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Nucleon-nucleon interactions from dispersion relations: Elastic partial waves
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We consider nucleon-nucleon (NN ) interactions from chiral effective field theory. In this work we restrict
ourselves to the elastic NN scattering. We apply the N/D method to calculate the NN partial waves taking
as input the one-pion exchange discontinuity along the left-hand cut. This discontinuity is amenable to a chiral
power counting as discussed by Lacour, Oller, and Meißner [Ann. Phys. (NY) 326, 241 (2011)], with one-pion
exchange as its leading order contribution. The resulting linear integral equation for a partial wave with orbital
angular momentum � � 2 is solved in the presence of � − 1 constraints, so as to guarantee the right behavior
of the D- and higher partial waves near threshold. The calculated NN partial waves are based on dispersion
relations and are independent of regulator. This method can also be applied to higher orders in the calculation of
the discontinuity along the left-hand cut and extended to triplet coupled partial waves.
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I. INTRODUCTION

The nucleon-nucleon (NN ) interaction is a basic process
whose understanding is necessary for the study of nuclear
structure, nuclear reactions, nuclear matter, neutron stars, etc.
[1–5]. Since the early 1990s [6–8] the low energy effective
field theory (EFT) of QCD, chiral perturbation theory (ChPT),
has been applied to NN scattering in a large number of studies
[6–18]. A sophisticated stage has been reached where the NN

potential is calculated in ChPT up to N3LO [16,18].
However, as the NN interaction is nonperturbative, the chi-

ral NN potential must be iterated. It was proposed by Weinberg
in his seminal papers [6,7] to solve a Lippmann-Schwinger
equation. Since the chiral potential is singular at the origin
a regularization method, typically a three-momentum cutoff
� [9,16,18], should be introduced for solving the Lippmann-
Schwinger equation. Despite the great phenomenological
success achieved by the NN chiral potentials in describing NN

scattering data [16,18], a remnant cut-off dependence is left. It
was shown in the literature [19–23] that the chiral counterterms
introduced in the NN potential following naive dimensional
analyses are not enough to renormalize the resulting NN

scattering amplitude. In Ref. [19] one counterterm is promoted
from higher to lower orders in the partial waves 3P0, 3P2, and
3D2 due to the attractive 1/r3 tensor force from one-pion
exchange (OPE). As a consequence, stable results, indepen-
dent of cutoff in the limit � → ∞, are achieved when the
LO OPE potential is employed. Partial wave amplitudes with
larger orbital angular momentum �, � � 3, can be calculated
in Born approximation with sufficient accuracy [12,24]. Then
they do not pose any problem for renormalization, making
use of standard perturbative techniques. It is also argued in
the same Ref. [19] that higher orders terms in the chiral NN

potential could be treated perturbatively. Reference [19] was
extended along these lines to subleading two-pion exchange
(TPE) in Ref. [25]. The promotion of higher orders to lower
ones due to nonperturbative renormalizability is studied in
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detail in Ref. [24] by making use of the regularization
group equations. (See also Refs. [20,21,26] for a coordinate
space renormalization by imposing appropriate boundary
conditions.) On the other hand, Refs. [27,28], following the
philosophy of Refs. [29,30], stress that the cutoff � should
not be taken beyond the breakdown scale of the EFT, typically
around 1 GeV. It is argued that if this is done the power counting
associated with the chiral EFT is lost.

We employ here the N/D method [31] for studying NN

interactions in the elastic case. A linear integral equation then
results for determining the NN partial waves. The input is
given by the discontinuity of the partial wave along the left-
hand cut (LHC), which is due to multipion exchanges, the
lightest one being OPE. The well-known behavior of a partial
wave near threshold, that vanishes like |p|2�, with |p| the center
of mass (c.m.) three-momentum, is not automatically fulfilled
in the N/D method for � � 2 [32–34]. Then, the N/D method
must be solved in the presence of � − 1 constraints. These are
satisfied by introducing � − 1 Castillejo-Dalitz-Dyson (CDD)
poles [35], as we discuss below. The extension of the work to
the inelastic partial waves will be considered separately [36],
due to the intrinsic specific difficulties that occur in that case.
The latter do not appear for the elastic partial waves which
then allows us to focus in those aspects that directly concern
the application of the N/D method to NN scattering.

After this Introduction we discuss the N/D method for
calculating the NN elastic partial waves in Sec. II. Special
attention is paid to derive the constraints needed to meet the
threshold behavior for a partial wave with � � 2. The inclusion
of CDD poles for satisfying these constraints is a novelty in the
literature. The results are discussed in Sec. III and conclusions
are given in Sec. IV. The Appendix discusses the numerical
method employed to solve the integral equation.

II. APPLICATION OF THE N/D METHOD TO ELASTIC
N N PARTIAL WAVES

A. N N partial waves cuts

We consider the NN interaction process

N (p1; σ1α1)N (p2; σ2α2) → N (p′
1; σ ′

1α
′
1)N (p′

2; σ ′
2α

′
2)
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whose scattering amplitude in the c.m. frame is indicated by

〈p′, σ ′
1α

′
1σ

′
2α

′
2|Td ||p|ẑ, σ1α1σ2α2〉.

Here the initial momentum is p = |p|ẑ, taken along the z

axis, and the final one is p′. Its decomposition in partial
waves is discussed in Appendix A of Ref. [1], to which we
refer for further details. We denote a NN partial wave by
TJIS(�′, �; |p|2), being �′ the final orbital angular momentum
and � the initial one. The labels J , S, and I stand for the
total angular momentum, spin and isospin of the reaction,
respectively:

TJIS(�′, �; |p|2)

= Y 0
� (ẑ)

2J + 1

∑
(σ ′

1σ
′
2s

′
3|s1s2S)(σ1σ2s3|s1s2S)(0s3s3|�SJ )

× (m′s ′
3s3|�′SJ )(α′

1α
′
2i3|τ1τ2I )(α1α2i3|τ1τ2I )

×
∫

dp̂′ 〈p′, σ ′
1α

′
1σ

′
2α

′
2|Td ||p|ẑ, σ1α1σ2α2〉Ym′

�′ (p′)∗. (1)

In this equation, the Clebsch-Gordan coefficients for the
couplings of two angular momentum j1, j2, to j3 are indicated
by (m1m2m3|j1j2j3), with m1, m2, and m3 the corresponding
third components.

A NN partial wave amplitude has two cuts [37], the right-
hand cut (RHC) for 0 < p2 < ∞, due to unitarity, and the
LHC for −∞ < p2 < L with L = −m2

π/4, because of crossed
channel dynamics. Both cuts are depicted in Fig. 1. The upper
limit for the latter is given by OPE, as the pion is the lightest
particle that can be exchanged in the t and u channels. Because
of unitarity a partial wave amplitude satisfies in the c.m. frame,
above the elastic threshold and below pion production, the
relation

ImTJIS(�′, �; |p|2)−1 = −m|p|
4π

δ�′�, (2)

with m the mass of the nucleon. In our normalization, the
S-matrix is given by

SJIS = I + i
m|p|
2π

TJIS .

As shown in Ref. [1] one can calculate perturbatively in
ChPT ImTJIS along the LHC, since this imaginary part is due
to multipion exchanges. The infrared enhancements associated
with the RHC are absent in the discontinuity along the LHC
because, according to Cutkosky’s theorem [38,39], it implies to
put on-shell pionic lines. Within loops the pion poles are picked
up, making that the energy along nucleon propagators now is of
O(p), instead of a nucleon kinetic energy. In this way, the order
of the diagram rises compared to that of the reducible parts and
it becomes a perturbation. At LO, according to the counting
developed in Refs. [1,4] (that for two-nucleon irreducible
diagrams coincides with the standard chiral counting [6–8]),
ImTJIS along the LHC is due to OPE.

B. S and P waves (� = 0, 1)

In the following we take the elastic case for which �′ =
� = J (except for the 3P0.) The N/D method [31] rests on the

RHC

→ 0

R → ∞

CI

→ 0

R → ∞
CII

−m2
π

4
LHC

FIG. 1. The thick lines correspond to the RHC and LHC, in order
from top to bottom. In the same figure the integration contours CI

and CII for evaluating DJ�S(A) and NJ�S(A), respectively, are shown.
One has to take the limit ε → 0+

separation between the RHC and LHC. In this way, a partial
wave TJ�S(A) is written as1

TJ�S(A) = NJ�S(A)

DJ�S(A)
. (3)

The function NJ�S(A) has only LHC while DJ�S(A) has only
RHC. Taking into account elastic unitarity, Eq. (2), one can
write

ImDJ�S(A) = −NJ�S(A)
m

√
A

4π
, A > 0. (4)

Along the LHC one also has from Eq. (3)

ImNJ�S(A) = DJ�S (A) ImTJ�S(A), A < −m2
π

/
4. (5)

We first write down a dispersion relation (DR) for DJ�S(A)
and NJ�S(A) taking as integration contours CI and CII

in Fig. 1, respectively. The integration along the circle at
infinity vanishes, if necessary, by taking the sufficient number
of subtractions. For the case of a once-subtracted DR the
following expressions result

DJ�S(A) = 1 − A − D

π

∫ +∞

0
dq2 ρ(q2)NJ�S(q2)

(q2 − A)(q2 − D)
, (6)

NJ�S(A) = NJ�S(D) + A − D

π

∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

(k2 − A)(k2 − D)
.

(7)

1We replace the subscript I by � when denoting a partial wave. The
former can be deduced from � and S.
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Here we have indicated by ρ(A) = m
√

A/4π for A > 0 and
�J�S(A) = ImTJ�S(A) for A < L = −m2

π/4. For physical
scattering A → A + iε. The subtraction constant in DJ�S(A)
has been fixed to 1 because, according to Eq. (3), only the
ratio between NJ�S(A) and DJ�S(A) matters for determining
TJ�S(A). In this way, one has the freedom to fix the value of
DJ�S(A) at one point.

Asymptotically, for p2 → −∞, OPE tends to constant, so
that, according to the Sugawara and Kanazawa theorem [32,40]
one subtraction is necessary for the DR of NJ�S(A), even
though �J�S(A) → 1/A in the case of OPE. On general
grounds, a partial wave amplitude is bound for A → +∞
by a constant because of unitarity and the same theorem then
requires that at least one subtraction is necessary.

An integral equation for DJ�S(A) results by inserting the
DR for NJ�S(A), Eq. (7), into Eq. (6):

DJ�S(A) = 1 − NJ�S(D)
A − D

π

∫ +∞

0
dq2 ρ(q2)

(q2 − A)(q2 − D)

− A − D

π2

∫ +∞

0
dq2 ρ(q2)

q2 − A

×
∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

(k2 − q2 − iε)(k2 − D)
. (8)

We now introduce the function g(A,C) defined as

g(A,C) = 1

π

∫ +∞

0
dq2 ρ(q2)

(q2 − A)(q2 − C)
. (9)

In terms of this function Eq. (8) can be written as

DJ�S(A) = 1 − (A − D)NJ�S(D)g(A,D) + A − D

π

×
∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

k2 − D
g(A, k2). (10)

This a linear integral equation for DJ�S(A). Its linearity is
an important property because it allows one to take more
subtractions and still being amenable for an iterative solution.
We take as a convenient subtraction point D = 0. In the case
of the S waves, this choice relates the subtraction constant,
NJ�S(0), to the corresponding scattering length, as , by

NJ�S(0) = −4πas

m
. (11)

The only elastic S wave is the 1S0, and the scattering length for
this wave is as = −23.758 ± 0.04 fm. For this partial wave,
we can write down the following integral equation:

DJ�S(A) = 1 − ANJ�S(0)g(A, 0)

+ A

π

∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

k2
g(A, k2). (12)

This is an integral equation for DJ�S(A) with A on the LHC,
and it can be solved with the method exposed in the Appendix.
Once DJ�S(A) is solved from Eq. (12), NJ�S(A) is determined
by inserting the former into Eq. (7), which now reads (D = 0)

NJ�S(A) = NJ�S(0) + A

π

∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

k2(k2 − A)
. (13)

For a P wave, the same equations hold with NJ�S(0) = 0
because in this case the amplitude vanishes at threshold as |p|2,
and DJ�S(0) = 1.

C. Higher waves (� � 2)

Equations (12) and (13), because of the full implementation
of rescattering in Eq. (10), do not guarantee that the resulting
partial wave amplitude behaves as A� for A → 0, with � � 2.
At LO �J�S ≡ �1π

J�S gives rise to OPE through the dispersive
integral

T 1π
J�S(A) = T 1π

J�S(0) + A

π

∫ L

−∞
dk2 �1π

J�S(k2)

k2(k2 − A)
, (14)

with T 1π
J�S(0) a subtraction constant. As discussed above,

since the OPE amplitude [1] tends to constant for A → ∞,
the Sugawara and Kanazawa theorem requires that one
subtraction is needed. The fact that for � > 0 a partial wave
vanishes as A� for A → 0 makes that T 1π

J�S(0) = 0 when
� > 0. This threshold behavior also implies that �1π

J�S must
fulfill the set of � − 1 sum rules (constraints)∫ L

−∞
dk2 �1π

J�S(k2)

k2λ
= 0, (15)

with λ = 2, 3, . . . , � and � � 2. These constraints are obtained
straightforwardly by performing the expansion of Eq. (14) in
powers of A and imposing that TJ�S(A) → A� when A → 0.

Let us now consider again Eq. (7). As DJ�S(A) → 1 for
A → 0 then TJ�S(A) → NJ�S(A) in this limit. The expression
for NJ�S(A), Eq. (7), is similar to Eq. (14). Indeed, they would
be the same equation if DJ�S(A) were replaced by 1 in Eq. (7)
(and with �J�S(k2) evaluated at LO). As a result, NJ�S(A),
determined by implementing Eq. (10) into Eq. (7), does not
vanish as A� for A → 0, because of the departure from 1 of
DJ�S(A) in an actual calculation.

It is convenient to proceed in a such a way that the
right behavior of TJ�S(A) around threshold is incorporated
explicitly. For that purpose we consider the N/D equation for
TJ�S(A)/A�, instead of TJ�S(A). The quotient TJ�S(A)/A� has
no pole at A = 0 because TJ�S(A)→A� when A → 0. Notice
also that due to unitarity TJ�S(A)/A� → 0 for A → +∞.
Then, according to the Sugawara and Kanazawa theorem
[32,40], no subtractions are needed for the DR of NJ�S(A)
with � > 0. EFT results do not always share the right high
energy behavior so that subtractions will be certainly needed
for a higher order calculation of �J�S(A). At LO this is not
the case because �1π

J�S → 1/A for A → ∞. We then have
(� > 0)

TJ�S(A) = A� NJ�S(A)

DJ�S(A)
, (16)

NJ�S(A) = 1

π

∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

k2�(k2 − A)
, (17)

DJ�S(A) = 1 − A

π

∫ ∞

0
dq2 ρ(q2)q2(�−1)NJ�S(q2)

q2 − A
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= 1 + A

π2

∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

k2�

×
∫ ∞

0
dq2 ρ(q2)q2(�−1)

(q2 − A)(q2 − k2)
, (18)

where the subtraction has been taken at threshold.
The previous equation for DJ�S(A) is not satisfactory when

� � 2 because the last integration on the right-hand side (r.h.s.)
of Eq. (18) is divergent. In this way, by applying the N/D

method to TJ�S(A)/A� we have changed the problem of the
bad behavior of TJ�S(A) around threshold into a high energy
problem in the form of divergent integrals. To end up with a
convergent DR for DJ�S(A) in Eq. (18) it is necessary that
NJ�S(A) vanishes at least as

NJ�S(A) → 1/A� for A → ∞. (19)

However, NJ�S(A) vanishes only as 1/A, independently of �,
as follows from Eq. (17). The set of constraints needed to
satisfy the asymptotic behavior in Eq. (19) can be deduced by
performing in Eq. (17) a high energy expansion of NJ�S(A) in
powers of 1/A. It results in∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

k2λ
= 0, (20)

with λ = 2, 3, . . . , � and � � 2. These sum rules generalize
the ones fulfilled by �1π

J�S(A) in Eq. (15).2

The usefulness of the � − 1 restrictions in Eq. (20) can be
well appreciated by rewriting NJ�S(A) in Eq. (17) as

NJ�S(A) = − 1

π

�−2∑
m=0

1

Am+1

∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

k2(�−m)

+ 1

πA�−1

∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

k2(k2 − A)
. (21)

The last term on the r.h.s. of the previous equation vanishes
explicitly as 1/A� for A → ∞, while the terms in the sum on
m are zero once the constraints of Eq. (20) are fulfilled. In this
way, inserting this expression for NJ�S(A) in Eq. (18) one has

DJ�S(A) = 1 + A

π

∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

k2
g(A, k2), (22)

and a convergent DR integral equation for DJ�S(A) results.
It should be stressed that Eqs. (16), (17), and (22) lead to

the same equations as for the case of a P wave amplitude,
� = 1, cf. Eqs. (3), (12), and (13).3 In the case of a P wave,
no constraints are needed because the right behavior near
threshold is obtained straightforwardly. On the other hand,
Eq. (22) can be readily applied to S wave by just adding
the term proportional to NJ�S(0) present in Eq. (12). One
subtraction should be taken in Eq. (17) in order to transform it
as Eq. (13) for � = 0.

2Equation (19) is a consequence of Eq. (16) because for A →
+∞, due to unitarity, the ratio TJ�S(A)/A� tends to 1/A�+1/2 while
DJ�S(A) → A1/2 (when only one subtraction is taken.)

3It is equivalent to have the explicit factor A in TJ�S , Eq. (16), or
included in the definition of NJ�S , Eq. (13).

Now, let us address the way to solve the N/D method,
Eqs. (16), (17), and (22), in the presence of the constraints
given in Eq. (20). It is well known [32,37] that the function
DJ�S(A) is determined modulo the addition of CDD poles
[35]. These are associated to specific dynamical features of the
interaction that arise independently of the LHC discontinuity,
�J�S(A), and unitarity. Typically, the addition of CDD poles
corresponds to the existence of pre-existing resonances or to
Adler zeros [31,41]. Both facts are indeed absent in the low-
energy NN scattering [42]. We exploit this ambiguity in the
function DJ�S(A) and include � − 1 CDD poles at infinity, so
as to satisfy Eq. (20):

DJ�S = 1 + A

π

∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

k2
g(A, k2)

+
�−1∑
i=1

A

Bi

γi

A − Bi

. (23)

The last term in the r.h.s. corresponds to adding the � − 1
CDD poles. The factor A/Bi in front of every CDD pole arises
because the function DJ�S(A) is normalized to 1 for A = 0
and it has the residue γi at A = Bi . The sum of the CDD poles
gives rise to a rational fraction Q�−1/P�−1, where the subscript
in Q and P indicate the degree of the polynomial in A. Since
the only relevant fact at low energies is the ratio γi/B

2
i we

take at the end the limit Bi → ∞, with γi/B
2
i not vanishing.

The � − 1 CDD poles are gathered at the same point B and we
write

�−1∑
i=1

A

Bi

γi

A − Bi

→ A
∑�−2

n=0 cnA
n

(A − B)�−1
. (24)

The coefficients ci are finally determined by requiring that the
set of � − 1 constraints in Eq. (20) are satisfied. The calculation
is performed in terms of finite but large B, and one has to check
that the results are stable by taking B arbitrarily large. At the
level of low-energy NN scattering we have modified DJ�S(A)
by adding a polynomial of degree � − 1 with fixed coefficients.

We end with the following expressions:

TJ�S(A) = A� NJ�S(A)

DJ�S(A)
, (25)

NJ�S(A) = 1

π

∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

k2�(k2 − A)
, (26)

DJ�S(A) = 1 + A

π

∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

k2
g(A, k2)

+ A
∑�−2

n=0 cnA
n

(A − B)�−1
, (27)

and the constraints∫ L

−∞
dk2 �J�S(k2)DJ�S(k2)

k2λ
= 0, λ = 2, 3, . . . , �, � � 2.

(28)

The previous formalism is also meaningful for the case in
which �J�S(A) → C, with C a constant, as A → ∞. We
do not discuss in this work its extension to the case when
�J�S(A) diverges for A → ∞, as we are interested now in
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FIG. 2. (Color online) Comparison of the 1S0, 3P0, 1P1, and 3P1

phase shifts with the Nijmegen PWA data. The solid (black) lines
represent the results of this work, while the dash-dotted (red) ones
represent the Nijmegen PWA [42]. For the 1S0 and 3P0, the dashed
(black) lines correspond to the relativistic version of this work, see
the text for details.

LO NN scattering. This generalization of our formalism will
be discussed when considering higher orders in the chiral
expansion of �J�S(A) [43], which include the important TPE
contributions [44,45].

Summarizing the results of this section, we have presented
a general approach based on the N/D method to construct
NN scattering partial wave amplitudes. For � = 0, 1 Eqs. (12)
and (13) are employed, with TJ�S given by Eq. (3). For � � 2,
one has Eqs. (25)–(27), that must be solved in the presence
of the constraints given in Eq. (28). The solution of this
integral equation subjected to the constraints is discussed in
the Appendix.

III. RESULTS

In this section we present our results for the phase shifts, δ,
of the elastic partial waves with � � 5. We compare them with
the Nijmegen partial wave analysis (PWA) [42] in Figs. 2–4.
Our results are represented by the solid (black) lines, and the
Nijmegen data by the dash-dotted (red) lines. We show the
results up to |p| = 300 MeV. Notice that the pion production
threshold opens at |p| 
 360 MeV and the three-momentum
is no longer small, |p| 
 √

mmπ � mπ .
In Fig. 2 we show the lowest elastic waves, namely, 1S0,

1P1, 3P1, and 3P0, whose amplitudes do not contain CDD poles
because � < 2. The agreement in the 1P1 and 3P1 partial waves
is quite satisfactory. For the 1S0 it is known that a higher order
chiral counterterm is needed to reproduce the large effective
range and thus improve the agreement with the data [19]. In the
case of the 3P0 wave, large corrections stem from TPE. Since
this is a LO calculation, none of these corrections is included.
However, an important point should be stressed: in this paper a
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FIG. 3. (Color online) Comparison of the 1D2, 3D2, 1F3, and 3F3

phase shifts. For the notation, see Fig. 2.

regulator (cut-off) independent and unitary description of the
NN interaction with the right analytical properties is reached.
The agreement with the data can be improved by including
higher orders in the LHC.

For the 1S0 and 3P0 waves we have also tried with a
relativistic calculation of the function g(A, k2), Eq. (9), since
these are the waves for which the discrepancies with the data
are larger. In this approach, the ρ(q2) function is replaced by
its relativistic counterpart in the S-matrix and in the integrals
where it is involved:

ρ(q2) =
√

q2m

4π
→ ρ(q2) =

√
q2m

4π

m√
q2 + m2

.

The results obtained are represented by the dashed (black) lines
in Fig. 2. Though the corrections are in the right direction,
the discrepancies with the data are still large. As expected,
relativistic corrections are small in the energy range shown,
though noticeable for the 3P0 partial wave for |p| � 200 MeV.

For higher waves one needs to include � − 1 CDD poles in
order to fulfill the constraints in Eq. (28). Thus, it is guaranteed
that the partial waves have the right behavior at threshold,
vanishing as |p|2�. Our results are shown in Figs. 3 and 4,
and a good agreement with the data is achieved, except for
the 1D2 wave. Our curves are quite similar compared with the
LO results of Ref. [19]. This reference offers an approach with
cut-off independent results with the NN potential (VNN ) given
by OPE. The largest discrepancy concerns to the 3P0 partial
wave where in Ref. [19] a counterterm is promoted from higher
orders so as to achieve cut-off stable results for � → ∞ due
to the attractive 1/r3 tensor force in OPE. As a result, the
agreement with data is much improved. The main difference
between our approach and that of Ref. [19] is the treatment of
the LHC. Namely, for the 3P0 wave the iteration of the NN

potential is responsible for the need of this extra counterterm.
The first iteration VNNGVNN (with G the unitary two-nucleon
reducible loop function and VNN the nucleon potential) is a
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FIG. 4. (Color online) Comparison of the 1G4, 3G4, 1H5, and 3H5

phase shifts. For the notation, see Fig. 2.

new source of LHC discontinuity [46] containing contributions
from TPE and iterated OPE. The real part stemming from
the former is divergent. Within our approach the sources of
LHC discontinuity from VNNGVNN are NLO according with
the standard chiral counting. At that order new subtractions
are required [43] which will mimic the role of the extra
counterterm taken in Ref. [19]. While our method is based
on the calculation of �J�S(A) perturbatively along the LHC,
the application of a Lippmann-Schwinger equation with the
chiral NN potentials is based on the perturbative calculation
of the latter [6–8]. In both cases the diagrams required for
the calculation of �J�S and VNN are two-nucleon irreducible,
which justifies its perturbative treatment [1,4,6–8]. In both
cases as well the RHC is exactly resummed, as required
because of the enhanced two-nucleon reducible diagrams. This
resummation is performed in terms of the interaction kernel,
�J�S or VNN , depending on the approach. The N/D method
respects the LHC discontinuity so that �J�S is the same as in
the final partial wave amplitude. For a Lippmann-Schwinger
equation this is not the case as new sources of imaginary
parts along the LHC result from the iteration of VNN [46]. It
is also worth stressing that our approach based on the N/D

method is a dispersive one offering results that by construction
are cut-off independent, while this is still an issue in the
application of the Lippmann-Schwinger (or Schrödinger)
equation to NN scattering with VNN calculated from
ChPT [19,25,27,28].

For the 1S0 and 1D2 partial waves, for which we do not have
good agreement at LO with data [42], our results are indeed
very similar to those of Ref. [19], too. In the case of the 1P1

partial wave our phase shifts run closer to data at low energies
than those of Ref. [19].

In order to show the independence of our results with
the value of B, the position of the CDD poles, once this
value is large enough, we show in Fig. 4 for the 3G4

partial wave different lines corresponding to B = 10nm2
π for

n = 2, 3, 4, 5, and 6. A narrow band is obtained despite the
large variation in the values of B considered.

IV. CONCLUSIONS

We have applied the N/D method to NN scattering from
chiral perturbation theory. In this method the two cuts present
in a NN partial wave, the right-hand cut and left-hand cut,
are separated in two functions, DJ�S(A) and NJ�S(A), with A

the center-of-mass three-momentum squared. While DJ�S(A)
has only right-hand cut the function NJ�S(A) has only left-
hand cut. The NN partial waves, TJ�S = NJ�S/DJ�S (� =
0, 1) and A�NJ�S/DJ�S (� � 2), are determined in terms of
their discontinuity along the left-hand cut due to multipion
exchanges, �J�S(A). At leading order, considered in this work,
only OPE contributes. For D- and higher partial waves, with
orbital angular momentum � � 2, one has to impose the proper
behavior of a partial wave near threshold, such that it vanishes
as A� for A → 0. This gives rise to � − 1 constraints in the
form of sum rules involving the functions �J�S and DJ�S .
Since the function DJ�S(A) is determined modulo the addition
of Castillejo-Dalitz-Dyson poles (that correspond to zeros of
the NN partial waves along the real axis) we have added � − 1
of such poles at infinity in DJ�S for � � 2. By sending such
poles to infinity no zero at finite energies is included for any
NN partial wave. In addition, the residues of these poles in
DJ�S are fixed once the sum rules are satisfied, so that no new
parameters are included. At low energies the Castillejo-Dalitz-
Dyson poles behaves like adding a polynomial of degree � − 2
to DJ�S .

The resulting NN partial waves do not contain any regula-
tor. A subtraction constant is required for the 1S0 partial-wave
that is fixed by reproducing the experimental scattering length.
Our results are very close to those of Nogga, Timmermans, and
van Kolck [19] that provide cut-off independent NN partial
waves with OPE as potential. The only noticeable difference
concerns the 3P0 partial wave for which Ref. [19] achieves
cut-off stable results by promoting a higher-order counterterm
to leading order due to the attractive 1/r3 tensor force in
OPE. In our approach there is no special treatment for the 3P0

partial wave compared to others because of the perturbative
treatment of the discontinuity across the LHC. Our results are a
prediction for the 3P0 phase shifts at leading order. For the 1P1

partial wave our phase shifts run closer to data than those
of [19].

This method is ready to be extended to higher orders
and it would be of great interest to apply it including
TPE contributions to �J�S . TPE is needed for an accurate
description of the NN data [44,45]. Its extension to coupled
channels with � = J ± 1 is being studied [36].
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APPENDIX: SOLVING THE INTEGRAL EQUATION
FOR D(k2)

In this Appendix, we focus on the solution of the integral
equation (27) subject to the constraints (28). For simplifying
the discussion we drop the subscripts J�S. The integral
equation Eq. (27) can be written in a compact way as

D(A) = 1 + A

π

∫ L

−∞
dk2 �(k2)D(k2)

k2
g(A, k2) + h(A), (A1)

where g(A, k2) is defined in Eq. (9) and

h(A) = A

(A − B)�−1

�−2∑
i=0

ciA
i . (A2)

Let us introduce the function d(A) as D(A) = d(A) + h(A),
that is, d(A) is the piece of D(A) that does not contain the CDD
poles. As a first step, we write the coefficients ci in terms of the
d(A) function. This is done by writing the sum rule constraints
Eq. (28) in terms of d(A), giving rise to

Ii =
∫ L

−∞
dk2 �(k2)d(k2)

k4k2i
= −

∫ L

−∞
dk2 �(k2)h(k2)

k4k2i

=
�−2∑
j=0

cjmij , (A3)

mij ≡ −
∫ L

−∞
dk2 �(k2)k2j

k2k2i(k2 − B)�−1
, (A4)

where we have shifted λ = i + 2, so that i runs from 0 to
� − 2. Note that the integrals mij can be calculated directly
for a given �(A) in terms of B because the unknown function
d(A) does not appear in their calculation. Thus,

ci =
�−2∑
j=0

m−1|ij Ij , (A5)

being m−1 the inverse of the matrix ||mij ||. Next,
we rewrite the integral equation Eq. (A1) in terms of
d(k2), and insert Eq. (A5) for the coefficients ci . It

results

d(A) = 1 + A

π

∫ L

−∞
dk2 �(k2)d(k2)

k2
g(A, k2)

+ A

π

∫ L

−∞
dk2 �(k2)g(A, k2)

(k2 − B)�−1

�−2∑
i,j=0

k2im−1|ij

×
∫ L

−∞
dq2 d(q2)�(q2)

q4q2j
. (A6)

Now, by interchanging the dummy integration variables k2 and
q2, we can finally write

d(A) = 1 + A

π

∫ L

−∞
dk2 d(k2)�(k2)

k2
[g(A, k2) + ḡ(A, k2)],

ḡ(A, k2) =
�−2∑

i,j=0

1

k2j
m−1

ij

∫ L

−∞
dq2 �(q2)g(A, q2)

(q2 − B)�−1
. (A7)

We have now an integral equation for the d(k2) function that
depends on known functions. It can be written in a compact
way as

d(A) = 1 +
∫ L

−∞
dk2f̃ (A, k2)d(k2). (A8)

It is convenient to perform a change of integration variable
so that one ends with a finite integration domain, e.g., with
x = 1/k2. In this way

d(A) = 1 +
∫ x2

x1

dx f (A, x) d(k2(x)). (A9)

This is an inhomogeneous Fredholm integral equation. We
solve it numerically by discretizing the integral on it,

d(Ai) = 1 +
∑

j

f (Ai, xj )ω(xj )d(k2(xj )), (A10)

where the ω(x) function is the weighting function taken for the
integration. By calling d(k2(xi)) ≡ di , f (Ai, xj )ω(xj ) ≡ ηij ,
this equation can be recast as∑

j

(δij − ηij )dj = 1, (A11)

which is a linear equation, that can be solved by standard
methods, giving the desired function d(A). To obtain D(A),
the function h(A) must be added, but this is also a direct task,
since the ci coefficients can be calculated once d(A) is known,
Eq. (A5). Of course, if no constraints must be satisfied, as it
is the case for S and P waves, the same formalism with the
corresponding simplifications should be used.
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