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Constraining the neutron-neutron scattering length using the effective field theory
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We compute a model-independent correlation between the difference of neutron-neutron and proton-proton
scattering lengths, |ann − aC

pp|, and the splitting in binding energies between helium-3 and tritium nuclei. We use
the effective field theory without explicit pions to show that this correlation relies only on the existence of large
scattering lengths in the NN system. Our leading-order calculation, taken together with experimental values for
binding energies and aC

pp , yields ann = −22.9 ± 4.1fm.
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I. INTRODUCTION

In quantum chromodynamics (QCD) there are two effects
that lead to violations of isospin symmetry. First, the electro-
magnetic interaction between quarks, and hence that between
protons (p) and neutrons (n), does not respect the symmetry:
V em

pp is different from V em
np and V em

nn . Second, the difference
between up and down quark masses (mu,d ) means that isospin
symmetry is violated even in the absence of electromagnetic
forces. The existence of md > mu results in, for instance,
different nucleon masses mn > mp, which has profound
consequences for nucleosynthesis in the early universe and
nuclear physics in general [1]. A better understanding of
isospin-symmetry breaking is therefore of deep interest to
nuclear physics and to nuclear physicists. There has been much
recent progress in this direction, with experiments at TRIUMF
and IUCF exploring novel signatures of the violation of isospin
symmetry (see Ref. [2] for a review).

The effect of isospin violation is significant in nucleon-
nucleon (NN) scattering lengths. That is because these scat-
tering lengths are the result of fine tuning between the range
and depth of the nuclear potential, and so small differences in
either can lead to appreciable shifts in the scattering lengths. In
a world of an isospin-symmetry-conserving interaction, both
the neutron-neutron (nn) and the proton-proton (pp) channel
are degenerate with the 1S0 neutron-proton (np, s) channel,
because for two like fermions in a relative S wave, Fermi
statistics allow for a spin-singlet, total spin J = 0 state only.
Hence, even relatively weak isospin-violating interactions
could have a significant effect on the nn−pp system.

The values of the proton-proton and neutron-proton scat-
tering lengths, aC

ppandanp,s , are quite well established (see
Table I). For charged particles, aC

pp is observable as the leading-
order (LO) parameter in a generalized effective-range expan-
sion that includes the effects of the nonzero Coulomb repulsion
in the asymptotic states. In contrast, pp phase shifts, and hence
the pp scattering length, obtained exclusively from the strong
part of the pp interaction retain a residual dependence on
the specific model for this short-range force; i.e., they are
dependent upon the renormalization scale and scheme [3–6].
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Experiment reveals the differences among aC
pp, anp,s , and

ann and thus that charge independence and charge symmetry
are both broken. Charge independence is associated with an
arbitrary rotation in isospin space while charge symmetry
is conserved if a rotation about π in isospin space leaves
observables invariant (see, e.g., [2]). Current data allow for
a relatively accurate extraction of np and pp scattering
lengths, compared to the nn parameter where the uncertainty
is about two orders of magnitude larger (see Table I). For
a recent, thorough review of the status of experiments see
Ref. [7]. Direct measurements are on the horizon [8], but
until now constraints on ann come from final-state inter-
actions. However, conflicting values for ann have resulted
from attempts to follow this avenue in different few-nucleon
reactions—indeed, conflicting values have resulted from
different experiments investigating final-state interactions
in n + d → n + n + p.

To extract ann accurately from this three-body deuteron-
breakup experiment, the outgoing particles should predom-
inantly be in a state of very low neutron-neutron relative
momentum. Furthermore, the proton’s effect on the detected
neutron pair should be minimal. This condition is satisfied for
a large separation of the scattered pair from the proton, which
remains at rest in the laboratory frame after the collision. This
takes place in the nn quasi-free scattering (QFS) kinematics.
The cross sections corresponding to this and the analogous
np-QFS configuration constitute the experimental input for the
subsequent extraction of ann. Currently, there are two data sets
from which an identical theoretical method extracts conflicting
values for ann. One setup records kinematical information of
one neutron and the proton [9,10], yielding ann = −16.1 ± 0.4
fm, while the other detects all three outgoing nucleons [11,12]
and produces ann = −18.7 ± 0.7 fm. The theoretical model
employs the CD-Bonn [13] NN potential and the charge-
independent TM [14] three-nucleon interaction. Recently, the
sensitivity of theoretical predictions for the nn QFS cross
section was investigated [15]. There it was shown that the
nn-QFS cross section has a stronger dependence on rnn relative
to changes in ann—after all, both experiments deal with small
yet nonzero nn energies, and so rnn would be expected to
play some role. The authors of Ref. [15] found values of
ann and rnn that plausibly fit both sets and would resolve the
discrepancy, albeit at the expense of introducing appreciable
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TABLE I. Data input for the LECs which specify the interaction of Eq. (3). The values were fitted nonperturbatively with the RGM and
include the Coulomb potential’s contribution. LEC sets corresponding to � = 400, 700, 800, and 1600 MeV were adopted. For each �, the
replacement anp,t ↔ B(d) yields an additional set of LECs.

Channel LECs Constraining observable

(np) 1S0 C1 anp,s = −23.748 ± 0.009 fm [42]

(np) 3S1 C2 anp,t = 5.4194 ± 0.002fm

B(d) = 2.224 575 ± 0.000 009 MeV [56]

(pp) 1S0 C1 + C
pp

S aC
pp = −7.8063 ± 0.0026 fm [41]

(npp) 2S1 C1 + C
pp

S , CS, CT , C3NI B(3He) = 7.718109 ± 0.000010 MeV

(nnp) 2S1 C1 + Cnn
S , CS, CT , C3NI B(t) = 8.481855 ± 0.000013 MeV

charge-symmetry breaking in the nucleon-nucleon effective
ranges.

In view of these complications another way to “measure”
ann would be of great interest. Here the effective field theory
without explicit pions, EFT(�π ), is used to show that the
difference of nn and pp scattering lengths, �(a) := ann −
aC

pp, is correlated with the trition-helium-3 binding-energy
difference, �(3) := B(t) − B(3He). This correlation has been
known for many years within the context of models of the
NN interaction. See, e.g., Refs. [16–20], and Ref. [21], which
contains a review of work up until 1990. However, in these
works various models, each of which produces a specific ann,
were used to compute �(3). The possibility of mapping out the
general relationship and using the result to constrain ann was
not explored. Here we develop the correlation between �(a)
and �(3) within a leading-order EFT( �π ) calculation, which
shows that this correlation stems solely from the existence
of large scattering lengths in the NN system. We give an
indication of how higher-order corrections can be expected
to impact our result, and hence derive a constraint on ann,
using the value of aC

pp given in Table I.
In general, for systems where the scattering length, a, is

much larger than the range of the interaction, R, an effective
field theory based on the scale separation R � |a| can be
used to derive model-independent results [22–27]. In nuclear
physics this is EFT( �π ), and it is an expansion in R/a, with a

given by the numbers in Table I. EFT( �π ) can be used to derive
“universal” results that rely only on the existence of large
scattering lengths. It has been used to compute triton [B(t)],
helium-4 [B(α)], and helium-6 binding energies [28–30]. At
leading order in the R/a expansion there are three parameters
in the EFT that then yield predictions for all other observables
in systems with A � 4: these can be taken to be the spin-
singlet and spin-triplet NN scattering lengths and the binding
energy of the three-nucleon system. At next-to-leading order
(NLO) in the R/a expansion the NN effective ranges enter
the problem, with all other low-energy NN parameters only
affecting answers beyond NLO [31–34]. This specifies the
general EFT prescription of fitting a minimal set of low-energy
constants (LECs) to observables in order to make predictions
for all other observables correlated to the input set.

In particular, EFT( �π )provides a map from an input set, e.g.,
the scattering length anp,t , to a correlated set, whose elements,
e.g., the deuteron binding energy B(d), are predicted with

known theoretical uncertainty. However, even if this set of
correlations is well mapped out in the A-body system there
appears to be no rigorous way to determine a priori whether
(A + 1)-body observables will also be correlated with the
A-body input quantities. For example, the triton binding
energy B(t) is not correlated with the np singlet and triplet
scattering lengths {anp,s, anp,t } [28], while the binding energy
of the α particle is correlated with {anp,s, anp,t , B(t)} [29].
For B(t), a strong sensitivity to short-distance structure—
parametrized, for instance, by a momentum-space cutoff �—is
found, while the dependence of B(α) on � is parametrically
small once the value of B(t) is fixed. This latter phenomenon,
known as the Tjon line [35], allows for a prediction of the
α-particle binding energy once that of the triton is known.

However, once it has been established that a higher-A
observable is a member of the set of correlated quantities,
we may use that observable to constrain properties of smaller
subsystems. This prescription is used here, where we consider
the binding energy difference �(3), which would be zero
if isospin were an exact symmetry of nature. We therefore
exploit another feature of the EFT, namely the absence of a
qualitative hierarchy among low-energy observables in their
role as input to fix the LECs. Thus, our interaction will
take {anp,s, B(d), aC

pp, B(t), B(3He)} (A � 3) as input, and
we will obtain the scattering length ann (A = 2) as output.
Analogously, the Tjon line could be used to predict a range of
B(t) values which are consistent with B(α).

Our calculation of �(3) considers isospin violation from
Coulomb interactions and from the difference in NN scattering
lengths. Experimentally, �(3) is known to be 764 keV.1

Note that we do not claim that our leading-order EFT(�π )
calculation of the individual trinucleon binding energies is this
accurate, but we are examining a binding-energy difference
that would be zero in the symmetry limit, and so a leading-
order calculation of the difference already provides a useful
constraint on |ann − aC

pp|. In pursuing such a calculation we
are, though, implicitly assuming that any isospin-violating
component of the three-nucleon force in EFT( �π ) enters only
at subleading orders. We will present evidence that supports
this assumption.

1Numerical values for physical binding energies are taken as refer-
enced in the TUNL database (http://www.tunl.duke.edu/NuclData/).
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The history of analyses of the impact of charge-
independence breaking (CIB) and charge-symmetry break-
ing (CSB) on ann − aC

pp and the trinucleon binding-energy
splitting is a rich one (see, e.g., [21] for a review of most
of the investigations predating the advent of EFT meth-
ods in few-nucleon theory). Today, modern high-precision
nucleon-nucleon force models predict a trinucleon binding-
energy difference, �(3), in good agreement with experiment:
�(3, AV18 + UIX) = 756(1) keV [19] and �(3, AV18) =
762(9) keV [20]. Even though the individual binding energies
of the triton and helium-3 receive significant contributions
from a three-nucleon interaction (TNI) in these models, �(3)
is driven by the difference in the nucleon-nucleon scattering
lengths—at least once electromagnetic effects are properly
accounted for. Isospin-violating TNIs were considered in the
framework of chiral perturbation theory in Refs. [36,37],
and the leading-order isospin-violating TNI was found to
contribute approximately 5 keV to �(3) [36].

A recent LO analysis of �(3) in EFT( �π ) included the
Coulomb interaction nonperturbatively. With ann and aC

pp

as input, a value of �(3) = 0.82 MeV was predicted us-
ing Faddeev methods and the dibaryon formalism [38]. In
Ref. [39], the authors applied EFT(�π ) at LO, NLO, and next-
to-next-to-leading order (N2LO) to predict proton-deuteron
scattering- and bound-state observables. Their comprehensive
analysis demonstrates the usefulness of the EFT prescription
in low-energy pd scattering and in the helium-3 bound state,
since an order-by-order decrease of the theoretical uncertainty
is obtained. In Ref. [39] too, ann and aC

pp were used to fit the
low-energy constants of the EFT. Neither of these EFT( �π )
analyses included an isospin-violating TNI.

The paper continues with an introduction of EFT(�π ) as the
theory underlying the interaction potential. Next, a section on
the numerical method of a refined version of the resonating-
group method (RGM), used to solve the few-body problem,
precedes the presentation of the results. The results section
includes subsections discussing the uncertainty estimates due
to suppressed higher-order long- and short-range interactions
and the limiting (hypothetical) case of ann → aC

pp. We then
offer our conclusions, before assessing the numerical stability
of the refined RGM in an appendix.

II. INPUT: EFT( �π ) WITH LEADING-ORDER COULOMB
INTERACTIONS AND ISOSPIN VIOLATION

The effective field theory without explicit pions [EFT( �π )]
at leading order in the expansion parameter Q/M is defined
by the Lagrangian (derived from the pionful theory of [40])

L(CI) = N †

(
i∂0 +

�∇2

2mN

)
N − CS

2
(N †N )(N †N )

− CT

2
(N †σiN ) · (N †σiN )

− C3NI

2
(N †N )(N †τiN )(N †τiN ), (1)

where the six-nucleon contact term renormalizes the S = 1/2
nucleon-deuteron channel (see, e.g., [28]). The (iso)spin ma-
trices (�τ )�σ , with indices specifying the Cartesian component,

project onto spin singlet and triplet with the respective low-
energy constant, CS,T . The two-nucleon amplitude derived
from this Lagrange density matches the effective range expan-
sion. The description is appropriate if the typical momentum
exchange Q between interacting nucleons of mass mN is small
relative to the high-energy scale M ≈ mπ . For Q � mπ , this
theory is not applicable as it uses the neutron and proton
Pauli spinors N = (|p, s = 1/2〉 , |n, s = 1/2〉) as degrees of
freedom—but nothing else. The interaction in Eq. (1) is charge
independent and does not discriminate among neutron-neutron
(nn), proton-proton (pp), and proton-neutron (pn) pairs in the
1S0 NN channel. For a comprehensive analysis of systems
including at least two charged protons at low energies, the
effect of the electromagnetic force cannot be neglected. This
is apparent in the measured difference between the pp and
np 1S0 scattering lengths, aC

pp = −7.8063 ± 0.0026 fm [41]
compared to anp,s = −23.748 ± 0.009 fm [42], where Eq. (1)
yields aC

pp = anp,s .
Electromagnetic interactions are considered canonically by

promoting the Lagrangian [Eq. (1)] to a local gauge theory,
invariant under local U(1) transformations. Using Coulomb
gauge �∇ · �A = 0, the contributions of the gauge fields Aμ

to the pp amplitude can be split into a part which scales
as α/Q2, resulting from the part of the covariant derivative
proportional to N †eA0N (“Coulomb photons”), and others
which are either suppressed by powers of Q/M or at least
m−2

N (“transverse photons”). Here, this estimate justifies the
usage of the Coulomb potential resulting from the “exchange”
of one Coulomb photon to account for the electromagnetic
interaction at low energies.

Without CIB mechanisms stemming from a broken flavor
SU(2) symmetry in the u-d quark sector, i.e., mu �= md , the np

and nn 1S0 channels would still be degenerate. To refine the
analysis, the lowest-order contribution from this asymmetry
is included. The dominating terms are expected to be of
lowest-mass dimension while a dependence on the direction of
the isovector is now admissible in order to distinguish nn, pp,
and np vertices. In a hierarchy of isospin-violating interactions
[43,44], those contact terms, which are expected to scale as
εQ0 with ε = md−mu

md+mu
≈ 1

3 , should be subleading compared
to the Coulomb potential. We include both the Coulomb
potential and these isospin-violating short-range operators in
our calculation, allowing us to formulate a model-independent
assessment of which ann values are consistent with the
experimental trinucleon binding energy splitting �(3), the
singlet(triplet) np S-wave scattering lengths anp,s(t), and aC

pp.
The subsequent analysis is therefore based on the La-

grangian (1), including pieces obtained by the minimal substi-
tution ∂0 → ∂0 + ieA0, combined with explicit CSB terms:

L(CSB) = −Cnn
S

2
(n†n)(n†n) − C

pp

S

2
(p†p)(p†p). (2)

The tree-level diagrams corresponding to the interactions in
Eq. (2) define the isospin-violating part of the potential

V̂ (CSB) =
A∑

i<j

{(
e2

4|�r(i) − �r(j )| + C
pp

S f�(�rij )

)
× [1 + τ3(i)][1 + τ3(j )]
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+Cnn
S [1 − τ3(i)][1 − τ3(j )]f�(�rij )

}

× 1

4
[1 − �σ (i) · �σ (j )] (3)

in coordinate representation with f�(�rij ) := ( �3

8π3/2 )e− �2

4 �r2
ij .

Meanwhile, the isospin-conserving piece of the potential,
which stems from Eq. (1), is

V̂ (CI) =
A∑

i<j

f�(�rij )[CS + CT �σ (i) · �σ (j )]

+
A∑

i<j<k

cyclic

f�(�rij ) · f�(�rjk) C3NI �τi · �τj . (4)

These operators V̂ (CSB) and V̂ (CI) are used in the Schrödinger
equation and originate from the momentum-independent
vertices via a Gaussian regulator of the nonseparable form
f�( �p, �p′) = e−( �p− �p′)2/�2

, which Fourier transforms into a
Gaussian depending on the relative coordinate. From this
nonrelativistic equation of motion, variational approximations
to the bound and scattering states of the two- and three-nucleon
systems are obtained. In solving the equation of motion, the
potential is iterated.

The iteration of the unregulated (� → ∞) interaction
∼ C2 := CS + CT in the 3S1 channel yields a np total isospin
T = 0 amplitude [45]:

T T =0,np(p) =
[

1

C2
−

∫
d3q

(2π )3

1

E + iε − q2/mN

]−1

, (5)

where p = √
mNE is the relative momentum of the np pair in

the c.m. frame and ε is a positive infinitesimal. C2 can then
be chosen in order to obtain the real bound state (deuteron) in
that channel:

T T =0,np(p) = 4π

mN

1

γ + ip
, (6)

where we have chosen to ignore terms which are suppressed by
p2/� in the denominator, although these pieces will be present
in the denominator for any finite �, and will thus produce a
nonzero, positive [46], and cutoff-dependent effective range.
The binding momentum is denoted here as γ = √

mNB(d).
Similarly, the iteration of either C1 := CS − 3CT or C1 +

Cnn
S produces the virtual bound states in the np and nn systems:

T T =1,np/nn(p) = 4π

mN

1
1

anp/nn
+ ip

, (7)

under the same conditions as in Eq. (6). The isospin-violating
terms account for the difference in the scattering length of nn,
relative to np. Without the Cnn

S counterterm, the spin-singlet
nn and np channel would be degenerate: ann = anp,s .

The case in the proton channel is different, due to the
presence of the Coulomb interaction there. The computation
of pp scattering was carried out to LO in EFT( �π ) for S-wave
NN scattering in Refs. [4,47]. Our presentation of pp scattering
rests on that treatment. The final result is [48]

T = TNC + TCoul, (8)

with TCoul the amplitude for scattering due to the Coulomb
potential alone. TNC encodes the purely strong scattering and
the Coulomb-nuclear interference:

TNC = C2
η exp[2iσ0(η)]

1
1

C1+C
pp

S

− J0(p)
. (9)

Here C2
η is the Sommerfeld factor:

C2
η = 2πη

e2πη − 1
, (10)

and the Coulomb parameter η := mNα

2p
, with σl(η) = arg�(l +

1 + iη) (where � is the Euler gamma function). In Eq. (9)
J0(p) is the Coulomb-modified bubble, depicted in Fig. 1. If
computed in power-law divergence subtraction (PDS) [23], at
a renormalization scale μ, its finite part is

J finite
0 (p) = −αm2

N

4π

[
H (η) − ln

(
μ

√
π

αmN

)
− 1 + 3

2
CE

]

−μmN

4π
, (11)

once divergences in D = 4 and D = 3 have been dropped. In
Eq. (11), the function

H (η) = ψ(iη) + 1

2iη
− ln(iη), (12)

with ψ the derivative of the Euler gamma function, Euler’s
constant CE = 0.5772(. . .), and α = e2/4π (see also [49–52]).

The denominator in Eq. (9) can be matched to the modified
effective-range expansion:

TNC = −C2
η

4π

mN

exp(2iσ0)

− 1
aC

pp
+ 1

2 r0p2 − αmNH (η)
. (13)

(This expression for T encodes the fact that the spherical
Bessel functions, the asymptotic solutions for the np/nn

system, are now replaced by Coulomb functions [48].) When
this matching is performed at leading order (r0 = 0) we find

= + + + . . .

FIG. 1. A diagrammatic definition of the Coulomb bubble J0. The solid lines are nucleons, and the dashed lines represent exchanges of
static Coulomb photons. The shaded blob is the amplitude for a pair of protons interacting via a zero-range contact interaction (gray circular
vertex), propagating in the static Coulomb field, and finally interacting strongly again at zero separation.
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that

1

C1 + C
pp

S

= mN

4πaC
pp

+ αm2
N

4π

[
ln

(
μ

√
π

αmN

)
+ 1 − 3

2
CE

]

−μmN

4π
. (14)

To produce the experimentally observed aC
pp the combination

C1 + C
pp

S is fitted to the value listed in Table I. Strictly
speaking, the aC

pp listed there is extracted from data using
an effective-range expansion that considers a refined version
of the Coulomb potential and vacuum-polarization effects
[41]. However, here we have a long-range part of the pp

potential consisting only of the Coulomb interaction. The
uncertainty due to higher-order long-range interaction effects,
such as vacuum polarization, is included below in the overall
theoretical error estimate.

Regardless of this detail though, we see that aC
pp can be

obtained from the pp amplitude in a manner that is independent
of the renormalization scale μ. In contrast, attempting to
“switch off” Coulomb interactions and compute the effect
obtained solely from the strong interaction, C1 + C

pp

S , yields a
result that, within PDS, is dependent upon the renormalization
scale μ. C1 + C

pp

S contains a ln μ piece, and there is no
corresponding ln μ piece of the Coulomb-less loop function
to cancel that. Our calculation is not done using PDS, but
instead with a Gaussian regulator, yielding approximately a
ln � dependence of the C

pp

S that reproduces aC
pp (the ln �

dependence is exact in the case of a sharp momentum cutoff
[4]). But, in any case, this cutoff- or renormalization-scale
dependence renders quoting a “strong pp scattering length”
a questionable exercise [5,6]—at least in the absence of an
agreed upon choice for the regularization and renormalization
scheme and scale. Therefore, in what follows we quote all
results in terms of aC

pp, which is a physical observable, and as
such is independent of these choices.

In practice, the equation

(
A∑

i=1

�∇2
i

2mN
+ V̂Coulomb + V̂

(
CS,T , C

nn,pp

S , C3NI
))|ψ〉= E|ψ〉

(15)

is solved for two-body scattering (E > 0, A = 2) and three-
body bound states (E < 0, A = 3; see Sec. III below). In total,
five LECs are fitted to low-energy data according to Table I.
Again, it is the sum C1 + Cnn

S that controls the nn channel, not
just Cnn

S !
Isospin-violating interactions at the quark level imply fur-

thermore a mass difference between the neutron and the proton.
This consequence is a higher-order effect in our counting,
as it is not enhanced by the fine tuning in the NN system.
Hence, it is not accounted for in the calculation below, where
throughout mn = mp =: mN = 1

2 (938.211 + 939.505)MeV is
used. In Sec. IV B, the contribution of this mass difference to
�(3) is included in the error assessment.

III. THE RESONATING-GROUP METHOD

For the solution of the two- and three-body problem
the variational resonating-group method is employed. In the
following, the RGM is introduced by the specific example
of the variational space used for the triton calculation of this
work.

The ground state is expanded in two different variational
bases which differ in the angular-momentum coupling scheme
between the spin- and coordinate-space components of the
wave function. First, the ansatz for the three-body state in the
“LSJ scheme” (total angular momentum J and parity π ), used
here in Jacobi-coordinate space ( �ρ1, �ρ2), reads

|ψ( �ρ1, �ρ2), J = 1/2, π = +〉LS = f1( �ρ1, �ρ2)|d-n〉
+f2( �ρ1, �ρ2)|d−-n〉 + f3( �ρ1, �ρ2)|(nn)-p〉,

(16)

namely, a linear combination of all possible two-fragment
substructures within the triton: deuteron (d), spin-singlet
deuteron (d−), and dineutron (nn). Thus, the coupling schemes
of the spin (S) and isospin (T ) angular momenta are fixed, e.g.,

|d − n〉 = [[|n,ms1〉 ⊗ |p,ms2〉]1 ⊗ |n,ms3〉]
1
2mS

· [[∣∣n,mt1 = − 1
2

〉 ⊗ ∣∣p,mt2 = 1
2

〉]
⊗∣∣n,mt3 = − 1

2

〉] 1
2 mT

. (17)

The square brackets are shorthand for a basis where the
irreducible representations are labeled by quantum numbers
corresponding to (S + S ′)2 for two general tensor oper-
ators with spherical components m(m′), [Sm ⊗ S ′m′

]JM =∑
m,m′ (SmS ′m′|JM)SmS ′m′

(see, e.g., [53]). The coordinate-
space wave functions fi are expanded in a Gaussian basis of
dimension Di as

fi =
Di∑

j=1

cij exp
(− γ

ij

1 �ρ 2
1 − γ

ij

2 �ρ 2
2

) · [Y0( �ρ1) ⊗ Y0( �ρ2)]L=0.

(18)

Here the two solid harmonics [53] are both chosen to
correspond to a relative angular momentum of zero. As in
the Faddeev approach of [28,38,39] with LO EFT( �π ), the
dynamics in the variable �ρ1 are affected by S-wave NN
interactions only (i.e., the �ρ1 coordinate parameterizes the two-
nucleon fragment, for instance, the relative coordinate between
a proton and a neutron in a deuteron-neutron configuration).
As the lowest-lying bound state will occur for an angular
momentum on the second coordinate, e.g., between the center
of mass of a deuteron cluster and the remaining neutron, which
is zero as well, the total orbital angular momentum is also
zero (L = 0). The impact of higher angular momenta on the
solution for the 3N bound state is assessed in the Appendix.

The relative size of the variational parameters cij then
determines the overlap of the corresponding configuration with
the triton, and hence the significance of a certain combination
of width parameters γ

ij

1,2 for the grouping i. The triton ground
state, for example, is found to have the largest overlap with
the d-n grouping. To this configuration, parameters γ1 that
resemble the spatial extent of the deuteron and γ2 that place
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the neutron at a farther distance contribute most. For the other
two groupings, i = 2, 3, the two-body fragment is unbound.
As a consequence, basis vectors with smaller widths γ1, i.e.,
broader spatial extent, become important.

In the basis (16), the individual spin and orbital angular
momenta are coupled separately to their total S and L before
they combine to total J . This coupling scheme is different from
the one used in [39]. The RGM ansatz used for two-fragment
scattering resembles that calculation:∣∣ψ( �ρ1, �ρ2), J = 1/2, π = +〉

ch = [
f1,lrel ⊗ [|d〉 ⊗ |n〉]Sch

]J

+[
f2,lrel ⊗ [|d−〉 ⊗ |n〉]Sch

]J
, (19)

with fi,lrel = ∑Dr

j=1 cij e
−γ 2

ij �ρ2
2Ylrel ( �ρ2) and a two-fragment wave

function determined within the same framework. Now, the
deuteron’s J = 1 is combined with the neutron to a channel
spin Sch, which couples to the relative orbital angular mo-

mentum lrel
here= 0 to the total J . With the two-fragment wave

function fixed, the variational parameters cij determine the
relative importance of the components and the expansion of
the coordinate-space wave function of the third particle relative
to the center of mass of the pair. This resembles the usage
of the various dibaryon propagators �

ij (AB)
d(t) for the deuteron

(1S0) channel (see [28,39]) in the Faddeev approach and the
corresponding projection to deuteron-neutron (for example)
relative angular momentum zero. The expansion parameters
cij of the triton in both the LS and the channel basis are
obtained by solving the generalized eigenvalue problem for
a Hamiltonian incorporating the potential of Eq. (3), i.e.,
Eq. (15).

IV. RESULTS

Here, to obtain a result for ann different from the values
of the other two-nucleon scattering lengths, the triton binding
energy B(t) is used as input for Cnn

S . The triton constitutes
the next larger system where an interaction between two
neutrons is observable. If there are no additional three-nucleon
operators which affect low-energy modes and break isospin
symmetry then B(t) and ann are correlated, and therefore
�(3) is correlated with �(a). An interaction given by Eq. (3)
with B(t) as input for Cnn

S will then predict ann within our
uncertainty bounds.

The results presented in Fig. 2 are RGM solutions to the
Schrödinger equation with an interaction given in Eq. (3) and
LECs constrained by the conditions defined in Table I. The
correlation as shown there is obtained by a variation of Cnn

S .
The predictions for ann of four interactions, each containing
different short-distance physics (see below), inferred from
the intersection of the computed correlation line with the
experimental value for �(3) := B(t) − B(3He), suggest

lim
�→∞

ann(�) ≈ −20.8 fm. (20)

An assessment of whether the chosen set of input quantities
and leading-order calculation are such that this prediction
discriminates between the two conflicting measurements of
ann: ann = −18.7 ± 0.7 fm [11,12] and ann = −16.1 ± 0.4 fm
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FIG. 2. Correlation between the trinucleon-binding-energy dif-
ference B(t) − B(3He) and the nn and pp scattering lengths at LO in
EFT( �π ). Correlation lines correspond to regulator values of 400 MeV,
800 MeV, and 1.6 GeV with B(d) as input. For � = 700 MeV, the
correlations overlap with the displayed lines and are not shown.

[9,10] occupies much of the rest of this section. If both
data points are consistent with the LO prediction (20) within
the uncertainty of that calculation, a higher-order analysis is
needed before any conclusion can be drawn. That theoretical
uncertainty results from two expansions and their respective
truncation. The error from expanding the wave function in a
finite-dimensional variational space (see above) is discussed in
the Appendix and is found to be ±1.5 keV there. In Secs. IV A
and IV B the effect of omitted higher-order interactions in the
expansion of the Lagrangian shall be analyzed. The additional
contributions result from the broken isospin symmetry of the
underlying theory in both the strong and the electromagnetic
sector. The omitted effects in the EFT are divided here
into short-range parts, which all occur in the strong part of
the charge-symmetry-breaking Hamiltonian, and long-range
effects, the most important of which are electromagnetic
interactions beyond Coulomb repulsion and the impact of the
neutron-proton mass difference on �(3).

A. Theoretical uncertainty I (short-range)

In this section the effect of omitted higher-order NN
operators in the Lagrangian which correspond to strong
interactions will be assessed. These operators must violate
charge symmetry, or they will not contribute to �(3). They
become relevant for modes with momenta of order mπ .
In this bound-state calculation these high-energy modes
can only affect observables through loops. Their effects
are assessed here in two ways: first, by a change in the
regulator parameter �; specifically, � = 400, 700, 800, and
1600 MeV and thereby four different short-range potentials
are used; second, by a change from anp,t to B(d) as input
for C2, which demonstrates how imposing renormalization
conditions at different characteristic momenta changes the
output predictions.
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The LEC values corresponding to the (cases � =
400, 700, 800, and 1600 MeV with either anp,t or B(d) as
input) are different because each set represents a different
model for the short-distance part of the interaction. The
substitution anp,t → B(d) did not result in a significant shift of
the correlation line. All LEC sets of reproduce, by construction,
the same long-distance behavior, as given by the specific
input data, within higher-order uncertainty. The difference in
predictions derived from these potentials is thus the uncertainty
due to permitted variations in the short-distance physics. This
sets a lower bound for the theoretical uncertainty.

Our assumption that three-nucleon forces do not contribute
to B(t) − B(3He) at leading order is supported by the absence
of any significant cutoff variation in our result for this observ-
able. This cutoff dependence is quantified by the width of the
correlation band shown in Fig. 2. Naive dimensional analysis
suggests that the three-nucleon contribution to this binding-
energy difference should be less than that of CSB two-nucleon
operators, and the results found here do nothing to contradict
that view. Similar conclusions have recently been reached by
other authors [39]. Of course, naive dimensional analysis is
strongly violated in EFT( �π ) in the isospin-symmetric sector,
with the TNI being of leading order there. Thus a power
counting for isospin-violating operators in EFT(�π ), e.g., along
the lines laid out for subleading isospin-symmetric forces in
Ref. [54,55], remains an interesting open problem.

The following brief discussion explains the choice of
� = 1600 MeV as an upper bound for the cutoff. � is not
increased further because of the corresponding increase in
the unrenormalized three-nucleon binding energy. A diverging
three-body ground-state energy is the result of a two-body
interaction whose range is decreased and strength increased
to fit anp,s and anp,t (Thomas effect). The discrepancy in
the binding energy with and without a three-nucleon force—
introduced to properly renormalize one three-nucleon bound-
state energy to that of the triton—increases as a consequence,
with more bound states entering the spectrum at specific cutoff
values. In Fig. 3 the relevant part of the three-nucleon spectrum
that is obtained without a TNI is shown as a function of the
regulator. The NN interaction fits C1,2 to the singlet and triplet
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FIG. 3. The two lowest eigenvalues of the nnp system of a
Hamiltonian with the two-body interaction fitted to anp,s and anp,t

without a three-body term, as a function of the regulator width �.

np scattering lengths for each �, and a new “Efimov” trimer is
found to enter around � = 750 MeV. Either the three-body
force has to then be strong enough to lift a very deeply
bound three-body state (solid gray line in Fig. 3) to the
experimental triton energy while unbinding the other states,
or it must pull the shallowest of those states (dashed gray
line in Fig. 3) to the triton level. In either case the variational
basis must be refined, either to expand states of considerably
larger binding energy or to treat excited states accurately.
Convergence for either case requires a larger RGM space
compared to the one where only one three-body state is
bound, and bound with an energy already of the same order of
magnitude as that of the triton.

For the three representative cutoff values used to obtain
Fig. 2, the three-body parameter was always adjusted to elevate
the ground state to the triton level, because this repulsive force
pushes all the shallow states that are not typically resolved by
the RGM basis above the d−n threshold. (In the qualitative
analysis of the previous paragraph, whose results were shown
in Fig. 3, a small space was chosen that expands only one of
the shallow states, EV2 in Fig. 3.) The long-distance properties
of the three-body state are correctly reproduced by this basis,
as witnessed by the fact that the d−n threshold approaches
its predicted value of B(d) = 1/(a2

np,tmN) ≈ 1.41 MeV for
� → ∞. (The value here is the correct one, given that anp,t

is taken as input. Slightly different thresholds will be found
at any finite �, since in that case higher-order terms in the
effective-range expansion are not zero.)

Bearing this limitation in mind, one sees that the graph in
Fig. 2 allows the theoretical uncertainty at this order to be
estimated as the maximal ann difference at the experimental
binding-energy splitting:

δshort = 1
2 |ann(800 MeV) − ann(1.6 GeV)| ≈ 2 fm. (21)

Accordingly, we identify the mean value of all regulator-
dependent ann values with the EFT(�π ) prediction. We stress
that this choice is somewhat arbitrary and does not coincide
with the choice made in [30] for the average charge radius
of the triton. For that radius, the EFT( �π ) prediction was
taken to be an extremal value calculated for the smallest
employed cutoff. That choice was made because another LO
calculation predicting the triton charge radius [57] showed
that the variation of cutoff and input data in [30] was not
reflecting the total LO uncertainty. In fact, both here and in [30]
we take the mean of all available EFT( �π ) predictions for the
observable of interest (here, ann and in [30] the triton charge
radius), regardless of the numerical method used to obtain
them. The LO uncertainty is then given as half the difference
between the minimum and maximum value predicted for that
observable. This seems a sensible general prescription for
defining central values and uncertainties due to short-distance
physics in EFT( �π ) calculations.

Here, only the ann = −18.7 fm data point lies within this
uncertainty range. This result, however, does not yet allow for
the conclusion that the smaller datum is inconsistent with the
input data, {anp,s, B(d), B(3He), aC

pp}. Only if the uncertainty
due to long-range contributions does not add to δshort an amount
that would increase the total uncertainty to eventually include
the second data point can such a discrimination be made.
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B. Theoretical uncertainty II (long-range)

As a cutoff variation assesses only the dependence on short-
distance structure, an estimate of the theoretical uncertainty
is incomplete without considering effects sensitive to low-
momentum modes. Above it was argued why the long-distance
part of the interaction can be approximated by the Coulomb
potential. It is shown here that uncertainties from thereby
omitted higher-order interactions, which are not assessed
by the � variation considered in the previous section, are
sufficiently small to render only one experimental data point
for ann consistent with the input observables.

For this purpose, �(a) is treated as a function of �(3), i.e.,
an interpolation of the dependence whose graph is shown in
Fig. 2 is inverted. Furthermore, the assumption that higher-
order interactions will yield a correlation line which might
be shifted but is identical in shape compared to the ones
shown is made. Then, the error in �(a) introduced by the
suppressed terms that contribute to �(3) a correction �c(3)
can be approximated via

δlong ≈ ∂�(a) (�(3))

∂ [�(3)]

∣∣∣∣
�(3)=0.756 MeV

· �c(3). (22)

The two long-distance effects we must consider are the
following:

(1) The difference in the nucleon kinetic energy due to
nonequal neutron and proton masses. Parametrically we
estimate the size of this effect to be〈

p2

2mN

− p2

2mn

〉
≈ (mn − mp)

〈
p2

2m2
N

〉
. (23)

Taking 〈 p2

2mp
〉 ∼ B(t) we find

�c(3; mn − mp) ∼ (mn − mp)
B(t)

mN

∼ 10 keV. (24)

This is in good agreement with the value from Ref. [36],
�c(3; mn − mp) = 14 keV.

(2) The electromagnetic interaction between nucleon magnetic
moments, between the currents associated with moving
protons, and due to vacuum polarization. Those effects
were calculated numerically to increase the mass difference
by less than 30 keV (see, e.g., [58] where the various
contributions were calculated with the AV18/IL2 model).
Furthermore, the corrections to the Coulomb potential due
to the proton’s finite size have to be accounted for. In
fact, these turn out to be the largest of the higher-order
electromagnetic effects, since they modify the Coulomb
energy by a fractional amount ∼r2

p/R2, where R is
the typical distance scale which dominates the Coulomb
energy. Using rp ≈ 0.85 fm and R ≈ 2.5 fm we might
expect up to a 10% effect. Numerical evaluations [18]
however suggest a somewhat smaller number, reducing the
mass difference by about 33 keV. Importantly, the finite
proton size decreases the impact of the electromagnetic
interaction on the binding energy [thus increasing B(3He)]
while the other effects listed above increase it [and so
decrease B(3He)]. Thus, each class of correction could
individually induce an error of order 30 keV in our LO

binding energy calculation, but they work in opposite
directions, such that we can confidently say that their
combined effect will not produce more than a 28-keV shift
in �(3).

Combining these two higher-order effects linearly with the
2-keV RGM uncertainty (see the Appendix) we find a potential
higher-order correction due to long-distance effects which
could be as large as �c(3) = 44 keV. Employing Eq. (22)
produces an uncertainty of

δlong = 2.1 fm. (25)

The combined theoretical uncertainty in �(a) due to higher-
order long- and short-range interactions is then, conservatively,
taken to be

δLO = δlong + δshort = 4.1 fm. (26)

The central value for ann between the maximum adopted at
� → ∞ [see Eq. (20)] and the minimal prediction at � =
800 MeV is −22.9 fm. EFT( �π ) thus yields, at leading order,
a neutron-neutron scattering length of

ann [EFT( �π )] = −22.9 ± 4.1 fm. (27)

Hence, the datum ann = −18.7 ± 0.7 fm is consistent with the
input data set {anp,s, a

C
pp, B(d, t,3 He)} while the other datum

ann = −16.1 ± 0.4 fm is inconsistent.

C. The limit ann → aC
pp

The interactions which generate ann and aC
pp are different:

the short-range part is of the same structure but different in
strength. In the nn case it is solely responsible for ann, whereas,
for pp, it complements the Coulomb force to yield aC

pp. It is
therefore not obvious that, for Cnn

S such that ann ≈ aC
pp, the

triton will be bound by the same amount as 3He is. Calculation
at �(a) = 0 (i.e., ann = aC

pp) results in

�(3) = −0.11 ± 0.1 MeV, (28)

i.e., two three-body systems of equal binding energy. The
bound states result from the same short-range np interaction,
but a purely short-range force between the like pair in the
triton, and a combination of a similar short-range counter
term plus the Coulomb interaction in helium-3. The resultant
approximate degeneracy in the binding energies is a reflection
of the fairly small characteristic momenta. By comparing the
nn and pp phase shifts resulting from interactions with �(a) ≈
0 at � = 1.6 GeV (Fig. 4), the nn interaction is found to be
less repulsive than the pp one below Ec.m. ≈ 0.65 MeV, equal
around 0.65 MeV, and more repulsive for Ec.m. � 0.65 MeV.
If bound states receive significant contributions from modes
with kc.m. �

√
mN(2 MeV) =: pbalance ≈ 45 MeV, then the

difference in Vnn and Vpp is naively expected to balance,
yielding approximately the same binding energies, as we
see in Eq. (28), since ann ≈ aC

pp produces �(3) ≈ 0. In fact,
this analysis implies a momentum distribution among the
nucleons within the triton bound state which is dominated
by momenta markedly smaller than the conventional estimate:
ptyp := √

2 · 2/3mN · B(t) ≈ 100 MeV—at least as far as the
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momenta pertinent to the binding-energy difference �(3) are
concerned.

Furthermore, the reasoning implies that more deeply bound
mirror nuclei will exhibit a larger difference in their binding
energies, even though the respective two-body scattering
lengths are equal. In a world where not only �(a) = 0 but
additionally B(3He) � B(3He, exp), the uncharged mirror
image would not be as deeply bound, B(t) � B(3He), as a
result of the stronger repulsion of the uncharged “neutrons” as
compared to protons at relative momenta greater than about
20 MeV.

This hypothesis is confirmed by the results of a RGM
calculation (Fig. 5). A smooth change of the three-nucleon pa-
rameter C3NI increases B(3) but leaves the two-nucleon sector
invariant, i.e., ann = aC

pp ≈ −7.8 fm and anp,s ≈ −23.75 fm,
and the deuteron at its physical binding energy. The result is
an increasingly less bound uncharged system relative to its
charged mirror sibling, as conjectured above. In more detail,
the triton is found to be not as deeply bound (intersection of the
dashed line with the gray band in Fig. 5) as in our world (black
band in Fig. 5) for a TNI producing the physical helium-3
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FIG. 5. Difference between binding energies for the mirror nuclei
t and 3He as a function of the 3He binding energy at ann = aC

pp .

binding energy. This is a consequence of the more repulsive
nn force at low momenta implied by �(a) = 0. Adjusting
the TNI to yield a more deeply bound helium-3 widens the
gap between its ground state and the p−d breakup threshold
because B(d) remains constant. The triton binding energy also
increases in this procedure and is found to be larger than
B(3He) for B(3He) ≈ 12 MeV [�(3) > 0 as shown by dashed
line in Fig. 5], becoming increasingly less bound relative to
B(3He) as B(3He) increases further. This behavior of B(3He)
is in accord with the qualitative discussion above.

For systems with ptyp much smaller than pbalance the
opposite behavior is expected. If we assume, for the moment,
that ann = aC

pp, the above reasoning can be used to shed some
light on the situation in the six-body system. In 6He, the two
halo neutrons are very weakly bound together with an α core.
Of course, it is possible that 6He would not be bound if ann

were reduced to agree with aC
pp. But, even if 6He were bound

for this smaller ann, the momenta in that bound state are low
enough that the mirror nucleus 6Be with two “halo” protons
will not be bound. The pp interaction is more repulsive for
those low momenta—due to Coulomb effects. An explicit
calculation at an order in EFT( �π ) which generates 6He as
a shallow bound state is required to validate this hypothesis.
At present, a leading-order analysis cannot reach this level of
accuracy.

V. CONCLUSION

The Coulomb energy 〈VC〉 of the three-nucleon system can
be computed reliably with EFT( �π ) wave functions. In Ref. [30]
an NLO EFT( �π ) computation gave a value of 660 ± 30 keV
for 〈VC〉. In this work we have considered, in addition to
Coulomb effects, the impact of the charge-symmetry-breaking
NN operators which produce different (strong) pp and nn

scattering lengths. We carried out the LO EFT(�π ) calculation
for three different cutoffs � = 400, 800, and 1600 MeV
using the modified renormalization-group method. We found
a robust correlation between B(t) − B(3He) and the difference
of scattering lengths �(a) := ann − aC

pp. The fact that this
correlation is largely independent of the short-distance physics
in the NN system indicates that three-nucleon operators do
not contribute to this isospin-violating difference of binding
energies at leading order.

From the correlation and the experimental values of the
trinucleon binding energy difference and aC

pp we infer

ann = −22.9 ± 4.1 fm. (29)

The uncertainty here has been assessed by adding linearly es-
timates of the impact of higher-order, short-distance operators
in the NN system and of neglected long-range effects (e.g.,
magnetic-moment interactions, as well as the nucleon mass
difference). Short- and long-distance effects of higher order
appear to contribute roughly equal amounts to the error bar.

The result (29) is due to operators that are first order in
isospin breaking, and so first-order perturbation theory with
these operators, evaluated between charge-symmetric triton
wave functions, could also have been employed (cf. Ref. [39]).
Here we performed an assessment of isospin violation in the
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Hamiltonian in which the relevant interactions were treated
nonperturbatively. Such a calculation is more straightforward
technically within the RGM. At the level of accuracy of our
calculation, the only operator for which this nonperturbative-
perturbative distinction might make a difference would be the
pp Coulomb potential. But, even there, we anticipate that the
second-order piece of the 3He Coulomb energy is of the same
size as other effects neglected in this calculation.

The constraint on the neutron-neutron scattering length
that was obtained here is consistent with the experimen-
tal numbers ann = −18.7 ± 0.7 fm (from neutron-deuteron
breakup [11,12]) and ann = −18.6 ± 0.4 fm (from the π−d

capture reaction [60,61]). It disagrees at the 1σ level with the
value for ann extracted from nd breakup by Huhn et al. [9,10],
ann = −16.1 ± 0.4 fm. An approximately 20% uncertainty
in our ann result occurs due to the use of LO EFT(�π ). The
inference of ann from the binding-energy difference of 3He
and 3H will need to be improved if it is to provide information
on ann that refines the results of Refs. [11,12,60,61].

In order to improve the result (29) it will be necessary
to compute explicitly higher-order electromagnetic effects
and the impact of the proton-neutron mass difference on the
binding energies. Next-to-leading order and next-to-next-to-
leading order triton wave functions in the charge-symmetric
sector [30,31] should be considered. Analysis along the lines
of Refs. [54,55] would also be needed to determine the order
at which charge-symmetry-breaking three-nucleon operators
enter the EFT( �π ) calculation.

ACKNOWLEDGMENTS

This work was supported by the US Department of Energy
(Office of Nuclear Physics, under Contract No. DE-FG02-
93ER40756 with Ohio University).

APPENDIX A: NUMERICAL STABILITY

The RGM is used to fit LECs and for predictions in the two-
and three-body sector. We present two analyses to estimate the
numerical uncertainty: (i) the convergence of a B(t) calculation
with respect to dimension and “quality” of the variational basis
for a given set of LECs and (ii) the dependence of C

pp

S on the
parameters used to expand and regulate Coulomb functions in
a Gaussian basis.

In the first scenario, the interaction is specified through five
LECs in Eq. (3): CS,T , C

nn,pp

S , and C3NI. Predictions for B(t)
will depend on the dimension of the RGM basis, D = D1 +
D2 + D3, and a “wise” choice of width parameters, {γij , j =
1, . . . , Di}, for each grouping i. We consider ourself wise
because the widths are chosen to expand an object of limited
size, which is estimated by the deuteron and triton binding
energies to be described within a central potential whose range
is set by the regulator cutoff �. A larger � relates to a shorter-
range interaction, mandating larger widths γij to account for
the larger values of the wave function resulting from the deeper
well. Simultaneously, the exponential tail has to be modeled
accurately by keeping the smaller widths corresponding to the
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as a function of either of the two width parameters γ1,2 for a d-n (d−-n) grouping in two S waves. (b) The change for the nucleons in relative P

waves. (c) The change for the nucleons in relative D waves.
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TABLE II. Uncertainty in the triton binding energy �B(t) due to the omission of specific basis states; e.g., an addition of vectors of the
deuteron-neutron grouping with particles in relative S waves and support from approximately 1/

√
8 fm to infinity will change B(t) by less than

0.0011 MeV.

Cluster [sn ⊗ sp]S12 Orbital angular momentum [l1 ⊗ l2]L Gaussian �B(t) (MeV)

d-n S12 = 1 [0 ⊗ 0]0 γ1,2 ∈ [0, 8] fm−2 0.0011
d−-n S12 = 0 [0 ⊗ 0]0 γ1,2 ∈ [0, 8] fm−2 0.0003

[1 ⊗ 1]0 0.0003
[2 ⊗ 2]0 0.0003

longer-range part. In essence, larger �s require larger bases
but do not pose an in-principle limitation for the application
of the RGM. To assess whether a certain variational basis
expands the triton accurately, the supposedly complete basis,
{|i〉, i = 1, . . . , Di} with D1,2 = 60 and D3 = 0, is extended
by five vectors, all taken from the dominant grouping—which,
for the triton, is the deuteron-neutron one. In the new, [D′ =
(D1 + 5) + D2 + D3]-dimensional space, the triton binding
energy is calculated as a function of one width parameter,
either γ1 for the deuteron fragment or γ2 for the separation of
the neutron from the deuteron. Figure 6 displays the graph of
the function f (γi) = B(t, D′) − B(t, D), with B(t, X) being
the smallest eigenvalue of the system

〈φm|Ĥ |φn〉 = E〈φm|φn〉, (A1)

with indices m, n specifying the X variational parameters cij

in Eq. (18). The numerical uncertainties due to the finite basis
are summarized in Table II. In conclusion, a total uncertainty in
the three-body binding energy B(3)—where the numbers are
of the same order of magnitude for 3He—due to the truncation
of the variational basis of

� (RGM) = ±1.5 keV (A2)

is assigned to this analysis. This value is markedly less than
the naive 10% LO EFT( �π ) of B(t, exp), and hence the 120-
dimensional basis is sufficient for the accuracy of this order.

The LEC values depend on the loop regulator � and on the
RGM basis that spans the space in which they are fitted to data.
For a cutoff variation at � > mπ and a modification of the basis
using states with support only for particle separations less than
approximately 1/mπ , both dependencies reflect a modification
of nonobservable high-energy modes absorbed in the LECs.
However, the dependency on the model space is sought to be
minimal, so as to allow application of and comparison with the
LEC values found using other numerical methods. To assess
this uncertainty, the 20-dimensional S-wave two-body basis
used throughout this work was refined in two ways:

(i) add one basis state and determine C
pp

S as a function of
the width parameter;

(ii) determine C
pp

S as a function of the regulator parameter
used for the irregular Coulomb function.

In both cases, the change in the LEC was −0.01 <
�C

pp

S

C
pp

S

< 0.001, and the resulting effect on two- and three-body
observables relevant for this work was small relative to the
anticipated leading-order EFT( �π ) accuracy.
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