available
experimental data, confirming the large underprediction of the p-3He analyzing power.
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I. INTRODUCTION

The four-nucleon (4N ) system has been object of intense
studies in recent years. In first place, this system is particularly
interesting as a “theoretical laboratory” to test the accuracy
of our present knowledge of the nucleon-nucleon (NN ) and
three-nucleon (3N ) interactions. In particular, the effects of
the NN P waves and of the 3N force are believed to be larger
than in the A = 2 or 3 systems. Moreover, it is the simplest
system where the 3N interaction in channels of total isospin
T = 3/2 can be studied. In second place, there is a number
of reactions involving four nucleons which are of extreme
importance for astrophysics, energy production, and studies
of fundamental symmetries. As an example, reactions like
d + d → 4He + γ or p + 3He → 4He + νe + e+ (the hep

process) play important roles in solar models and in the theory
of big-bang nucleosynthesis.

Nowadays, the 4N bound-state problem can be numerically
solved with good accuracy. For example, in Ref. [1] the binding
energies and other properties of the α-particle were studied
using the AV8′ [2] NN interaction; several different techniques
produced results in very close agreement with each other (at
the level of less than 1%). More recently, the same agreement
has also been obtained considering different realistic NN+3N

force models [3–6].
In recent years, there has also been a rapid advance in

solving the 4N scattering problem with realistic Hamiltonians.
Accurate calculations of four-body scattering observables
have been achieved in the framework of the Alt-Grassberger-
Sandhas (AGS) equations [7–11], solved in momentum space,
where the long-range Coulomb interaction is treated using
the screening and renormalization method [12,13]. Solutions
of the Faddeev-Yakubovsky (FY) equations in configuration
space [14–18] and the application of the hyperspherical
harmonics (HH) expansion method [19] to the solution of this
problem also have been reported [20,21].

In addition to these methods, the solution of the 4N

scattering problem has been obtained also by using the

resonating group model (RGM) method [22–25]. Calculations
of scattering observables using the Green’s function Monte
Carlo method are also underway [26].

The 4N studies performed so far have evidenced several dis-
crepancies between theoretical predictions and experimental
data. Let us consider first n-3H elastic scattering. Calculations
based on NN interaction models disagree [5,7,20] rather
sizeably with the measured total cross section [27], both at
zero energy and in the “peak” region (En ≈ 3.5 MeV). This
observable is found to be very sensitive to the NN interaction
model [7]. At low energy, the discrepancy is removed by
including a 3N force fixed to reproduce the triton binding
energy [14,20,23,28], but it remains in the peak region. The
analysis of the differential cross section has shown similar
discrepancies, but definitive conclusions are difficult to extract
since the experimental errors are rather large.

In this respect, the p-3He elastic scattering is more
interesting since there exist several accurate measurements
of both the unpolarized cross section [29–31] and the proton
analyzing power Ay0 [31–33]. The calculations performed so
far (with a variety of NN and NN+3N interactions) have
shown a large discrepancy between theory and experiment for
Ay0 [8,17,31,33,34]. In addition, at the Triangle Universities
Nuclear Laboratory (TUNL), there has been recently a new set
of accurate measurements of other p-3He observables (the 3He
analyzing power A0y and some spin-correlation observables
as Ayy , Axx , Axz, Azx , and Azz) at Ep = 1.60, 2.25, 4.05,
and 5.54 MeV, which has allowed a phase-shift analysis
(PSA) [35]. A preliminary comparison with these data was
reported in Ref. [21].

In order to have definite answer about the ability of the
different interaction models to reproduce the experimental data
it is certainly of interest to establish the accuracy reached by
the theoretical methods in the solution of the A = 4 scattering
problem. In a previous benchmark, the results obtained by
different groups working with different techniques were found
to be at variance with each other [17]. Clearly, this situation
should be clarified before questioning the ability of present
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NN+3N force models to describe the experimental data
beyond the binding energy of 4He. This is the purpose of
the present paper, in which we present low-energy n-3H and
p-3He scattering results obtained by the three different groups,
using independent methods to solve the four-body problem,
i.e., the AGS equations, the variational HH expansion, and the
FY equations.

The potentials used in this paper are the I-N3LO model
by Entem and Machleidt [36], with cutoff � = 500 MeV,
the Argonne v18 (AV18) potential model [37], and a low-k
model derived from the CD-Bonn potential [38]. The I-
N3LO potential has been derived using an effective-field-
theory approach and the chiral perturbation theory up to
next-to-next-to-next-to-leading order. The AV18 potential is
a phenomenological potential having a rather strong repulsion
at short interparticle distances. The low-k potentials have
been obtained separating the Hilbert space into low- and
high-momentum regions and using the renormalization group
method [38] to integrate out the high-momentum components
above a cutoff �. The low-k potential adopted in this work
is obtained starting from the realistic CD-Bonn potential [39]
and using a smooth cutoff � = 2.5 fm−1. The cut of the high-
momentum part is reflected in configuration space in an almost
total absence of the repulsion at short interparticle distances.
Note that the first and third models are nonlocal, while AV18
is local in configuration space. The three potentials reproduce
equally well the np and pp data and are a representative set
of the large variety of modern NN potential models. We
note, finally, that I-N3LO and AV18 interactions, without
the inclusion of a suitable 3N interaction model, largely
underestimate the 4He binding energy B(4He). On the contrary,
with the adopted low-k potential model we have B(4He) =
29.04 MeV, slightly overestimating the experimental value
of 28.30 MeV.

This article is organized as follows. In Sec. II, a brief
description of the methods used for this benchmark is reported.
In Sec. III, a comparison between the results obtained within
the different schemes is shown. In Sec. IV, the theoretical
calculations are compared with the available experimental
data. The conclusions will be given in Sec. V.

II. METHODS

In order to solve the 4N scattering problem we employ the
AGS equations, the HH method, and the FY equations. The
various procedures are briefly described below.

The total kinetic energy, Tc.m., in the center of mass
(c.m.) and the nucleon kinetic energy, EN (N = p, n), in the
laboratory reference frame are given by

Tc.m. = q2

2μ
, EN = 4

3
Tc.m., (1)

where μ = (3/4)MN is the reduced mass of the 1+3 system,
MN is the nucleon mass, and q the magnitude of the relative
momentum between the two clusters.

A. AGS equations

The AGS equations [40] are integral equations for the
four-body transition operators. They are well-defined only
with short-range potentials. Nevertheless, together with the
screening and renormalization method [8,41], they can be
applied also to the reactions involving charged particles. In
the 4N system we use the isospin formalism and solve the
symmetrized form of the AGS equations [7]. In this case
there are only two distinct four-particle partitions, one of
the 3+1 type and one of the 2+2 type. We choose those
partitions to be (12,3)4 and (12)(34) and denote them in the
following by α = 1 and 2, respectively. The corresponding
transition operators Uβα for the initial states of the 3+1 type,
as appropriate for the n-3H and p-3He scattering, obey the
integral equations

U11 = −(G0 T G0)−1P34 − P34 U1 G0 T G0 U11

+U2G0 T G0 U21, (2)

U21 = (G0 T G0)−1 (1 − P34) + (1 − P34)U1 G0 T G0 U11.

(3)

Here G0 = (E + iε − H0)−1 is the free resolvent, E being the
energy of the 4N system and H0 the free Hamiltonian, and Pij

is the permutation operator of particles i and j . The (short-
range) two-nucleon potential V s enters the AGS equations via
the two-nucleon transition matrix T = V s + V sG0T and the
3+1 and 2+2 subsystem transition operators

Uα = PαG−1
0 + Pα T G0 Uα, (4)

where P1 = P12 P23 + P13 P23 and P2 = P13 P24. The 3+1
elastic-scattering amplitudes are given by 〈pf |T |pi〉 =
3〈�1(pf )|U11|�1(pi)〉, where the factor 3 results from the sym-
metrization and |�α(pj )〉 are properly normalized initial/final
channel state Faddeev components.

In order to include the Coulomb interaction V C between the
protons in the p-3He scattering we use the screening and renor-
malization approach [8,41]. We add to the nuclear pp potential
the screened Coulomb one V R(r) = V C(r) exp [−(r/R)n].
Thus, the AGS equations with V s + V R are well defined but
all transition operators and the resulting amplitudes depend on
the screening radius R. The renormalization procedure in the
R → ∞ limit yields the full p-3He transition amplitude

〈pf |T(C)|pi〉 = 〈pf |tc.m.
C |pi〉

+ lim
R→∞

〈pf |[T(R) − tc.m.
R

]|pi〉Z−1
R , (5)

where 〈pf |tc.m.
C |pi〉 and 〈pf |tc.m.

R |pi〉 are the proper and
screened Coulomb amplitudes between the center of mass
of two charged clusters, respectively; the former is known
analytically. The renormalization factor ZR is defined in
Ref. [8]. Thus, the long- and Coulomb-distorted short-range
parts in the scattering amplitudes are isolated and their infinite
R limit is calculated separately. The long-range part of the
amplitude 〈pf |tc.m.

R |pi〉 is of two-body nature and its R → ∞
limit after renormalization is 〈pf |tc.m.

C |pi〉. The Coulomb-
distorted short-range part [T(R) − tc.m.

R ] is calculated by solving
the AGS equations for V s + V R numerically at a finite R

that is sufficiently large to get R-independent results after the
renormalization. In other words, the R → ∞ limit is reached
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with sufficient accuracy at finite R. However, R must be
considerably larger than the range of the nuclear interaction,
thereby leading to a slower partial-wave convergence. The
right choice of the screening, i.e., the exponent n, is essential
in dealing with this difficulty. For a fast convergence with
R we have to ensure that V R(r) approximates well V C(r)
for r < R and simultaneously vanishes smoothly but rapidly
for r > R, providing a comparatively fast convergence of
the partial-wave expansion. Using the optimal value n = 4
we obtain reasonably converged results with R ranging from
10 to 15 fm and including two-proton partial waves with
orbital angular momentum up to 10. The R convergence is
slower at lower energies; the worst cases are the S waves at
Ep = 2.25 MeV where we estimate the accuracy of our phase
shift results to be around 1%. In contrast, the n-3H results
are converged very well, considerably better than 0.2%, as
demonstrated in Ref. [7] where also the details on the included
partial waves can be found.

B. HH expansion

The wave function describing a n-3H or p-3He scattering
state with total angular-momentum quantum numbers J, Jz;
incoming relative orbital angular momentum L; and channel
spin S (S = 0, 1) can be written as

�
LS,JJz

1+3 = �
LS,JJz

C + �
LS,JJz

A , (6)

where the part �
LS,JJz

C describes the system in the region
where the particles are close to each other and their mutual
interactions are strong. Hence, �LS,JJz

C vanishes in the limit of
large intercluster distances. This part of the wave function is
written as a linear expansion

∑
μ cLSJ

μ Yμ, where Yμ is a set of
basis functions constructed in terms of the HH functions (for
more details, see, for example, Ref. [19]).

The other part �
LS,JJz

A describes the relative motion of
the two clusters in the asymptotic regions, where the 1+3
interaction is negligible (except eventually for the long-range
Coulomb interaction). In the asymptotic region the wave
functions �

LS,JJz

1+3 reduces to �
LS,JJz

A , which must, therefore,
be the appropriate asymptotic solution of the Schrödinger
equation. Let us consider, for example, the p-3He case. Then,
�

LS,JJz

A can be decomposed as a linear combination of the
following functions:

	±
LS,JJz

=
4∑

l=1

[YL( ŷl) ⊗ [φ3(ijk) ⊗ sl]S]JJz

×
[
fL(yl)

GL(η, qyl)

qyl

± i
FL(η, qyl)

qyl

]
, (7)

where yl is the distance between the proton (particle l) and 3He
(particles ijk), q is the magnitude of the relative momentum
between the two clusters, sl the spin state of particle l, and
φ3 is the 3He wave function. Moreover, FL and GL are the
regular and irregular Coulomb function, respectively, with η =
2μe2/q. The function fL(y) = [1 − exp(−βy)]2L+1 in Eq. (7)
has been introduced to regularize GL at small y, and fL(y) →
1 as y is large, thus not affecting the asymptotic behavior of

�
LS,JJz

1+3 . Note that for large values of qyl ,

fL(yl)GL(η, qyl) ± iFL(η, qyl) →
exp[±i(qyl − Lπ/2 − η ln(2qyl) + σL)], (8)

where σL is the Coulomb phase shift. Therefore, 	+
LS,JJz

(	−
LS,JJz

) describe the asymptotic outgoing (ingoing) p-3He
relative motion. Finally,

�
LS,JJz

A =
∑
L′S ′

[
δLL′δSS ′	−

LS,JJz
− SJπ

LS,L′S ′	
+
L′S ′,JJz

]
, (9)

where the parameters SJπ
LS,L′S ′ are the S-matrix elements which

determine phase shifts and (for coupled channels) mixing
parameters at the energy Tc.m.. Of course, the sum over L′
and S ′ is over all values compatible with the given J and
parity π . In particular, the sum over L′ is limited to include
either even or odd values such that (−1)L

′ = (−)L = π .
The S-matrix elements SJπ

LS,L′S ′ and coefficients cLSJ
μ

occurring in the HH expansion of �
LS,JJz

C are determined by
making the functional[

SJπ
LS,L′S ′

] = SJπ
LS,L′S ′ − 〈

�
L′S ′,JJz

1+3 |H − E|�LS,JJz

1+3

〉
(10)

stationary with respect to variations in the SJπ
LS,L′S ′ and

cLSJ
μ (Kohn variational principle). In the above equation,

E = Tc.m. − B(3He) is the energy of the system, B(3He)
being the 3He binding energy. By applying this princi-
ple, a linear set of equations is obtained for SJπ

LS,L′S ′

and cLSJ
μ . This linear system is solved using the Lanczos

algorithm.
This method can be applied in either coordinate or momen-

tum space and using either local or nonlocal potentials [19]
(see also Ref. [42] for an application to the A = 3 scattering
problem). The first step is a partial-wave decomposition of
the asymptotic functions 	±

LS,JJz
, a task which can be rather

time-consuming, in particular, for the Jπ = 2− state. After
this decomposition, the calculation of the matrix element in
Eq. (10) is fast. The problem then reduces to the solution
of the linear system, which is performed using an iterative
method (however, this solution has to be repeated several
times due to the necessity to extrapolate the results; see
below).

The expansion of the scattering wave function in terms of
the HH basis is, in principle, infinite, therefore, a truncation
scheme is necessary. The HH functions are essentially char-
acterized by the orbital angular-momentum quantum numbers
�i , i = 1, 3, associated with the three Jacobi vectors, and the
grand angular quantum number K (each HH function is a
polynomial of degree K). The basis is truncated to include
states with �1 + �2 + �3 � �max (with all possible recoupling
between angular and spin states appropriate to the given J ).
Between these states, we retain only the HH functions with
K � Kmax. In the calculation we have included only states
with total isospin T = 1.

The numerical uncertainty comes from the numerical
integrations needed to compute the matrix elements of the
Hamiltonian and the truncation of the basis. It has been
checked that the numerical uncertainty of the calculated phase
shifts related to the numerical integration is small (around
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0.1%). The NN interaction has been limited to act on two-body
states with total angular momentum j � jmax = 8 (at the
considered energies, greater values of jmax are completely
unnecessary). The largest uncertainty is, thus, related to the
use of a finite basis. The convergence with �max is rather
fast and the value �max = 6 have been found to be sufficient.
The main problem is related to the slow convergence of the
results with Kmax. This problem can be partly overcome
by performing calculations for increasing values of Kmax

and then using some extrapolation rule (see, for example,
Ref. [31]) to get the “Kmax → ∞” result. This procedure has an
uncertainty which can be estimated. A detailed study of this
problem will be published elsewhere [43]. The convergence
of the quantities of interest in term of Kmax is slower when
NN potentials with a strong repulsion at short interparticle
distance are used such as for the AV18 potential. In this
case we have estimated the uncertainty to be of the order
of 0.5% in the extrapolated phase shifts. This problem is
less relevant for the I-N3LO and the low-k models. In
these cases, the uncertainty has been estimated to be at
most 0.3%.

C. FY equations in configuration space

In the late 1960s, Yakubovsky [44] has managed to
generalize the three-body equations derived by Faddeev [45]
to an arbitrary number of particles. These equations were
primarily derived for a system of particles submitted to
short-range pairwise potential V s . Nevertheless, it becomes
possible to include also repulsive Coulomb interaction if these,
the so-called Faddeev-Yakubovsky equations, are formulated
in configuration space. To this aim, we split the Coulomb
potential V C into two parts (short and long range), V C =
V s.C + V l.C . The splitting procedure is quite arbitrary, and
one should only take care that the long-range part V l.C of
the Coulomb potential approaches sufficiently fast the full
Coulomb interaction V C when any of interparticle distances
becomes large. The simplest application of FY equations is
the problem of four identical particles. They result into a set
of two differential equations coupling the two so-called FY
components, namely K4

12,3 and H 34
12 , and have the form

⎛
⎝E − H0 − V s

12 −
∑
i<j

V l.C
ij

⎞
⎠ K4

12,3

= (
V s

12 + V s.C
12

)
P1

[
(1 + εP34)K4

12,3 + H 34
12

]
, (11)

⎛
⎝E − H0 − V s

12 −
∑
i<j

V l.C
ij

⎞
⎠ H 34

12

= (
V s

12 + V s.C
12

)
P2

[
(1 + εP34)K4

12,3 + H 34
12

]
, (12)

where P1, P2, and P34 are the particle permutation operators,
equivalent to those described in subsection II A, and ε =
±1 is a phase accounting for the Pauli principle between
two identical particles (ε = +1 for bosons and ε = −1 for
fermions).

Each FY component F = (K,H ) is considered as a
function of its proper set of Jacobi [5,15] vectors x, y, z and
expanded in angular variables for each coordinate according
to

〈x, y, z|F 〉 =
∑

α

Fα(x, y, z)

xyz
Yα(x̂, ŷ, ẑ). (13)

The quantities Fα are called regularized FY amplitudes and Yα

are tripolar harmonics, containing spin, isospin, and angular-
momentum variables. The label α holds for the set of 10
intermediate quantum numbers describing a Jπ , T = 1 state
in the partial-wave basis.

The FY components F = (K,H ) are subject to Dirichlet-
type boundary condition imposed on a three-dimensional
rectangular grid. Both components vanish on any of three
(x, y, z) axes, as well as at the borders x = xmax and y =
ymax of the chosen resolution grid. On contrary, a boundary
condition equivalent to Eq. (9) is imposed on the z = zmax

border for the FY components of type K; if no 2+2 particle
channels are open, then the FY component of type H must
also vanish at the z = zmax.

As discussed in the previous section, the expansion of
the scattering wave function in terms of the partial-wave
basis is, in principle, infinite and a truncation scheme is
necessary. In this work the partial-wave basis was truncated
to include all the states with jx � 4, jy � 4 and jz � 3, in
the so-called j -j coupling scheme [5,15]. By studying the
convergence of the calculated phase shifts with respect to
the size of the partial-wave basis, we have concluded that
this truncation scheme should provide results accurate at
1% level.

The numerical implementation of these equations is de-
scribed in detail in Ref. [15].

III. RESULTS

In this section we present the phase shifts for the most
relevant waves calculated using the three different methods
described above. The selected energies for n-3H are En = 1,
2, 3.5 and 6 MeV, whereas for p-3He they are Ep = 2.25, 4.05,
and 5.54 MeV, corresponding to cases where experiments have
been carried out.

The states considered are those with Jπ = 0±, 1±, and 2−.
The scattering in other Jπ states is dominated by the
centrifugal barrier and, therefore, the phase shifts are smaller
and not very sensitive to the interaction and the method used
to calculate them. Note that, for the Jπ = 2− state, we have
chosen to report only the 3P2 phase shift, since the 3F2

phase shift and the relative mixing parameter are, in any
case, very small. Nevertheless, the coupling between the 3P2

and 3F2 waves has been included in the calculations, since
the presence of the 3F2 component in the asymptotic part
of the wave function has a sizable effect on the 3P2 phase
shift.

Let us remember that the S matrix for elastic n-3H and
p-3He scattering has dimension 1 for Jπ = 0± states and
dimension 2 for J > 0. In the first case, the S matrix is
parametrized, as usual, as SJπ

LS,LS = exp(2iδJπ
LS ). For J > 0,
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TABLE I. n-3H phase shifts and mixing parameters (in degrees) and total cross section σt (in barns) for the I-N3LO potential at En = 1.0,
2.0, 3.5, and 6.0 MeV.

En
1S0

3P0
3S1

3D1 ε1+ 1P1
3P1 ε1− 3P2 σt

1.0 −38.10 4.15 −33.32 −0.09 −0.23 5.99 9.63 9.44 8.98 1.77 AGS
−38.02 4.10 −33.31 −0.08 −0.22 5.86 9.64 9.14 8.95 1.77 HH
−38.31 4.00 −33.56 −0.11 −0.24 6.13 10.13 9.6 9.16 1.81 FY

2.0 −51.93 10.54 −45.66 −0.36 −0.44 13.13 24.18 9.15 23.96 2.13 AGS
−51.98 10.50 −45.72 −0.35 −0.43 13.12 24.25 9.18 23.96 2.13 HH
−52.34 10.54 −45.99 −0.39 −0.50 13.55 25.15 9.62 24.52 2.19 FY

3.5 −65.54 20.31 −57.99 −0.91 −0.72 20.74 40.94 9.45 43.98 2.38 AGS
−65.66 20.26 −58.08 −0.91 −0.72 20.94 40.97 9.55 43.91 2.38 HH
−66.15 20.62 −58.40 −0.91 −0.79 21.17 41.50 9.33 44.42 2.41 FY

6.0 −80.53 32.71 −71.75 −1.77 −1.16 26.88 52.35 10.62 60.04 1.97 AGS
−80.57 32.55 −71.79 −1.80 −1.15 26.92 52.25 10.68 60.01 1.97 HH
−80.98 33.40 −71.93 −1.81 −1.22 27.05 52.00 10.71 59.96 1.97 FY

since the S matrix is unitary and symmetric, we can write it as

S = OT SDO, (14)

with SD a diagonal matrix written as

(SD)LS,L′S ′ = δLL′δSS ′e2iδJπ
LS , (15)

where δJπ
LS is the phase shift (in the Blatt-Biederharn

representation) of the wave LS. Due to the unitarity properties,
δJπ
LS is a real number. The matrix O in Eq. (14) is parametrized

as

O =
[

cos εJπ sin εJπ

− sin εJπ cos εJπ

]
, (16)

TABLE II. Same as in Table I but for the AV18 potential.

En
1S0

3P0
3S1

3D1 ε1+ 1P1
3P1 ε1− 3P2 σt

1.0 −38.52 4.36 −33.67 −0.10 −0.24 6.15 9.64 9.38 8.94 1.80 AGS
−38.44 4.26 −33.57 −0.09 −0.21 5.87 9.44 9.19 8.82 1.78 HH
−38.55 4.36 −33.75 −0.09 −0.28 6.14 9.62 9.45 8.93 1.81 FY

2.0 −52.43 10.93 −46.08 −0.38 −0.46 13.30 23.90 8.99 23.45 2.12 AGS
−52.41 10.82 −46.04 −0.37 −0.42 13.00 23.39 9.19 23.21 2.10 HH
−52.55 10.92 −46.23 −0.37 −0.47 13.36 23.86 9.07 23.44 2.13 FY

3.5 −66.12 20.75 −58.48 −0.93 −0.75 20.73 40.09 9.24 42.51 2.33 AGS
−66.14 20.61 −58.53 −0.95 −0.72 20.68 39.63 9.48 42.22 2.32 HH
−66.23 20.62 −58.66 −0.94 −0.77 20.75 39.98 9.31 42.37 2.33 FY

6.0 −81.03 32.77 −72.19 −1.78 −1.22 26.53 51.13 10.37 57.87 1.93 AGS
−81.05 32.61 −72.40 −1.87 −1.20 26.55 51.27 10.57 57.94 1.93 HH
−80.95 32.53 −72.22 −1.86 −1.24 26.58 50.95 10.47 57.57 1.92 FY

TABLE III. Same as in Table I but for the low-k potential derived from the CD Bonn potential. In this case, only the AGS and HH results
are reported.

En
1S0

3P0
3S1

3D1 ε1+ 1P1
3P1 ε1− 3P2 σt

1.0 −36.39 3.52 −32.03 −0.08 −0.19 5.34 8.86 9.79 8.37 1.62 AGS
−36.08 3.41 −31.88 −0.06 −0.19 5.01 8.70 9.34 8.23 1.60 HH

2.0 −49.73 9.03 −43.99 −0.32 −0.37 12.05 22.61 9.76 22.79 1.96 AGS
−49.61 8.94 −43.95 −0.28 −0.37 11.83 22.51 9.69 22.71 1.95 HH

3.5 −62.94 17.75 −56.01 −0.82 −0.63 19.72 39.30 10.24 43.20 2.26 AGS
−63.06 17.74 −56.10 −0.79 −0.63 19.88 39.41 10.32 43.25 2.27 HH

6.0 −77.57 29.44 −69.51 −1.66 −1.03 26.38 51.44 11.57 60.41 1.94 AGS
−77.77 29.46 −69.64 −1.70 −1.04 26.56 51.48 11.63 60.45 1.94 HH

054010-5



M. VIVIANI et al. PHYSICAL REVIEW C 84, 054010 (2011)

TABLE IV. p-3He phase shifts and mixing parameters (in degrees) for the I-N3LO potential at Ep = 2.25, 4.05, and 5.54 MeV.

Ep
1S0

3P0
3S1

3D1 ε1+ 1P1
3P1 ε1− 3P2

2.25 −40.64 8.04 −35.00 −0.24 −0.53 10.64 17.29 8.61 16.26 AGS
−41.23 7.73 −35.47 −0.34 −0.54 10.42 17.11 8.69 16.11 HH
−41.57 7.74 −35.49 −0.28 −0.58 10.84 17.75 8.43 16.41 FY

4.05 −58.23 17.94 −50.79 −0.94 −0.84 18.90 35.50 8.73 36.61 AGS
−58.61 17.76 −51.01 −0.97 −0.82 18.97 35.43 8.85 36.53 HH
−59.12 18.12 −51.15 −0.96 −0.94 19.26 35.78 8.62 36.88 FY

5.54 −68.28 25.41 −60.02 −1.45 −1.08 23.05 44.54 9.28 48.53 AGS
−68.50 25.07 −60.11 −1.51 −1.07 23.00 44.34 9.36 48.29 HH
−69.00 25.81 −60.03 −1.40 −1.18 23.16 44.13 9.28 48.33 FY

where εJπ is the so-called mixing parameter of the given
Jπ state. Clearly, the values of the phase shifts and mixing
parameters may depend on the (arbitrary) choice on the
coupling scheme between the spin of the two clusters and the
spherical harmonic function YL( y) in the asymptotic functions
	±

LS [see, for example, Eq. (7)]. It can be shown that the phase
shifts defined as discussed above are independent on such
choices, while the mixing parameter, on the contrary, depends
on them. Nevertheless, it is easy to establish the linear relation
to transform the mixing parameter from one coupling scheme
to another. In the following, we chose to report the mixing
parameters defined in the LS coupling scheme by Eq. (7).
Moreover, in the following tables, the values reported in a
column labeled as 2S+1LJ (using the “spectroscopic notation”)
are relative to the phase shift δJπ

LS .
In Table I we present the phase shifts, mixing parameters,

and total cross sections for n-3H scattering obtained using
the I-N3LO potential at the selected energies. By inspecting
the table, we can notice the good agreement among the three
different techniques. The maximal deviation of the results
is less than 1%, fully in line with the estimated errors.
Furthermore, the agreement between the results of AGS and
HH techniques is even better; in only in a few cases the HH and
AGS results differ by more than 0.5%. The strongest deviation,
of the order of 0.4◦, is observed with the FY results at the largest
studied energy. This slightly larger deviation might be due to
the necessity by the FY method to perform the transformation
of the aforementioned potential to configuration space. In this
respect, we note that the AGS calculation is fully performed

in momentum space, while in the HH calculation, part of
the needed matrix elements are calculated in momentum
space (those involving �

LS,JJz

C , which have to be calculated
with more accuracy) and part in configuration space (those
involving �

LS,JJz

A ).
In Table II we present the same n-3H results obtained using

the AV18 potential. In this case, the convergence of the HH ex-
pansion is more problematic, in particular, due to the necessity
to extrapolate the HH results. We observe that we still have a
very good agreement for the 1S0, 3P0, 3P2, and 1+ phase shifts,
while the differences in the 1− phase shifts appear to be more
enhanced.

In Table III we have reported the phase shifts obtained
with the low-k potential derived from CD-Bonn. In this
case, the calculations has been performed using the AGS
and HH methods, only. We again observe an overall good
agreement between the results obtained by the two techniques,
except for the lowest energy where the differences are
sizable.

The total cross sections σt are found to be in agreement
within 0.05 b at all considered energies. By comparing the
values obtained using the different potentials, we can observe
the following well-known characteristics: (i) at low energies
the I-N3LO and AV18 models overpredicts the experimental
cross section. For example, at En = 1 MeV, σ expt

t ≈ 1.6 b [27],
while σ I−N3LO

t ≈ σ AV18
t ≈ 1.8 b. On the contrary, with the low-

k potential the calculated σt is quite close to the experimental
one. This behavior is related to the strict relation between
the total cross section at low energy and the triton binding

TABLE V. Same as in Table IV but for the AV18 potential.

Ep
1S0

3P0
3S1

3D1 ε1+ 1P1
3P1 ε1− 3P2

2.25 −41.11 8.46 −35.26 −0.26 −0.56 10.93 17.35 8.43 16.29 AGS
−41.53 7.84 −35.65 −0.34 −0.48 10.33 16.76 8.56 15.76 HH
−41.70 7.82 −36.01 −0.29 −0.52 10.52 17.08 9.01 15.90 FY

4.05 −58.70 18.41 −51.17 −0.93 −0.87 18.89 34.83 8.46 35.65 AGS
−58.93 17.89 −51.34 −0.98 −0.82 18.85 33.49 8.79 35.33 HH
−59.02 17.61 −51.76 −1.00 −0.82 18.57 34.81 8.82 35.36 FY

5.54 −68.75 25.82 −60.41 −1.43 −1.12 22.91 43.65 9.00 47.09 AGS
−68.96 25.05 −60.78 −1.55 −1.10 22.89 43.20 9.32 46.72 HH
−68.92 24.74 −60.91 −1.55 −1.06 21.93 44.01 8.08 46.53 FY
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TABLE VI. Same as in Table IV but for the low-k potential. In this table, only the AGS and HH results are reported. The phase shifts and
mixing parameters obtained by the recent PSA [35] are also shown.

Ep
1S0

3P0
3S1

3D1 ε1+ 1P1
3P1 ε1− 3P2

2.25 −38.74 6.85 −33.60 −0.21 −0.46 9.63 15.95 9.13 15.13 AGS
−38.96 6.53 −33.80 −0.26 −0.43 9.21 15.76 8.98 14.91 HH

−39.1±1.7 5 ± 6 −34.5±0.7 8±2 17±4 10±20 16.5±0.7 PSA

4.05 −55.74 15.60 −48.93 −0.87 −0.75 17.79 34.64 9.43 35.19 AGS
−56.09 15.48 −49.15 −0.85 −0.74 18.02 33.93 9.54 35.33 HH

−56.3±0.6 14.1±0.9 −49.3±0.5 17.3±1.6 34.9±0.3 13±2 37.6±0.6 PSA

5.54 −65.54 22.54 −57.97 −1.36 −0.98 22.30 43.13 10.08 47.78 AGS
−65.97 22.57 −58.18 −1.39 −0.97 22.49 43.21 10.13 47.73 HH

−67.8±0.9 21.3±0.7 −58.6±0.3 21.2±1.7 45.2±0.5 14±2 51.5±0.5 PSA

energy [14,20,23,28]. (ii) At the peak (around En = 3.5 MeV),
the experimental cross section has been measured to be σ

expt
t ≈

2.45 b [27]. In this case we note that the AV18 and low-k
potential models underpredict sizeably the experimental value,
while σ I−N3LO

t is quite close to it.
Let us now consider p-3He scattering. The phase shifts

and mixing parameters obtained within the three methods
have been reported in Tables IV, V, and VI, corresponding
respectively to the I-N3LO, AV18, and low-k NN potential
models. Here the differences between the various techniques
are larger than in the n-3H case, especially at low energy and
for the Jπ = 0± states. For the AV18 potential, we note that
the HH results are more or less intermediate between the AGS
and FY results.

In Table VI we have also reported the phase shifts and
mixing parameters obtained by the recent PSA [35]. Note that
the low-k potential used in this work is the only potential
which does not underestimate the 4He binding energy. The

PSA estimates have rather large errors. However, it is possible
to draw some conclusions about the capability of this low-k
potential model to describe the experimental data. As can be
seen, the PSA S-wave phase shifts seem to be well reproduced
(except for the 1S0 phase shift at 5.54 MeV) by the calculations.
Also the 3P0 and 1P1 agree well, but for these cases the
experimental errors are large. On the other hand, we note a
sizable underestimation of the large 3P1 and 3P2 phase shifts.

Let us now see how the fairly good agreement found for
the phase shifts and mixing parameters calculated with the
three different methods reflects on the observables. We have
considered the differential cross section and the neutron (pro-
ton) analyzing power Ay0 for n-3H (p-3He) elastic scattering
at the considered energies, as functions of the center-of-mass
scattering angle. Furthermore, we have also considered the
triton (3He) analyzing power A0y . This observable is, in fact,
rather sensitive to small variations of the phase shifts in the
kinematical regime considered in this article.
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FIG. 1. Differential cross sec-
tion and neutron and triton ana-
lyzing powers Ay0 and A0y for
n-3H elastic scattering at En = 1, 2,
3.5, and 6 MeV neutron laboratory
energies as functions of the center-
of-mass scattering angle. Results
obtained using the AGS equation
(solid lines), the HH expansion
method (dashed lines), and the FY
equations (dotted lines) using the
I-N3LO potential are compared.
For most of the cases the three
curves coincide and cannot be dis-
tinguished. The experimental data
are from Ref. [46].
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FIG. 2. Same as in Fig. 1 but for
p-3He elastic scattering at Ep = 2.25,
4.05, and 5.54 MeV proton laboratory
energies. The experimental data are from
Refs. [29–33,35].

In Figs. 1 and 2 we have reported the results obtained using
the AGS equation (solid lines), the HH expansion method
(dashed lines), and the FY equations (dotted lines) using the
I-N3LO potential. As can be seen by inspecting the two figures,
the three curves almost always perfectly coincide and cannot
be distinguished. We have also reported the experimental data
for the n-3H differential cross section [46] and the three p-3He
observables [29–33,35]. We note that the differences between
the three calculations, where they can be appreciated, are in
any case always smaller than the experimental errors.

The agreement between the three calculations when the
AV18 potential is adopted is again rather satisfactory, as can
be seen in Figs. 3 and 4. A small disagreement can be observed
only for the A0y observable (see the panels in the last row of
Fig. 4). This observable is also rather sensitive to the small
D-wave and F -wave phase shifts not reported in Tables II and
V. We already know that the AV18 model contains a stronger
repulsion than the I-N3LO at short interparticle distances. As
discussed above, the convergence of the HH method for this
case is more problematic and, consequently, the calculations
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FIG. 3. Same as in Fig. 1 but
for the AV18 potential.
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FIG. 4. Same as in Fig. 2 but for the
AV18 potential.

have a larger uncertainty. In spite of these difficulties,
the agreement in the considered observables is still quite
good.

Let us consider now the low-k potential, which has no
repulsion at short interparticle distance. Consequently, in this
case, we expect a good agreement between the results of
the different techniques. For this potential, the calculations
have been performed using the AGS (solid curves) and HH
(dashed curves) methods only, and the corresponding results
are reported in Figs. 5 and 6. The two curves are practically

indistinguishable, confirming that for soft potentials the
convergence of the calculations is excellent.

Finally, in the literature for p-3He scattering, there exist
measurements of other spin-correlation observables (Ayy , Axx ,
Azz, Axz, and Azx). Also for these observables we have found
a good agreement between the predictions obtained by the
three different methods, for all the potential models considered
here. The comparison of the theoretical predictions and the
experimental data for these observables will be discussed in
the next section.
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FIG. 5. Same as in Fig. 1 but
for the low-k potential. Only the
AGS and HH results are reported.
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FIG. 6. Same as in Fig. 2 but for the low-
k potential. Only the AGS and HH results are
reported.

IV. COMPARISON WITH EXPERIMENTAL DATA

In this section we discuss the comparison between the
theoretical calculations and the experimental data. We con-

sider here only p-3He scattering since for this process the
experimental data are more abundant and precise. The figures
presented in this section can be considered an update of
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FIG. 7. (Color online) Differential cross section, proton analyzing power, and 3He analyzing power for p-3He elastic scattering at Ep = 2.25,
4.05, and 5.54 MeV proton laboratory energies obtained using the I-N3LO (red bands), AV18 (blue bands), and the low-k (cyan bands) potential
models. The experimental data are from Refs. [29–33,35].
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FIG. 8. (Color online) Same as in Fig. 7 but for the spin-correlation Ayy and Axx observables. The experimental data are from Refs. [32,35].

previous comparisons [7,8,17,21,31]. For the three observables
considered so far (dσ/d	, Ay0, and A0y), the comparison
between theory and experiment can be inferred already
from Figs. 1–6. However, in order to better appreciate the
differences in the predictions obtained by the three potential
models as compared to the experimental data, we summarize
again in Fig. 7 the results for dσ/d	, Ay0, and A0y . In
order to take into account the (slight) different predictions
obtained using the three different theoretical methods, we
have decided to present the calculated observables for each
potential as bands. Each band contains the results obtained
by using the three different methods. As can be seen from
Fig. 7, the differential unpolarized cross sections obtained
using the I-N3LO potential (red bands) agree well with the
experimental data. With the other two potentials we observe
some disagreement, in particular around θc.m. ≈ 30◦ and in
the large scattering angle region. The results obtained for Ay0

are found to depend on the potential model. Here, we observe

the well-known underprediction of the experimental data by
the theoretical calculations. Interestingly, the results obtained
with the low-k potential are in a better agreement with the
experimental Ay0. A similar situation is found also for A0y ,
as can be seen in the three lower panels of Fig. 7. It is worth
noting that the effect of supplementing the AV18 potential with
the Urbana 3N force model [47] has been found to be almost
negligible for this observable [31]. The inclusion of the new
chiral 3N potential derived in Ref. [48] is under study [43]
(see Ref. [20] for a preliminary report).

In Fig. 8, we report the results found for the Ayy

and Axx spin correlations at the three different proton
energies. As can be seen, for these two observables the
predictions obtained with the three potentials are almost
identical. We observe that the calculated Ayy is slightly
at variance with respect to the experimental data, while
the Axx observable is reasonably well reproduced by the
calculations.
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FIG. 9. (Color online) Same as in Fig. 7 but for the spin-correlation Axz, Azx , and Azz observables (at Ep = 5.54 MeV proton laboratory
energy only). The experimental data are from Ref. [32].
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Finally, in Fig. 9 we compare the results obtained for
the Axz, Azx , and Azz spin-correlation observables. In this
case, only the Ep = 5.54 MeV proton laboratory energy is
considered, since only for this energy experimental data exist.
Also in this case, the sensitivity to the different potential
models is not significant. Moreover, the calculations reproduce
well the (few) experimental data.

V. CONCLUSIONS

In this work, we have studied several low-energy n-3H
and p-3He elastic observables by use of three different
approaches, the HH, AGS, and FY techniques. In 2007,
some of the authors of the present paper presented very
accurate solutions of the four-nucleon scattering problem
using the AGS technique [7–9]. They were able to take
into account the long-range Coulomb interaction using the
screening-renormalization method [12,13]. In recent years,
also the accuracy of the calculations performed using the
HH and FY techniques increased [18,20,21]. Therefore, it
becomes appropriate to compare the results obtained by the
different methods in order to test their capability to solve the
4N scattering problem. This is the primary aim of the present
article. Another important motivation is to provide a set of
solid converged results in the literature, which could represent
useful benchmarks for future applications in A = 4 scattering.

In the present article we have shown that for I-N3LO
and the selected low-k potential model, which have a “soft”
repulsion at short interparticle distances (the low-k model has
no repulsion at all), the results obtained by use of the dif-
ferent techniques are in very good agreement. With the
AV18 potential, the agreement is not so perfect, although the
(slight) differences can be appreciated only for some small
polarization observables. We can conclude, therefore, that the
A = 4 scattering problem is nowadays solved with a very good
accuracy, better than 1%.

Concerning the comparison with the experimental data, we
have confirmed the large underprediction of the p-3He Ay0

observable, a problem already put in evidence some time ago
[14,33,34] and certainly related to the N − d “Ay puzzle.” For
this observable we have observed a moderate dependence on
the considered potential models. The low-k potential is found
to give a better description of the observable when compared
with the experimental data. However, the same potential does
not reproduce well the unpolarized cross section. We have
also found a small underprediction of the theoretical A0y and
Ayy observables, while other measured observables, such as
Axx , Axz, Azx , and Azz spin-correlation coefficients, show less
sensitivity to the potential models. They are in good agreement
with the available (sparse) experimental data.

The discrepancies found, in particular, for Ay0, indicate
serious limitations of the existing NN force models to describe
the 4N continuum. These difficulties can hardly be solved by
the inclusion of a standard type 3N force, used to reproduce
the few-nucleon binding energies [17,21,31]. Instead, its origin
could lie either in the NN forces themselves or in the presence
of a 3N force of unknown type. Clearly, an eventual solution
of the A = 4 Ay0 problem should be related in some way to
the solution of the N − d “Ay puzzle.”

Finally, we conclude by noting that it would be interesting
to extend the present analysis to p-3H, n-3He, and d-d
scattering observables, which have already been calculated
in the framework of the AGS equations for different NN

interactions [9,10].
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