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Triton with long-range chiral N3LO three-nucleon forces
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Long-range contributions to the three-nucleon force that have recently been worked out in chiral effective-field
theory at next-to-next-to-next-to-leading order are, for the first time, included in the triton and the doublet
nucleon-deuteron scattering length calculations. The strengths of the two short-range terms available at this order
in the chiral expansion are determined from the triton binding energy and the neutron-deuteron doublet scattering
length. The structure of the resulting three-nucleon force is explored and effects for the two-nucleon correlation
function in the triton are investigated. Expectation values of the individual contributions to the three-nucleon
force in the triton are found to be in the range of a few hundred kilo–electron volts to about 1 MeV. Our
study demonstrates that the very complicated operator structure of the novel chiral three-nucleon forces can be
successively implemented in three-nucleon Faddeev calculations.

DOI: 10.1103/PhysRevC.84.054005 PACS number(s): 21.30.Fe, 21.45.Ff

I. INTRODUCTION

Chiral effective-field theory (EFT) provides a powerful
framework for the systematical description of low-energy
dynamics of few- and many-nucleon systems. Various variants
of effective theories for nuclear forces have been explored;
see Refs. [1–3] for recent review articles. Up to now, the
most advanced few-nucleon studies have been carried out
within a framework based on pions and nucleons as the only
explicit degrees of freedom taken into account in the effective
Lagrangian. Within this approach, the nucleon-nucleon (NN)
force is currently available up to next-to-next-to-next-to-
leading order (N3LO) in the chiral expansion. At this chiral
order, it receives contributions from one-, two-, and three-
pion exchange diagrams as well as short-range NN contact
interactions with up to four derivatives. As demonstrated in
Refs. [4] and [5], NN phase shifts are accurately described
at N3LO up to laboratory energies of the order of 200 MeV.
The theoretical uncertainty owing to truncation of the chiral
expansion is estimated in Ref. [4] by means of a cutoff
variation. Within the spectral function regularization (SFR)
framework [6] adopted in Ref. [4], the NN potential depends on
two ultraviolet cutoffs, �̃ and �. The first one removes large-
mass components in the spectrum of the two-pion exchange
potential that cannot be correctly described within the chiral
EFT framework, while the other one provides regularization
of the Lippmann-Schwinger equation. Five combinations of
these cutoff parameters are available for the NN potentials in
Ref. [4]. The residual dependence of low-energy observables
on the cutoff choice provides a measure of the importance
of higher-order contact interactions and thus may serve as an
estimate of the theoretical uncertainty.
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Parallel to these developments three-nucleon force (3NF)
has also been explored within the framework of chiral EFT.
The first nonvanishing contributions to the 3NF emerge at
next-to-next-to-leading order (N2LO) [7] from the two-pion
exchange and one-pion exchange-contact diagrams as well
as the purely short-range derivativeless three-nucleon contact
interaction [7] (see also Ref. [8] for a pioneering work along
this line). The resulting N2LO three-nucleon potential depends
on two low-energy constants (LECs), D and E, accompanying
the short-range πNN and NNN vertices, respectively. The
values of these LECs need to be fixed from a fit to few-nucleon
data. Among the few possible observables that have been
used in this connection are the triton binding energy and
the nucleon-deuteron doublet scattering length 2and [7,9],
the α-particle binding energy [10,11], the properties of light
nuclei [12], and the triton β decay [13]. The N2LO 3NF from
Ref. [7] was successfully used in three-body calculations (see
Refs. [14] and [15] for a few examples of recent studies).
At this order, the chiral EFT yields a good description of
elastic scattering and deuteron breakup observables up to
energies of about ≈50 MeV. The accuracy of the results in this
regime is comparable with the accuracy achieved by realistic
phenomenological NN and 3N interactions such as, e.g., AV18
[16] 2NF in combination with UrbanaIX [17] 3NF or CD-Bonn
[18] 2NF in combination with the Tucson-Melbourne [19] 3NF
(see Refs. [14] and [20]). However, the spread of the results is
relatively large for some spin observables, which clearly calls
for the inclusion of new terms of the nuclear interaction that
occur at higher orders of the chiral expansion.

Subleading contributions to the 3NF are currently being
investigated by several groups. At N3LO, one has to take
into account (irreducible) contributions emerging from all
possible one-loop, three-nucleon diagrams constructed with
the lowest order vertices. In addition, there are (tree-level)
leading relativistic corrections; see Ref. [21] for an early work
on the longest range relativistic corrections. Note that tree
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diagrams involving higher-order vertices from the effective
chiral Lagrangian do not produce any irreducible pieces.
Effects owing to two-pion exchange 3NF in elastic nucleon-
deuteron scattering were already explored by Ishikawa and
Robilotta [22] within a hybrid approach and found to be rather
small. The N3LO contributions feed into five topologies, as
explained in detail in the next section. The explicit expressions
both in momentum and in coordinate space for long-range
contributions have already been worked out [22,23]. Their
inclusion in numerical few-body calculations appears to be
challenging owing to the very rich and complicated operator
structure. The large number of terms in the 3NF at N3LO
(see Ref. [23]) requires an efficient method of performing
partial-wave decomposition. Recently such a method was
proposed [24] and tested for the Tucson-Melbourne force
[25]. Here and in what follows, this approach is referred to
as the automatized partial-wave decomposition (aPWD). In
this paper we apply this method of numerical partial-wave
decomposition to the N3LO3 NF contributions derived in
Ref. [23]. For the first time, the parts of 3NF at N3LO different
from the two-pion exchange force are included in the triton
and the scattering length calculations. In order to test the
implementations and get a first hint as to the possible effects
of these forces, we fix the two LECs entering the 3NF from
the triton binding energy and the nucleon-deuteron doublet
scattering length and explore the effects owing to these novel
3NF terms by computing the 3H properties. Although this
calculations is still incomplete, as not all 3NF contributions at
N3LO are taken into account, it provides an important first
step toward the complete N3LO analysis of 3N scattering
and demonstrates our ability to numerically handle the rather
complicated structure of the subleading chiral 3NF.

Our paper is organized as follows. In Sec. II we briefly
describe the structure of the chiral 3NF at N3LO. In Sec. III we
discuss in detail the partial-wave decomposition needed in our
scattering and bound-state calculations. Next, the procedure
for fixing the LECs is described in Sec. IV, where the obtained
values of LECs are also listed. These results are used in Sec. V
to explore some properties of the triton. Finally, our findings
are summarized in Sec. VI.

II. 3NF AT N3LO

The subleading (i.e., N3LO) contributions to the 3NF V123

can be written in the form [23]

V123 = V2π + V2π-1π + Vring + V1π cont + V2π cont + V1/m,

(2.1)

where the individual terms refer, in order, to the two-pion
exchange, two-pion/one-pion exchange, ring (i.e. one pion
being exchanged between each of the three nucleon pairs),
one-pion exchange-contact, and two-pion exchange-contact
contributions as well as the leading relativistic corrections (see
Fig. 1 in Ref. [23] for a diagrammatic representation). The
expressions for the (static) long-range part of the 3NF given
by the first three terms in the above equation were worked
out in heavy-baryon chiral perturbation theory in Ref. [23].
The two-pion exchange contribution at the one-loop level
was also calculated within the infrared-regularized version
of chiral perturbation theory in Ref. [22]. The shorter range
contributions involving two-nucleon contact interactions and
relativistic corrections are currently being worked out [26].

While the two-pion exchange V2π and one-pion exchange-
contact parts V1π cont already occur at N2LO and receive
corrections at N3LO, the remaining topologies first emerge
at N3LO. It is important to emphasize that all subleading
contributions to the 3NF are parameter-free. Thus, the LECs D

and E entering the one-pion exchange-contact and the purely
short-range parts of the 3NF at N2LO are the only unknown
parameters up to N3LO.

Here and in what follows, we adopt the notation in which a
given 3NF V123 is decomposed into three terms,

V123 = V (1) + V (2) + V (3), (2.2)

where each V (i) is symmetrical under interchanging nucleons
j and k (i, j, k = 1, 2, 3, i �= j �= k). Clearly, this condition
does not specify V (1) uniquely. In the following we choose
V (1) in such a way that the number of operator structures is
minimized, which is convenient for the aPWD.

The operator structure of the 2π exchange part V (1)
2π at N3LO

remains the same as at N2LO,

V
(1)

2π = F1 �σ2 · �q2 �σ3 · �q3τ 2 · τ 3 + F2 �σ2 · �q2 �σ3 · �q3 �q2

× �q3 · �σ1τ 2 × τ 3 · τ 1, (2.3)

where �qi is the momentum transfer to the ith nucleon, and
�q1 + �q2 + �q3 = 0 and �σi (τ i) are Pauli spin (isospin) matrices
for nucleon i. The scalar functions F1 = F1(q2, q3, q̂2 · q̂3)
and F2 = F2(q2, q3, q̂2 · q̂3) depend on the LECs c̃1,3,4, which
accompany the subleading pion-nucleon vertices. Chiral ex-
pansion of F1 and F2 up to N3LO has the form [23]

F1 = g4
A

4F 4
π

(−4c̃1M
2
π + 2c̃3 �q2 · �q3)(

q2
2 + M2

π

)(
q2

3 + M2
π

) + F̃1, (2.4)

F2 = g4
A

4F 4
π

c̃4(
q2

2 + M2
π

)(
q2

3 + M2
π

) + F̃2, (2.5)

with

F̃1 = g4
A

128πF 6
π

1(
q2

2 + M2
π

)(
q2

3 + M2
π

)(
Mπ (M2

π + 3q2
2 + 3q2

3 + 4 �q2 · �q3
)

+ (
2M2

π + q2
2 + q2

3 + 2 �q2 · �q3
)(

3M2
π + 3q2

2 + 3q2
3 + 4 �q2 · �q3

)
A(| �q2 + �q3|)

)
, (2.6)

F̃2 = −g4
A

128πF 6
π

1(
q2

2 + M2
π

)(
q2

3 + M2
π

)(
Mπ + (4M2

π + q2
2 + q2

3 + 2 �q2 · �q3
)
A(| �q2 + �q3|)

)
, (2.7)
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where the loop function A(q) is defined as

A(q) = 1

2q
arctan

q

2Mπ

. (2.8)

The axial-vector coupling constant, the weak pion decay
constant, and the pion mass are denoted gA, Fπ , and Mπ ,
respectively. Note that the SFR changes A(q) (see Ref. [6]).
For the study here we do not need to consider this change, as
they differ only by higher order polynomials [1]. The quantities
c̃i appearing in the above expressions are related to the N2LO
LECs ci entering the effective chiral Lagrangian via

c̃1 = c1 − g2
AMπ

64πF 2
π

= −0.94 GeV−1,

c̃3 = c3 + g4
AMπ

16πF 2
π

= −2.51 GeV−1,

c̃4 = c4 − g4
AMπ

16πF 2
π

= 2.51 GeV−1,

where we have adopted the values for the ci from Ref. [4],
namely,

c1 = − 0.81 GeV− 1, c3 = − 3.40 GeV−1,

c4 = 3.40 GeV−1. (2.9)

These values are consistent with those determined from pion-
nucleon scattering [27]. The finite shifts of the LECs ci in
Eq. (2.9) emerge from pion loops at N3LO.

The V
(1)

2π-1π interaction at N3LO has the operator structure

V
(1)

2π-1π = �σ1 · �q1

q2
1 + M2

π

[τ 2 · τ 1(�σ3 · �q2 �q2 · �q1F1(q2) + �σ3 · �q2F2(q2) + �σ3 · �q1F3(q2)) + τ 3 · τ 1(�σ2 · �q2 �q2 · �q1F4(q2)

+ �σ2 · �qF5(q2) + �σ3 · �qF6(q2) + �σ3 · �qF7(q2)) + τ 2 × τ 3 · τ 1 �σ2 × �σ3 · �qF8(q2)] + (2 ↔ 3), (2.10)

with scalar functions Fi(qi). The interchange of nucleons (2 ↔ 3) refers to the interchange of momentum vectors, spin and
isospin matrices, and arguments of the functions Fi . Explicit expressions for the scalar functions Fi(qi) that appear in the V

(1)
2π-1π

can be found in Ref. [23].
The V (1)

ring force is chosen as

V (1)
ring = �σ1 · �σ2τ 2 · τ 3R1 + �σ1 · �q1 �σ2 · �q1τ 2 · τ 3R2 + �σ1 · �q1 �σ2 · �q3τ 2 · τ 3R3

+ �σ1 · �q3 �σ2 · �q1τ 2 · τ 3R4 + �σ1 · �q3 �σ2 · �q3τ 2 · τ 3R5 + τ 1 · τ 3R6 + �σ1 · �q1 �σ3 · �q1R7

+ �σ1 · �q1 �σ3 · �q3R8 + �σ1 · �q3 �σ3 · �q1R9 + �σ1 · �σ3R10 + �q1 · �q3 × �σ2τ 1 · τ 2 × τ 3R11

+ τ 1 · τ 2S1 + �σ1 · �q1 �σ3 · �q1τ 1 · τ 2S2 + �σ1 · �q3 �σ3 · �q1τ 1 · τ 2S3 + �σ1 · �q1 �σ3 · �q3τ 1 · τ 2S4

+ �σ1 · �q3 �σ3 · �q3τ 1 · τ 2S5 + �σ1 · �σ3τ 1 · τ 2S6 + �q1 · �q3 × �σ1τ 1 · τ 2 × τ 3S7 + (2 ↔ 3), (2.11)

where the expressions for the scalar functions Ri =
Ri(q1, q3, q̂1 · q̂3) and Si = Si(q1, q3, q̂1 · q̂3) are given in
Ref. [23].

Modifications of the one-pion exchange-contact V
(1)

1π cont
term arising at N3LOare in preparation [26]. Thus, instead
of the full V

(1)
1π−cont interaction we use the lowest order result

for it, resulting in N2LO [7]:

V
(1)
d term = −gA D

8F 2
π

�σ1 · �q1

q2
1 + M2

π

(τ 1 · τ 3 �σ3 · �q1 + τ 1 · τ 2 �σ2 · �q1).

(2.12)

The LEC D can be expressed as D = cD/(F 2
π�χ ), where cD

is a dimensionless free parameter and the chiral symmetry
breaking scale �χ is estimated to be �χ = 700 MeV. Here
and in what follows, we use Fπ = 92.4 MeV for the pion
decay constant. The value of cD has to be determined from
experimental data. This is described in Sec. IV for our fit for
the test case in this study. Of course, the results of this fit will
significantly change when the complete short-range interaction
is taken into account.

As already pointed out, the remaining terms V
(1)

2π cont and
V

(1)
1/m are also not available yet [26] and thus cannot be taken

into account in the present study. Finally, the purely short-
range part of the 3NF has the form [7]

V
(1)
e term = Eτ 2 · τ 3. (2.13)

Again, the LEC E is usually expressed in terms of a
dimensionless parameter cE via E = cE/(F 4

π�χ ), which needs
to be determined from (at least) three-nucleon data.

To summarize, in this paper we use the V
(1)

2π , V
(1)

2π-1π , and
V (1)

ring N3LO terms combined with the V
(1)
d term and V

(1)
e term terms

at N2LO. The N3LO contributions to V
(1)

1π cont and V
(1)

2π cont

and relativistic corrections V
(1)

1/m are not included. Finally, the
remaining terms V (2) and V (3) of Eq. (2.2) can be obtained
from V (1) by appropriate permutations of nucleons.

III. NUMERICAL CALCULATIONS OF 3NF MATRIX
ELEMENTS

We work in the momentum space using three-nucleon
partial-wave states |p, q, α〉 in the jJ coupling [28,29]

|p, q, α〉 ≡ ∣∣pq(ls)j
(
λ 1

2

)
I (jI )JMJ

〉∣∣(t 1
2

)
T MT

〉
, (3.1)
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FIG. 1. (Color online) N3LO 3NF matrix elements (before reg-
ularization) 〈p′, q ′, α′|V (1)|p, q, α〉 as a function of the momentum
p for p′ = 0.268 fm, −1, q ′ = 2.842 fm−1, and q = 0.132 fm−1 and
different combinations (α′, α): (a) (1,1), (b) (1,5), (c) (4,4), and (d)
(4,7). Solid (black), dashed (red), double-dash-dotted (green), dotted
(blue), and dash-dotted (magenta) lines show the V2π , V2π-1π , Vring,
Vd term and Ve term components, respectively.

where p and q are magnitudes of the standard Jacobi momenta
and α denotes a set of discrete quantum numbers defined in
the following way: the spin s of the subsystem composed
of nucleons 2 and 3 is coupled with their orbital angular
momentum l to the total angular momentum j . The spin 1/2 of
the spectator particle 1 couples with its relative orbital angular
momentum λ to the total angular momentum I of nucleon 1.
Finally, j and I are coupled to the total 3N angular momentum
J with projection MJ . For the isospin part, the total isospin t of
subsystem (23) is coupled with the isospin 1/2 of the spectator
nucleon to the total 3N isospin T with projection MT .

The matrix elements of V
(1)

2π , V
(1)

2π-1π , and V (1)
ring forces in

the basis |p, q, α〉 are obtained using the recently proposed
aPWD method [24,25]. In this approach the spin-momentum
and isospin parts of three-nucleon interactions are calculated
using a software for symbolic calculations. The resulting
momentum-dependent functions are then integrated numeri-
cally in five dimensions over angular variables. The major
advantage of this method is its generality. It can be applied to
any momentum-spin-isospin operator including, in particular,
the full operator structure of the 3NF at N3LO, including even
the nonlocal relativistic corrections. The only complication
emerges in the treatment of the ring contributions to the 3NF
owing to rather complex expressions for the functions Ri =
Ri(q1, q3, q̂1 · q̂3) and Si = Si(q1, q3, q̂1 · q̂3), which involve
certain scalar integrals related to the three-point function. For
any given values of the arguments, these integrals have to be
computed numerically. This evaluation is too expensive to be
carried out on-the-fly during the aPWD. Moreover, while the
functions Ri and Si are, of course, finite and smooth for all
possible values of their arguments, they are given in Ref. [23]
as linear combinations of terms, some of which are becoming
singular under certain kinematical conditions. Their numerical

implementation therefore requires special care. In order to deal
with these difficulties, we first evaluate the functions Ri and
Si at a (fixed) dense grid of points for their arguments and then
use interpolation to compute them for arbitrary values of q1, q3,
and q̂1 · q̂3 as needed in the aPWD approach. We have carefully
checked the stability of this procedure by increasing the density
of the grid points. Finally, the partial-wave decomposition of
V

(1)
d term and V

(1)
e term is performed with the standard techniques [7]

but also verified with the new method.
Examples of the resulting matrix elements

〈p′, q ′, α′|V (1)
i |p, q, α〉 are given in Fig. 1 as a function

of the momentum p. Here, we fix the momenta to be
p′ = 0.268 fm−1, q ′ = 2.842 fm−1, and q = 0.132 fm−1

and consider the following four channel combinations:
(α′ = α = 1), (α′ = 1, α = 5), (α′ = α = 4), and
(α′ = 4, α = 7). These channels correspond to the quantum
numbers given in Table I. Channels α = 1 and α = 5 are
especially important, as those two states provide the dominant
components of the 3H wave function. As can be noted, All
three components of the N3LO 3NF give a strong contribution:
the V (1)

ring dominates for the channel combination (α′ = α = 1),

V
(1)

2π-1π for (α′ = 1, α = 5), and V
(1)

2π for (α′ = α = 4) and
(α′ = 4, α = 7). We emphasize, however, that the large size
of these matrix elements (which contain certain admixtures of
short-range operators) compared to the N2LO terms does not
necessarily imply that their effects in low-energy observables
are large. The values of the LECs for V

(1)
d term and V

(1)
e term terms

shown in Fig. 1 are set to be cD = 1 and cE = 1 in order
to allow for a qualitative comparison of the strength of the
individual terms. Their real contributions emerging after
fitting the LECs cD and cE to experimental data are discussed
in the next section. Figure 1 also clearly demonstrates that
not all terms contribute to each channel combination owing
to the spin-isospin dependence. The V

(1)
2π-1π and V

(1)
d term terms

contribute to V (1) only to (α′ = 1, α = 5) and the V
(1)
e term term

contributes only to (α′ = α = 1). Further, V (1)
ring vanishes for

α′ = α = 4.
The component V (1) of V123 enters the dynamical equations

for 3N bound and scattering states [29,30] (see below) only
in combination with the permutation operator P forming
the operator V (1)(1 + P ). The permutation operator P ≡
P12P23 + P13P23 is built from the transpositions Pij , which
interchange nucleons i and j . The aPWD scheme can be used
to obtain the V (1)(1 + P ) matrix elements directly [25], which
allows us to avoid uncertainties associated with the partial-
wave decomposition of the permutation operator. The resulting

TABLE I. Values of the discrete quantum numbers for selected
α states, (3.1), with the total angular momentum J = 1/2, the total
isospin T = 1/2, and its projection MT = −1/2.

α l s j λ I t

1 0 0 0 0 1
2 1

4 1 0 1 1 3
2 0

5 0 1 1 0 1
2 0

7 2 1 1 0 1
2 0
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FIG. 2. (Color online) N3LO 3NF matrix elements (before
regularization) 〈p′, q ′, α′|V (1)(1 + P )|p, q, α〉 as a function of the
momentum p. The momenta p′, q ′, and q, channel combinations
(α′, α), and lines are the same as in Fig. 1.

matrix elements 〈p′, q ′, α′|V (1)(1 + P )|p, q, α〉 are given in
Fig. 2 for the same momenta and channel combinations as
in Fig. 1. Again, we observe that matrix elements of all
contributions to the 3NF are large for these momenta. The
V (1)

ring contribution is particularly large in matrix elements with

α′ = 1. For these channels also V
(1)

2π and V
(1)

2π-1π are significant.
Moreover, for α′ = α = 1 also V

(1)
d term and V

(1)
e term are non-

negligible, at least with cD = 1 and cE = 1. For α′ = 4, the
V

(1)
2π piece dominates. Nevertheless, in the case of α = 7

also V (1)
ring provides a significant contribution. Owing to their

spin-isospin structure, the V
(1)
d term and V

(1)
e term forces are absent

for (α′ = α = 4) and (α′ = 4, α = 7) channel combinations.
The 2π exchange contribution at N3LO can be compared

with a corresponding part of the N2LO interaction. An example
is given in Fig. 3, where the dashed (solid) line represents the
predictions obtained at N2LO (N3LO). The V

(1)
2π (1 + P ) matrix

elements differ significantly for all channel pairs considered.
Figure 3 demonstrates that these differences mainly originate
from the parts of the V

(1)
2π interaction proportional to the F̃1

and F̃2 form factors [see Eqs. (2.4) and (2.5)]. In particular, in
Fig. 3, we also show results for V

(1)
2π (1 + P ) at N3LO but with

F̃1 and F̃2 artificially set to 0. In this case the only difference
between matrix elements at N2LO and N3LO comes from
the different values of ci and c̃i LECs. The matrix elements
presented, then, have a similar dependence on momentum p

as well as a similar magnitude in N3LO and N2LO. Note,
however, that these observations do not necessarily imply that
the N3LO corrections to the 3NF lead to large effects in low-
energy three-nucleon observables. In fact, the opposite was
observed in Ref. [22] for the case of the two-pion exchange
topology.

The V
(1)
i and V

(1)
i (1 + P ) matrix elements shown in

Figs. 1 and 2 have to be regularized prior to being used as
input to the dynamical equations [7]. We use the regulator
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FIG. 3. (Color online) The 2π exchange part of 3NF matrix
elements (before regularization) 〈p′, q ′, α′|V (1)

2π (1 + P )|p, q, α〉 as
a function of the p momentum. The momenta p′, q ′, and q and
channel combinations (α′, α) are the same as in Fig. 1. Dashed (black)
and solid (red) lines represent N2LO and N3LO results, respectively.
The dotted (black) line describes the matrix elements of V

(1)
2π (1 + P )

obtained with F̃1 and F̃2 artificially set to 0 (see text).

function of the form [1]

f (p, q) = exp
−(4p2 + 3q2)3

(4�2)3
, (3.2)

which ensures that the large momenta are sufficiently sup-
pressed. Following Ref. [1], we use three values of the
� parameter: 450, 550, and 600 MeV. The regularization
transforms matrix elements as

〈p′, q ′, α′|V (1)(1 + P )|p, q, α〉
→ f (p′, q ′)〈p′, q ′, α′|V (1)(1 + P )|p, q, α〉f (p, q). (3.3)

The examples of the regularized V (1)(1 + P ) matrix el-
ements are compared to the nonregularized ones in Fig. 4.
This is done separately for V

(1)
2π (1 + P ) and V (1)

ring(1 + P )
contributions. The momenta are p′ = q ′ = q = 0.132 fm−1

(upper row) and p′ = 0.268 fm−1, q ′ = 2.842 fm−1, and q =
0.132 fm−1 (lower row) and we show only the (α′ = α = 1)
channel combination. In the upper row, where the momenta
p′, q ′, and q are small, all regulator functions are close
to 1 for small values of p. For momenta p > 1 fm−1, the
different � values lead to different slopes of matrix elements.
The lowest value of the parameter � = 450 MeV forces the
fastest decrease in V

(1)
i (1 + P ) matrix elements. In this case,

the short-range part of the interaction is suppressed. On the
contrary, the highest value � = 600 MeV allows for larger
contributions of short-range interactions. In the lower row in
Fig. 4, where the momenta p′ and q ′ are bigger, the effects
of the regularization are seen already at low values of p.
For p = 0.001 fm−1 the regularization factor f (p′, q ′)f (p, q)
changes from 0.194 for � = 450 MeV to 0.747 for � =
600 MeV. This strong cutoff dependence is expected to be
largely compensated by an appropriate “running” of the LECs
cD and cE when calculating low-energy observables.
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FIG. 4. (Color online) N3LO 3NF matrix elements 〈p′, q ′, α′ =
1|V (1)

i (1 + P )|p, q, α = 1〉 as a function of the p momentum for
the momenta p′ = q ′ = q = 0.132 fm−1 (top) and p′ = 0.268 fm−1,
q ′ = 2.842 fm−1, and q = 0.132 fm−1 (bottom). The two components
of the N3LO 3NF are shown: V

(1)
2π (1 + P ) (left) and V (1)

ring(1 + P )

(right). The solid (black) line represents V
(1)

2π (1 + P ) and V (1)
ring(1 + P )

matrix elements before regularization. Dashed (red), dash-dotted
(green), and dotted (blue) curves represent the V

(1)
2π (1 + P ) and

V (1)
ring(1 + P ) matrix elements regularized as in Eq. (3.3) with � =

450, 550, and 600 MeV, respectively.

IV. DETERMINATION OF LEC cD AND cE

VALUES AT N3LO

Once the new terms are added to the 3NF, the procedure
for refitting the LECs cD and cE has to be repeated. We
follow Ref. [7] and use the triton binding energy E

3H and
the neutron-deuteron doublet scattering length 2and as two
observables from which cD and cE can be obtained. The
up-to-date experimental values are E

3H = 8.481821(5) MeV
[31] and 2and = 0.645(7) fm [32].

Our procedure to fix the values of LECs can be divided
into two steps. First, the dependence of E

3H on cE for a
given value of cD is determined. The requirement to reproduce
the experimental value of the triton binding energy yields a
set of combinations cD and cE . This set is then used in the
calculations of 2and , which allows us to find which pair of
cD and cE describes both observables simultaneously. This
procedure has to be repeated for all � values used in the
regularization. The same values of the cutoff � are used to
suppress high momenta in the NN potential in order to ensure
the convergence of the integral in the Lippmann-Schwinger
equation. The chiral NN potential depends, in addition, on
another cutoff parameter, �̃, emerging from the SFR of the
two-pion exchange potential. We follow Ref. [1] and use five
combinations of (�, �̃) reported in Table II.

We compute the 3H wave function using the method
described in Ref. [30]. Here we mention only that the full
triton wave function 	 = (1 + P )ψ is given by its Faddeev
component ψ , being the solution of the Faddeev equation:

ψ = G0tPψ + (1 + G0t)G0V
(1)(1 + P )ψ. (4.1)

TABLE II. Values of cD and cE LECs for different parametriza-
tions of the chiral N3LO potential.

Cutoff (�, �̃) cD cE

1 (450,500) 10.78 −0.172
2 (600,500) 12.00 1.254
3 (550,600) 11.67 2.120
4 (450,700) 7.21 −0.748
5 (600,700) 14.07 1.704

Here, G0 is the free 3N propagator, P is the same permutation
operator as defined above, and t is the two-body t operator
generated from a given NN potential through the Lippmann-
Schwinger equation.

We use the 3N states |p, q, α〉 defined on the grids of 68
p points and 48 q points at intervals p ∈ (0, 15) fm−1 and
q ∈ (0, 10) fm−1, respectively. We take into account all states
up to the two-body total angular momentum j = 5 for the NN
potential and all states up to j = 3 for the 3N interaction.

We solve Eq. (4.1) and find pairs of the LECs cD and cE

that reproduce the experimental value of E
3H . It is exemplified

in the top panel in Fig. 5 for the third cutoff combination from
Table II. The dependence is smooth, and for some values of
cE there are two possible values of cD .

In the second step of the fitting procedure the doublet
scattering length 2and is calculated for the (cD , cE) pairs, which
reproduce the correct value of E

3H . With this aim, we first
solve the Faddeev equation for the auxiliary amplitude T at
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c E
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FIG. 5. (Color online) Intermediate results obtained during the
fitting procedure for the cD and cE N3LO LECs for the third cutoff
combination from Table II: values of the cD and cE LECs that give the
experimental E

3H (top) and the dependence of 2and on cD (bottom).
The dotted line shows the experimental value 2and = 0.645(7) fm
[32].
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zero incoming nucleon energy,

T = tPφ + (1 + tG0)V (1)(1 + P )φ + tPG0T

+ (1 + tG0)V (1)(1 + P )G0T , (4.2)

where the initial channel state φ occurring in the driving terms
is composed of the deuteron and a plane-wave state of the
projectile nucleon. The amplitude for the elastic nucleon-
deuteron scattering is then given by

U = PG−1
0 + PT + V (1)(1 + P )φ + V (1)(1 + P )G0T . (4.3)

We refer to Refs. [29] and [33] for a general overview of 3N
scattering and for more details on the practical implementation
of the Faddeev equations. The expression for 2and in our basis
and further technical details are given in Ref. [34]. In this
second step of the fitting procedure we use grids of 32 p

points in the range p ∈ (0, 25) fm−1 and 31 q points in the
range q ∈ (0, 15) fm−1. Similarly to the triton calculations,
the NN (3N) potential acts in all states up to j = 5(3). Our
calculations are accurate up to 2 keV for the binding energy and
up to 0.005 fm for the scattering length. We expect that, even
in N3LO, the chiral expansion of the nuclear forces induces
uncertainties that are larger than these estimates. Therefore,
the numerical calculations are sufficiently accurate to perform
sensible fits of cD and cE at N3LO.

The final values of cD and cE LECs, which reproduce the
experimental values of E

3H and 2and , are listed in Table II. For
all combinations of cutoff parameters, the LEC cD remains
positive, with a value around 10. It weakly depends on the
value of the cutoff � and becomes larger with increasing �.
The second LEC, cE , changes in a more complicated way.
While again it is smallest in magnitude for the smallest value
of �, its largest value is for the medium � = 550 MeV and
then it decreases upon moving to � = 600 MeV. Note that cE

changes sign so the V
(1)
e term interaction changes from attractive

to repulsive. We also stress that while the value of the LEC
cD appears to be rather large, the expectation value of the
one-pion exchange-contact part of the 3NF is of a natural
size. It remains to be seen whether the complete calculation
including the remaining 3NF contributions at N3LO will lead
to more natural values of the LEC cD .

Finally, we would like to emphasize that the values of
the LECs that are bare parameters must be refitted at each
order in the chiral expansion (and, of course, for each cutoff
combination). This is in contrast with chiral perturbation
theory calculations in the Goldstone-boson and single-nucleon
sectors, where the scattering amplitude is usually expressed
in terms of renormalized LECs. Indeed, using the values of
cD and cE determined at N2LO in the N3LO calculation
would generally result in a poor description of low-energy
observables. For example, for the third cutoff combination, the
3NF at N3LO furnished with the N2LO values cD = −0.45
and cE = −0.798 [1] and combined with the N3LO NN
potential yields E

3H = −8.197 MeV and 2and = 1.004 fm,
which are far from the experimental values. Similarly, while
the combination cD = 1.5744 and cE = −17.8 allows us
to reproduce the triton binding energy and the doublet nd

scattering length for N3LO NN force accompanied with the
N2LO 3NF, it produces E

3H = −7.542 MeV and 2and =

1.4354 fm when the N3LO 3NF is used. Note that a large
value of cE obtained in this case seems to violate naturalness.
These results demonstrate clearly that fitting to the data has
to be made consistently within the given order of the chiral
expansion. Therefore, also the results of our test fit here, which
does not include the full 3NF at N3LO, has to be taken with
care. However, the fit results allow us to study the properties
of 3H in the next section.

V. THE PROPERTIES OF 3H

Once the values of cD and cE low-energy parameters are
established, one can explore the properties of the 3H wave
function. We begin with the expectation values of the kinetic
energy 〈H0〉, the NN potential energy 〈VNN 〉, and the 3N
potential energy 〈V3N 〉, which are listed in Table III. The
expectation values clearly depend on the cutoff parameters �

and �̃ as they should. Not surprisingly, the expectation values
of both the NN potential and the 3NF are smallest for the softest
cutoff � = 450 MeV. Higher � values lead to stronger 3NF
contributions to the E

3H , which, for � = 600 MeV, reaches
about ≈20%. For all cutoff values, one clearly observes the
dominance of the NN forces, 〈V3N 〉/〈VNN 〉 = 1.5% · · · 3%, in
agreement with the expectations based on the chiral power
counting. Note that the interplay of N2LO counter terms and
N3LO structures of the 3NF does not allow one to use these
expectation values for an assessment of the contributions of
N3LO 3NFs. Similarly as in the NN interaction, one observes
strong cancellations of N3LO contributions also with N2LO
contact interactions. Such a comparison only makes sense for
renormalized quantities, which we are not able to identify
here. One also observes that the dependence of the expectation
values on the SFR cutoff �̃ is less pronounced than the �

dependence. For example, for cutoff combinations 1 and 4,
which differ only in the choice of �̃, the 〈H0〉 and 〈VNN 〉
differ by about 3 MeV. On the other hand, the differences
reach almost 20 MeV for the cutoff combinations 1 and 2,
which have the same SFR cutoff �̃ but different values of
�. This holds true also for 〈V3N 〉. In addition, we report in
Table III the expectation values obtained with � = 550 MeV
and �̃ = 600 MeV but for N2LO NN and 3N potentials. As
a second example we give the same expectation values but

TABLE III. Expectation values 〈H0〉, 〈VNN 〉, and 〈V3N 〉 in the
triton for different parametrizations of the chiral N3LO potential
discussed in the text. Parametrization denoted 3a (3b) shows results
for � and �̃ as in cutoff 3 but for the N2LO (N3LO) NN potential
combined with the N2LO 3NF.

Cutoff 〈H0〉 (MeV) 〈VNN 〉 (MeV) 〈V3N 〉 (MeV)

1 35.972 −43.459 −0.994
2 54.708 −61.515 −1.673
3 48.088 −55.187 −1.381
4 33.232 −41.050 −0.663
5 53.504 −60.278 −1.706
3a 33.174 −40.874 −0.770
3b 47.713 −54.650 −1.544
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TABLE IV. Expectation values for the different parts of the 3N potential and for the different parametrizations of the chiral N3LO potential.

Cutoff 〈V2π 〉 (MeV) 〈V2π-1π 〉 (MeV) 〈Vring〉 (MeV) 〈Vd term〉 (MeV) 〈Ve term〉 (MeV)

1 −0.639 0.458 −0.147 −0.693 0.027
2 −0.241 −0.580 −1.114 0.694 −0.432
3 −0.473 0.107 −0.191 −0.708 −0.116
4 −0.771 0.539 −0.452 −0.259 0.281
5 −0.377 −0.275 −0.622 −0.119 −0.313

obtained with the N3LO NN potential combined with N2LO3
NF. The values of LECs in both cases are chosen to reproduce
the 3H binding energy and are given above. As can be noted,
for this cutoff, the size of 〈V3N 〉 depends on the order of the
NN potential and does not vary significantly with the order of
3NF.

More detailed information about the 3NF triton expectation
values is reported in Table IV. The expectation value of the 3NF
〈V3N 〉 is split into the individual contributions from various
topologies. The expectation value of the two-pion exchange
potential 〈V2π 〉 shows a smooth dependence on �. For the
softest cutoff � = 450 MeV, the two-pion exchange 3NF turns
out to be most attractive, providing more than 0.5 MeV to the
triton binding energy. With increasing �, the contribution of
V2π becomes weaker. For cutoff combination 2, � = 600 MeV,
�̃ = 500 MeV, the additional binding owing to the two-pion
exchange 3NF only amounts to about 240 keV. Interestingly,
most of the attraction necessary to reproduce the triton
binding energy is produced in this case by the ring topology,
which is found to be attractive for all cutoff combinations.
Contrary to the longest range two-pion exchange topology,
the contributions of the ring diagrams are enhanced for the
largest value of the cutoff � = 600 MeV. Qualitatively, this
behavior might be expected given the fact that the large values
of � probe the shorter range part of Vring, which is of the
van der Waals type; i.e., the matrix elements grow rapidly
with decreasing relative distances between the nucleons.
The cutoff dependence of this contribution is very large.
This explicitly shows the dependence on the short-distance
pieces, making it impossible to estimate the impact of this
topology on low-energy observables based on our results. The
expectation value of the two-pion/one-pion exchange topology
〈V2π-1π 〉 also strongly depends on �. It changes sign from
positive for � = 450 MeV to negative at � = 600 MeV. The
dependence on the SFR cutoff is fairly weak. Note, however,
that a stronger dependence might be induced once the SFR
regularized A(q) has been taken into account. The 〈Vd term〉
shows the most complicated behavior. It achieves the lowest
value for the intermediate value of � (cutoff combination
3) and, for � = 600 MeV, shows a strong dependence on
the SFR cutoff �̃. In particular, for the smaller value �̃ =
500 MeV, this contribution to the 3NF becomes repulsive
and relatively large, while for �̃ = 700 MeV the expectation
value remains negative. Finally, the 〈Ve term〉 expectation value
changes smoothly with �. It also changes its sign from positive
at the lowest � to negative at � = 600 MeV. Last but not
least, we emphasize that the expectation values discussed
above as well as the separation of the potential energy into
the contributions owing to the NN potential and 3NF do not

correspond to observable quantities and are expected to show
a strong cutoff dependence. Notice, further, that expectation
values of the various 3NF contributions are, strictly speaking,
bare quantities. Comparing their size with that of the N2LO
terms, therefore, does not allow one to draw conclusions about
the convergence of the chiral expansion [39]. It is comforting
to see that all expectation values turn out to be of a reasonable
size.

We now turn to the two-nucleon correlation function of 3H,
which is defined as [30]

C(r) ≡ 1

3

1

4π

∫
dr̂〈	|

∑
i<j

δ(�r − �rij )|	〉 . (5.1)

Here, �rij is the relative distance corresponding to the Jacobi
momentum �p. In Fig. 6 the correlation function is shown
for the same combinations of the regularization parameters
as in Table II. Thin lines represent predictions based on NN
interactions only, while thick lines show the predictions based
on NN + 3N forces. As expected, the softest cutoff value
� = 450 MeV yields a flatter correlation function the less the
amount of short-range correlations. The higher � values prefer
distributions concentrated around the maximum at r ≈ 1.5 fm.
The effects of the 3NFs are small for the lowest � but increase
with increasing �. For the lowest � there is also a strong de-
pendence of the correlation function on the SFR parameter �̃.
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FIG. 6. (Color online) Two-body correlation function for the
triton for different (�, �̃) pairs listed in Table II. The thin dotted
(black), dashed (red), solid (blue), dash-double-dotted (black), and
dash-dotted (red) lines correspond to predictions based only on
the NN interaction with cutoff numbers from 1 to 5, respectively.
The thick lines represent predictions with the same regularization
parameters but based on NN and 3N forces.
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VI. SUMMARY AND OUTLOOK

In this paper we, for the first time, have included the
long-range N3LO corrections to the 3NF in the Faddeev
calculations. These novel two-pion exchange, two-pion/one-
pion, and ring interactions supplemented with the one-pion
exchange and contact terms emerging at N2LO represent,
presently, the most advanced chiral 3NF. We use this force in
the triton and the doublet neutron-deuteron scattering length
Faddeev calculations to fix the two low-energy parameters
cD and cE for different sets of regularization parameters,
which cut off high-momentum or, equivalently, short-range
components in few-nucleon states. While the value of the LEC
cD remains fairly stable, cE features a stronger sensitivity
to regularization parameters. It will be interesting whether
such a behavior is also seen for fits involving the complete
N3LO 3NF. We also studied the individual contributions of the
various topologies to the triton binding energy. The expectation
values of the two-pion/one-pion and ring terms turn out to be
smaller than the ones of the dominant two-pion exchange 3NF
for softer values of the regulator. Generally, all expectation
values are found to be sizable. As expected, we observe a
strong sensitivity of the expectation values to the regularization
parameters. We also looked at the impact of the 3NF used on
the two-nucleon correlation function in the triton.

While our work does not yet correspond to a complete
N3LO analysis, owing to the shorter range contributions and
relativistic corrections to the 3NF that are not yet available
and are still missing in our calculations, it does represent a
very important step in this direction and provides a proof-
of-principle that the very complex operator structure of the
3NF at N3LO can be successfully implemented in few-body
calculations. In the future, this study should be extended to
explore effects of the novel terms in the 3NF in few-nucleon
scattering. This work is in progress. To complete the analysis

of the 3NF at N3LO the inclusion of the full structure of
shorter range V

(1)
1π cont, V

(1)
2π cont, and V

(1)
1/m terms should be

pursued. The numerical implementation of the new terms can
be straightforwardly performed using the newly developed
aPWD scheme, which is successfully tested for the long-range
terms in the present study. Even more interesting will be
the study of the 3NF at N4LO, which is expected to be
significant. This expectation is discussed in Ref. [3] and,
additionally, guided by recent results from the -full chiral
perturbation theory [35]. Of course, also at N4LO the aPWD
method can be used for numerical implementation of the
3NF. Finally, it should be emphasized that the present work
also opens the way to applying the novel chiral nuclear
forces in many-body calculations (see, e.g., Refs. [36–38] for
some exciting recent developments along these lines based on
N2LO 3NFs).
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[25] R. Skibiński et al., Eur. Phys. J. A 47, 48 (2011).

054005-9

http://dx.doi.org/10.1016/j.ppnp.2005.09.002
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1140/epja/i2003-10096-0
http://dx.doi.org/10.1140/epja/i2003-10096-0
http://dx.doi.org/10.1103/PhysRevC.66.064001
http://dx.doi.org/10.1103/PhysRevC.49.2932
http://dx.doi.org/10.1140/epja/i2009-10764-y
http://dx.doi.org/10.1140/epja/i2009-10764-y
http://dx.doi.org/10.1103/PhysRevC.73.064002
http://dx.doi.org/10.1103/PhysRevC.73.064002
http://dx.doi.org/10.1103/PhysRevLett.106.192501
http://dx.doi.org/10.1103/PhysRevLett.106.192501
http://dx.doi.org/10.1103/PhysRevLett.99.042501
http://dx.doi.org/10.1103/PhysRevLett.103.102502
http://dx.doi.org/10.1103/PhysRevLett.103.102502
http://dx.doi.org/10.1103/PhysRevC.72.044006
http://dx.doi.org/10.1080/10506890701404222
http://dx.doi.org/10.1080/10506890701404222
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.53.R1483
http://dx.doi.org/10.1103/PhysRevC.53.R1483
http://dx.doi.org/10.1016/0375-9474(79)90462-7
http://dx.doi.org/10.1103/PhysRevC.23.1790
http://dx.doi.org/10.1103/PhysRevC.63.024007
http://dx.doi.org/10.1103/PhysRevC.49.1272
http://dx.doi.org/10.1103/PhysRevC.76.014006
http://dx.doi.org/10.1103/PhysRevC.76.014006
http://dx.doi.org/10.1103/PhysRevC.77.064004
http://dx.doi.org/10.1103/PhysRevC.77.064004
http://dx.doi.org/10.1140/epja/i2009-10903-6
http://dx.doi.org/10.1140/epja/i2011-11048-9
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