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Short-range correlations between nucleon pairs in different spin-isospin channels are investigated for light
nuclei using the Argonne v8′ interaction. At distances below 1 fm a universal behavior is found for the deuteron,
3H, 3He, and for ground and first excited states in 4He. This behavior in coordinate space is reflected by a universal
behavior for the high-momentum components in momentum space. The universality indicates that a pairwise
renormalization is possible in order to obtain a universal effective two-body interaction that does not scatter
to high-momentum states. The exact two-body densities are compared with those obtained using the unitary
correlation operator method with simple trial wave functions. The effect of three-body correlations due to the
tensor force on the two-body densities is discussed.
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I. INTRODUCTION

Realistic nucleon-nucleon interactions, which reproduce
the scattering phase shifts, imply usually strong repulsive
and tensor forces at short distances. These induce short-
range correlations in the nuclear many-body system, which
complicate the theoretical description so much that exact
solutions of the many-body Schrödinger equation become
unfeasible for systems with more than about twelve nucleons.
Therefore theoretical methods have to be devised in order to
tackle this problem.

At short distances, where the scattering nucleons overlap
strongly, there is no unique way to parametrize the complex
many-body quantum chromodynamics problem in terms of
just the distance, the relative momentum, and the spins of the
nucleons. In all models for the nucleon-nucleon interaction the
short-range behavior is governed by form factors of various
types without rigorous derivations. Therefore experimental
data for elastic scattering, which provide phase shifts for ener-
gies up to the pion threshold cannot sufficiently constrain the
nucleon-nucleon potential at small distances. In consequence,
different phase shift equivalent interactions (e.g., [1–4]) show
a quite different high-momentum or short-range behavior.

Another uncertainty arises when going from the two-
nucleon scattering states to bound many-body states of nuclei.
In the scattering situation the two nucleons are in an energy
eigenstate with a well-defined relation between momentum
or kinetic energy, potential energy, and total energy, usually
labeled with on-shell. In the many-body case a nucleon pair,
which interacts with the surrounding other nucleons, neither
has sharp energy nor is their relative momentum related to
their energy. In this situation the so-called off-shell behavior
(i.e., local versus momentum-dependent parts) of the nuclear
interaction is important but also not fully constrained by
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scattering data. This ambiguity in the off-shell behavior of two-
body interactions is also related to the three-body interactions
that should accompany the different two-body interactions [5].

Information about the short-range behavior of the nuclear
interaction is contained in the one- and two-body momentum
distributions of nucleons in finite nuclei. However, it is
difficult to relate measured cross sections with momentum
distributions. Reactions and their kinematic conditions have
to be chosen properly, for example, in such a way that
the correlated nucleon is removed instantaneously and final-
state interactions are minimized [6,7]. In recent years we have
seen a renewed interest in studying short-range correlations
using (e,e′pp) and (e,e′pn) [8,9], (p,pp) and (p,ppn) [10]
experiments. One important result from these studies is that
the momentum distributions above the Fermi momentum are
dominated by tensor correlations [11]. There are also attempts
to explore the effect of tensor correlations in nuclei by pickup
in (p,d) reactions [12].

Over the years short-range correlations have been studied
using approaches such as the coupled-cluster method [13],
correlated basis functions [14,15], Green’s functions [16],
variational methods [17], or within a cluster expansion
approach [18,19]. For a review see Ref. [20]. These methods
were essentially applied only to doubly-close shell nuclei
like 16O and 40Ca. For lighter systems pioneering studies
have been performed in the Green’s function Monte Carlo
approach [21–23] employing two- and three-body interactions.

In this paper we do not investigate different realistic
interactions but concentrate on the Argonne v8′ (AV8′)
potential [24] where the short-range physics is described by
a phenomenological local potential. Extending on the results
obtained in Ref. [25] the aim of this investigation is to solve
the three- and four-nucleon system exactly and analyze the
short-range correlations in the different spin-isospin channels.
After explaining briefly the many-body approach in Sec. II A
we define explicitly various one- and two-body densities that
are used in Sec. III to illustrate that the short-range pair
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correlations are universal in the sense that they depend very
little on the surrounding nucleons and the many-body state in
general. This feature has been realized some time ago by Forest
et al. [21]. Here we investigate the universality and discuss the
implications to devise effective low-momentum interactions.

The universal behavior gives hope that it is possible to
derive effective interactions that are phase-shift equivalent
and soft enough to permit many-body calculations with a
Slater determinant basis without inducing large many-body
effective potentials. The transformation of the Hamiltonian
to an effective one implies of course also the same transfor-
mation of any other observable. In order to keep the physics
transparent it is highly desirable that these operators, which are
usually one-body operators, do not take on large many-body
contributions when they are transformed to effective ones.
This will be the case if the induced correlations are of short
range and the theoretical treatment takes account of this, as
in the unitary correlation operator method (UCOM). Many
observables like radii or multipole moments are not sensitive
to short-range correlations, however, observables containing
the spins, as in Gamow-Teller transitions, are affected by the
tensor correlations.

In Sec. II we briefly recapitulate the many-body method
adopted here, define the one- and two-body densities in
coordinate and momentum space, and discuss the AV8′
potential in the different spin-isospin channels. In Sec. III
we display the correlations in coordinate and momentum
space for the different spin-isospin channels and investigate
quantitatively their universality. In Sec. III E we discuss how
three-body correlations manifest themselves in the two-body
densities and in Sec. III F we compare to two-body densities
obtained with the UCOM approach. Summary and outlook are
drawn in Sec. IV.

II. MANY-BODY MODEL, INTERACTIONS, DENSITIES

A. Correlated Gaussian basis approach

We assume that an A-nucleon state can be expanded in
terms of a combination of basis states, each of which is a
product of space, spin, and isospin parts,

|�; JM〉 =
K∑

i=1

CiA
{[ ∣∣ψ (space)

i ψ
(spin)
i

〉]
JM

∣∣ψ (isospin)
i

〉}
. (1)

Here A is the antisymmetrizer and the square bracket [· · ·]
stands for the angular momentum coupling. The spin and
isospin parts are expanded using the basis of successive
coupling, e.g.,∣∣ψ (spin)

i

〉 = ∣∣[ · · · [[[ 1
2

1
2

]
S12

1
2

]
S123

] · · · ]
SiMS

〉
, (2)

where the set of intermediate spins (S12, S123, . . .) takes all
possible values compatible with the total spin Si of the ith
basis. The isospin mixing is ignored in this paper, so that the
total isospin Ti is kept fixed to T . The orbital part ψ

(space)
i

is expressed in terms of the explicitly correlated Gaussian
basis [26,27] as explained below.

We denote the position operator of particle i by r̂i . To
simplify the notation, we define this position to be measured

from the total center of mass of the system. The correlated
Gaussian basis is conveniently expressed in terms of the
relative coordinates (e.g., the Jacobi set of the coordinates) x̂ =
(x̂1, x̂2, . . . , x̂A−1): x̂1 = r̂1 − r̂2, x̂2 = (r̂1 + r̂2)/2 − r̂3, . . .

The correlated Gaussian evaluated at the position x corre-
sponding to the operator x̂ takes the following form:〈

x
∣∣ψ (space)

i

〉 = exp
( − 1

2 x̃Aix
)
[YL1i

(ũix)YL2i
(ṽix)]LiML

,

(3)

where YLM (̃ux) = |̃ux|LYLM (̃ux) is a solid spherical harmon-
ics. In Eq. (3) the matrix notation is used to simplify the
expression. That is, ui is an A − 1 dimensional column vector
and ũi denotes its transpose, ũix = ∑A−1

j=1 (ui)j xj . Similarly,
Ai is an (A − 1) × (A − 1) positive-definite symmetric matrix,
and x̃Aix is a short-hand notation for

∑A−1
j,k=1(Ai)jkxj · xk .

The basis is in fact correlated because all the coordinates are
coupled through the off-diagonal elements of Ai . The elements
of Ai and ui (and vi) are parameters to characterize the shape
of the basis function.

The matrix elements of the Hamiltonian can be analytically
obtained using the generating function technique. All the
formulas needed are given in Refs. [25,27,28]. As seen in
Eqs. (1), (2), and (3), each basis function contains both
discrete and continuous parameters. The former includes
L1i , L2i , Li, S12, S123, . . . , Si, T12, T123, . . . , (Ti = T ) and
the latter the elements of Ai, ui , and vi . Though the Gaussians
may not be ideal to cope with the repulsion, it is in fact possible
to obtain results as accurate as other sophisticated methods
for a few-body system [27,29]. One of the advantages of the
present method is that the state � is expressed analytically so
that physical quantities of interest can be readily evaluated.
Since the Fourier transform of the correlated Gaussian basis
is also expressed as correlated Gaussians in momentum
variables [27,28], it is straightforward to calculate the matrix
element of a quantity depending on the momentum operator.
To have a compact basis size K saves time of computations.
We use the stochastic variational method [26,30] to choose
the parameters and increase the basis dimension until good
convergence is reached.

B. One- and two-body density

The antisymmetrized many-body state |�; JM〉 contains
all the information about the nuclear system. For example, the
one-body density in coordinate space is defined as

ρ(1)(r1) = 1

2J + 1

∑
M

〈�; JM|
A∑

i=1

δ3(r̂i − r1) |�; JM〉, (4)

where r̂i is the position operator for the ith particle measured
from the position of the total center of mass. Likewise the
one-body momentum distribution is calculated as

n(1)(k1) = 1

2J + 1

∑
M

〈�; JM|
A∑

i=1

δ3(k̂i − k1) |�; JM〉,

(5)
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where the momentum k̂i of particle i is defined in the total
momentum frame of the nucleus. That means if a particle
has momentum k1 all other particles have together a total
momentum −k1.

One should keep in mind that the possibility of finding a
single nucleon with momentum k1 does not imply that this
nucleon has an energy that is related to k1, such as k2

1/(2mN ).
As all nucleons are interacting with each other one can not
define an observable for the energy of one nucleon.

In a mean-field picture, where particles move independently
in a common single-particle potential, each particle can be
assigned to a single-particle state that has a sharp energy, the
single-particle energy. But this energy is also not uniquely
related to a momentum, because the state has spread-out
distributions in momentum and in coordinate space, which
are related.

Similar effects occur in the interacting many-body case
where only the total energy (i.e., the eigenvalue of the

Hamiltonian) is well defined. Rapid spatial variations in the
many-body wave function show up as increased probabilities at
large single-particle momenta. For example strongly repulsive
two-body interactions induce areas where one will not find
particle pairs because their interaction energy would be large
and positive. At the edges of these correlation holes the wave
function has to vary rapidly giving rise to large momenta
and extra positive kinetic energy. But altogether it is more
profitable to pay the kinetic energy and avoid the even larger
potential energy by staying out of the repulsive region. Thus
the high-momentum tail of the momentum distribution reflects
the short-range correlations.

In Sec. III we discuss these phenomena by looking at
different exact many-body eigenstates. The one-body densities
can be accessed in scattering experiments, the proton density
preferably by electron scattering.

A more direct way to see short-range correlations is given
by the two-body density

ρ
(2)
SMS,T MT

(r1, r2) = 1

2J + 1

∑
M

〈�; JM|
A∑

i<j

P̂
SMS

ij P̂
T MT

ij δ3(r̂i − r1)δ3(r̂j − r2) |�; JM〉, (6)

where ρ
(2)
SMS,T MT

(r1, r2) is the probability density that a nucleon pair with one nucleon at position r1 and the other one at r2 is

found in the spin S,MS and isospin T ,MT channel. r1 and r2 are measured from the total center-of-mass position and P̂
SMS

ij and

P̂
T MT

ij project on spin and isospin of the pair, respectively. The label T here indicates the two-nucleon isospin. Note that it is also
used to denote the total isospin of the system in the previous subsection.

To keep the graphical presentation transparent we discuss the short-range correlations as a function of the relative position
r ≡ r1 − r2 of the two nucleons only and integrate over their center-of-mass position R ≡ (r1 + r2)/2.

ρrel
SMS,T MT

(r) = 1

2J + 1

∑
M

〈�; JM|
A∑

i<j

P̂
SMS

ij P̂
T MT

ij δ3(r̂i − r̂j − r) |�; JM〉. (7)

The corresponding distribution of the relative momentum k ≡ (k1 − k2)/2 of the particle pair with total spin S,MS and isospin
T ,MT is defined as

nrel
SMS,T MT

(k) = 1

2J + 1

∑
M

〈�; JM|
A∑

i<j

P̂
SMS

ij P̂
T MT

ij δ3

(
1

2
(k̂i − k̂j ) − k

)
|�; JM〉. (8)

We also define the two-body densities ρrel
S,T (r) and nrel

S,T (k) that
are obtained by summing the spin- and isospin-indices MS and
MT so that they do not depend on the orientation of r and k

ρrel
S,T (r) =

∑
MS,MT

ρrel
SMS,T MT

(r), (9)

and

nrel
S,T (k) =

∑
MS,MT

nrel
SMS,T MT

(k). (10)

The distributions defined in Eqs. (7) and (8), when coupled
properly in space-spin space, are called internucleon corre-
lation functions in Ref. [25]. The internucleon correlation

functions contain all the information needed to calculate the
energy of the state for a two-body Hamiltonian.

C. Realistic nuclear forces

The Argonne v8′ (AV8′) potential [1] is depicted in Fig. 1
as a function of r for the four spin-isospin combinations of
a nucleon pair. In the left most graph for S = 1, T = 0
we assume the nucleons to be at rest so that the spin-orbit
interaction does not contribute. The tensor interaction causes
a quadrupole type dependence as a function of the angle
between the total spin direction (which we aligned along
the z axis) and the direction of the distance vector r. The
main attraction is obtained when the spins of the nucleons are
aligned with the distance vector r while almost no attraction
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FIG. 1. (Color online) Argonne v8′ potential in the different spin-isospin channels as a function of the distance vector r = (x, y = 0, z). In
the S = 1 channels the total spin is aligned with the z axis. Units are in MeV.

exists in the x direction where the spins are orthogonal to
r. For S = 1, T = 1 we added the spin-orbit interaction for
Lz = 1 because due to the Pauli principle the nucleon pair has
to be in an orbital state with odd parity. For T = 1 the tensor
interaction leads to a situation which is opposite to the T = 0
case. Here the attraction occurs along the x axis where the
spins are orthogonal to r.

In the S = 0 channels there is no tensor interaction and
no spin-orbit interaction thus the interaction depends only on
the distance |r|. Common to all channels is the strong central
repulsion for |r| < 0.6 fm. For S = 0, T = 1 there is strong
attraction around |r| = 1 fm, however, not strong enough to
make the dineutron bound. The S = 0, T = 0 potential is
repulsive at all distances.

This rather complex nature of the nuclear interaction
induces corresponding intricate correlations in the A-body
eigenstate of the Hamiltonian, which we discuss in Sec. III.

III. RESULTS

In the following we investigate the ground states of 2H with
Jπ = 1+, 3H and 3He with Jπ = 1

2
+

, and 4He with Jπ = 0+,
labeled by d, t, h, and α, respectively, as well as the excited 0+
state of 4He at 20.21 MeV, which is a resonance close to the
threshold for 3H + p, labeled by α∗. In this paper we treat the
state α∗ as a quasibound state with a long tail [31], though it
has a proton width of 0.5 MeV.

A. One-body densities

The one-body point densities of the five states are depicted
in Fig. 2. In all cases the position r1 of the nucleon is counted
from the total center-of-mass position of the many-body
system. For the deuteron this means that r1 = 1

2 r is half the
relative distance between neutron and proton. The densities are
averaged over the directions of the total spin and hence depend
only on r1 = |r1|. Likewise the momentum k1 of a nucleon is
the one in the total center of momentum frame and averaging
over total spin directions is implied.

The α particle shows the largest central density, the 3H and
3He densities are somewhat smaller and differ only slightly
due to the Coulomb interaction. The density of the excited 0+
state in 4He is much lower because this state, which is a narrow
resonance in the scattering of 3H and proton, is essentially a

configuration in which a proton and a triton orbit around each
other in an l = 0 state [31,32]. Due to the recoil the quantal
zero point motion in the relative coordinate smears out the
intrinsic density of the triton.

We include also the deuteron despite the fact that its
one-body density is actually the two-body density at half
the distance, and only the S = 1, T = 0 component of the
four possibilities to couple spins and isospins of two nucleons
contributes. The comparison with the three- and four-body
systems nicely demonstrates that in coordinate space the
effects of the short-range repulsion, which are clearly visible
in the deuteron, can not be seen in the A-body case because
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FIG. 2. (Color online) One-body point densities of the different
states in coordinate space (top) and one-body density in momentum
space divided by mass number A (bottom). Ground states of 2H, 3H,
3He, 4He are denoted by d, t, h, and α, respectively. The excited state
of 4He is labeled with α∗.
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FIG. 3. (Color online) From left to right: Two-body densities in coordinate space for a pair of nucleons with S = 1, MS = 1, and T = 0
in the ground states of 2H, 3H, and 4He and the 20.21 MeV excited state of 4He denoted by d, t, α, and α∗, respectively. The densities have
rotational symmetry around the z axis and range from black = 0 to bright (yellow) = maximum. Maxima assume values of 0.008 fm−3 for d,
0.015 fm−3 for t, 0.035 fm−3 for α, and 0.015 fm−3 for α∗.

the one-body density integrates over the positions of the other
A − 1 particles.

However the one-body momentum distribution (lower part
of Fig. 2) shows beyond k1 ≈ 1.5 fm−1 the presence of short-
range correlations by a far-out-reaching tail. The occurrence
of high momenta is at variance with a Hartree-Fock like
mean-field picture where beyond the Fermi momentum kF ≈
1.4 fm−1 the momentum distribution drops steeply [18,33].
For the deuteron the two-body density is again identical to the
one-body density (in momentum space k1 = −k2 = k). One
notices that the high-momentum tails have a very similar form
in all cases including the deuteron. This similarity suggests
already a universal behavior of the short-range correlations
independent of the spatial density of the A-body system.

B. Two-body densities

The A-body density, which contains the information about
all correlations, is a function of A position or momentum
vectors and 4A spin-isospin possibilities and hence can not be
visualized easily. Therefore we integrate and sum over A − 2
single-particle degrees of freedom and are left with the two-
body density. This represents the sum over all particle pairs in
the many-body state. In addition we integrate over the center-
of-mass position of the pair and obtain the two-body densities
defined in Eqs. (7) and (8) for the four spin-isospin channels
which are possible for a nucleon pair. The complex nature of
the nucleon-nucleon interaction discussed in Sec. II C induces
short-range repulsive and tensor correlations in the many-body
state, which can be seen best in the two-body density.

In Fig. 3 the spatial two-body densities ρrel
11,00(r) of the four

different states are displayed. The first striking observation
is that at short distances they look very similar independent
of the many-body state. That means that the correlations felt
by a particle pair in the S = 1, T = 0 channel are at short
distances the same independent of the remaining particles in
the system. The second not unexpected observation is that
these densities reflect in an almost one-to-one fashion the
potential in the S = 1, T = 0 channel (see Fig. 1). There exists
a one-to-one correspondence between the nuclear Hamiltonian

and the two-body densities. The expectation value of the
Hamiltonian can be calculated with the two-body density as
discussed in Ref. [25]. In regions where the potential is most
attractive, r ≈ (0, 0,±1 fm), the densities are large and where
the interaction is repulsive or close to zero the probability of
finding the particle pair is small. At small distances below
0.5 fm the AV8′ potential is so strongly repulsive that the
pair densities in all many-body states are pushed down toward
zero. One should bear in mind that in a simple shell model
many-body state these correlations can not be represented. The
shell model two-body densities have actually their maximum
at relative distance r = 0.

For S = 1, MS = 1, T = 1 the tensor interaction is most
attractive in a torus around the z axis (see Fig. 1) and hence
the two-body density has its maximum in the x-y plane as can
be seen in Fig. 4. In this channel we see again a one-to-one
correspondence to the potential. For small distances up to about
1.5 fm the shape of the distribution is again almost identical for
all three many-body states. It should be noted that this channel,
which does not exist for the deuteron, is weakly populated in
the three- and four-body systems. Depending on the nucleus
about 5–7 % of the pairs are in this channel (see Table I). In
the shell model representation this channel corresponds to at
least one particle-hole excitation to the p shell such that the
relative motion of the pair has negative parity. When occupying
only the s shell this channel is forbidden. We will discuss in

TABLE I. Number of pairs in different states of light nuclei
calculated with the AV8′ potential. Calculated binding energy Eb

in MeV, matter point radius
√

〈r2〉 in fm.

state\(ST ) (10) (01) (11) (00) Eb

√
〈r2〉

d 1 – – – −2.24 1.96
t 1.490 1.361 0.139 0.010 −7.76 1.75
h 1.489 1.361 0.139 0.011 −7.10 1.79
α 2.992 2.572 0.428 0.008 −25.09 1.49
α∗ 2.966 2.714 0.286 0.034 −7.16 3.94
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FIG. 4. (Color online) From left to right: Two-body densities in coordinate space for a pair of nucleons with S = 1, MS = 1, and T = 1
of 3H and 4He in the ground states and the 20.21 MeV excited state of 4He denoted by t, α, and α∗ respectively. The densities are axially
symmetric around the z axis and MT is summed over. Otherwise same as Fig. 3. Maximum densities are 0.47 × 10−3 fm−3 for t, 2.2 × 10−3

fm−3 for α, and 0.51 × 10−3 fm−3 for α∗.

Sec. III E how the two-body density in this channel is related
to three-body correlations.

The second strong channel has S = 0, T = 1 and is shown
in Fig. 5. As there is no tensor and spin-orbit interaction for S =
0 the distributions are spherical. Again they are very similar
for all states and also exhibit a hole at short distances where the
AV8′ potential is very repulsive and a maximum at distances
around 1 fm where it is most attractive (see Fig. 1).

The S = 0, T = 0 channel is not displayed because its
contribution listed in Table I is tiny, only about 0.1%. The
potential in this channel is purely repulsive as can be seen in
Fig. 1. Nevertheless this small contribution is surprising when
compared with the S = 1, T = 1 channel where the potential,
while not purely repulsive, provides only very weak attraction.
We will discuss this point later in relation to three-body
correlations.

It is also interesting to note that the number of pairs in
the 02

+ state of the 4He nucleus are almost identical to the
summed number of pairs from the triton and 3He—reflecting
the cluster nature of this state.

In Figs. 6 and 7 we show the two-body densities in
momentum space in the S = 1, T = 0 and S = 0, T = 1

channels. As expected we find more pairs at small relative
momenta for the spatially extended deuteron and the excited 0+
state in 4He. In all states we observe extended high momentum
components above the Fermi momentum of about 1.4 fm−1.
Comparing both even channels we find that the two-body
densities are very similar at low momenta up to about 0.5 fm−1,
but the high-momentum components in the S = 1, T = 0
channel are larger by a factor of 2-2.5. The differences in the
number of pairs (see Table I) in the even channels originates
mainly from contributions at higher momenta between 0.5
and about 2.5 fm−1. The larger number of high momentum
pairs in the S = 1, T = 0 channel can be traced back to tensor
correlations as we will discuss in Sec. III F.

These differences in the high-momentum contributions
between the S = 1, T = 0 and S = 0, T = 1 channels can
also be interpreted in terms of proton-proton or neutron-
neutron (only T = 1) versus proton-neutron pairs (both T = 0
and T = 1). Such effects have been found also in theoretical
studies for heavier nuclei [19,22,23,34] and in experiment
comparing for example the (e, e′pp) with (e, e′pn) cross
sections where a dominance of proton-neutron pairs was
observed [11].

t
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FIG. 5. (Color online) The same as Fig. 4 but for a pair of nucleons with S = 0 and T = 1. Maximum densities are 0.020 fm−3 for t,
0.054 fm−3 for α, and 0.019 fm−3 for α∗.
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FIG. 6. (Color online) Two-body densities as a function of relative
momentum k for the S = 1, T = 0 channel. Ground-state densities
of 2H, 3H, 3He, 4He are denoted by d, t, h, α, respectively. The excited
state of 4He is labeled with α∗.

C. Universality at small distances

As already seen in Figs. 3–5 the two-body densities of the
different states look very similar especially at small distances.
To further investigate this universality of the short-range
correlations we display in Fig. 8 cuts of the two-body density
ρrel

11,00(r) along the z and the x direction. As the absolute
values of the densities are quite different in the five states
(see Fig. 3) we normalize the two-body densities at r = 1 fm,
where the densities approximately reach their maximum value.
The normalization factors

CN
S,T = 1

ρrel
S,T (r = 1 fm) fm3 (11)

are given in Table II. This choice for the normalization radius
is not crucial as the ratios of the normalization coefficients
between different states for a given channel are essentially
constant (within 2%) when calculated between 0 and 1.0 fm.

It is astonishing to see in Fig. 8 that for small distances the
scaled densities practically coincide along both the z and the x

axes. This means that not only the central correlations but also
the angular dependence of the tensor correlations are almost
identical at short distances. The short-range central and tensor
correlations exhibit universal behavior at short distances below
about 1 fm.

In the S = 0, T = 1 channel the same universal behavior
can be observed as shown in Fig. 9. The two-body densities
normalized at r = 1 fm for the different systems agree
perfectly to distances up to about 1 fm.

Whereas the behavior of the two-body densities at short
distances is universal the behavior at large distances is specific
for the particular many-body state. Its form is discussed in
Ref. [25].

TABLE II. Normalization factors CN
S,T .

d t h α α∗

S = 0, T = 1 – 49.02 50.76 18.55 51.55
S = 1, T = 0 61.35 31.25 31.75 13.23 31.06
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FIG. 7. (Color online) The same as Fig. 6 but for the S = 0, T =
1 channel as a function of k.

D. Universality at high momenta

In Figs. 10 and 11 we show the two-body densities in
momentum space in the S = 1, T = 0 and S = 0, T = 1
channels scaled with the same normalization factors as given
in Table II that were determined for the two-body densities in
coordinate space. Whereas the scaled densities differ strongly
at low momenta, we find almost perfect agreement at high
momenta larger than about 3 fm−1. The universality of
the short-range correlations in coordinate space is therefore
reflected in a universality of the high-momentum components
in momentum space. The fact that the two-body densities
differ in the intermediate momentum range from the Fermi
momentum of about 1.4 fm−1 to about 3 fm−1 should be
related to differences in the long-range correlations for the
different nuclei.

E. Three-body correlations

Looking at the number of pairs in the different spin-isospin
channels (see Table I) an interesting observation can be made.
Let us concentrate on 4He. In a simple shell model picture
where all nucleons occupy s orbits we should find three pairs
each in the S = 1, T = 0 and S = 0, T = 1 channels and
zero pairs in the odd channels. The nuclear potential is much
more attractive in the even channels than in the odd channels,
furthermore the kinetic energy is much higher in the odd
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FIG. 8. (Color online) Cuts of the normalized densities ρrel
11,00(r)

for r = (x, 0, 0) and r = (0, 0, z).
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FIG. 9. (Color online) Two-body densities ρrel
0,1(r) normalized to

1 fm−3 at r = 1 fm for different states (cf Fig. 5).

channels due to the nonvanishing angular momentum. It is
therefore surprising that we find in the exact wave function a
remarkable depopulation of the S = 0, T = 1 even channel
(2.572 pairs) obviously in favor of the S = 1, T = 1 odd
channel (0.428 pairs). As remarkable is the fact that the number
of pairs in the S = 1, T = 0 channel is essentially unchanged
(2.992 pairs) compared to the simple shell model picture. This
effect can not be understood in terms of two-body correlations,
as the parity of the relative motion of a nucleon pair can
not be changed by the two-body interaction. As already
discussed by Forest et al. [21] this effect should be attributed
to three-body correlations induced by the strong tensor force
in the S = 1, T = 0 channel. As total isospin T is a conserved
quantity in light nuclei the total number of pairs in the T = 0
and T = 1 channels has to be conserved. The tensor force in
the S = 1, T = 0 channel provides the dominant contribution
to the nuclear binding. It has its origin in the pion exchange and
is long ranged. Nucleon pairs in the S = 1, T = 0 channel will
therefore be correlated even at large distances and these tensor
correlations will affect other nucleon pairs. It is energetically
favorable to break a pair in the S = 0, T = 1 channel by
flipping the spin of a nucleon if this allows the tensor force
to gain energy in another pair involving a third nucleon. An
illustration of this mechanism is shown in Fig. 12 where energy
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FIG. 10. (Color online) Normalized two-body densities as a
function of relative momentum k for the S = 1, T = 0 channel.
Ground-state densities of 2H, 3H, 3He, 4He are denoted by d, t, h,
α, respectively. The excited state of 4He is labeled with α∗.
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FIG. 11. (Color online) The same as Fig. 10 but for the S = 0,

T = 1 channel as a function of k.

is gained by tensor correlations for a pair of nucleons in the
S = 1, T = 0 channel. In the uncorrelated case the nucleon
pair is assumed to be in a relative S-wave. In the correlated
many-body state the pair will be partially found in a relative D-
wave to allow for additional binding by the tensor force. This
D-wave admixture will also change the spin orientation of the
nucleons, so that another pair, originally in the S = 0, T = 1
channel, is now found in the S = 1, T = 1 channel.

To illustrate the effects of these three-body correlation on
the two-body densities in the T = 1 channel we show in Fig. 13
the two-body momentum distributions of the S = 0, T = 1
and the S = 1, T = 1 channels for 4He. At small relative
momenta the density in the odd channel vanishes because of
the P -wave nature. For momenta between 1.1 and 2.1 fm−1 the
two-body density in the S = 1, T = 1 is actually larger than
in the S = 0, T = 1 channel. At very high relative momenta
the contribution of the odd channel can again be neglected.
The three-body correlations therefore influence the two-body
density very differently in different momentum regimes. For
low relative momenta below about 0.5 fm−1 the effect is very
small and the two-body densities in the two even channels

FIG. 12. (Color online) Illustration of three-body correlations
induced by tensor correlations. In the uncorrelated wave function
(left) the two nucleons 1 and 2 are in an S = 1, MS = 0 pair with
L = 0. The tensor force leads to an admixture of an L = 2 component
and an alignment of the spins of nucleons 1 and 2 flipping the spin
of nucleon 2 (right). This affects the interaction between nucleon 2
and nucleon 3. In the uncorrelated wave function the protons 2 and
3 form an S = 0, T = 1, L = 0 pair. After the spin-flip of nucleon 2
this becomes an S = 1, T = 1, L = 1 pair.
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FIG. 13. (Color online) Two-body densities in momentum space
for 4He in the S = 0, T = 1 and S = 1, T = 1 channels and the sum
of both densities.

are very similar. In an intermediate momentum range between
0.5 and 2.5 fm−1 we observe a noticeable depletion of the
S = 0, T = 1 channel in favor of the S = 1, T = 1 channel.
This contributes to the fact that the two-body densities in the
S = 1, T = 0 channel are much larger than in the S = 0, T =
1 channel in this momentum region.

As already mentioned this effect can not be understood in
terms of two-body correlations. It also explains why effective
interactions that are obtained by unitary transformations in
two-body approximation, like Vlow−k [35], the similarity
renormalization group (SRG) [36] or the unitary correlation
operator method (UCOM) [37–39], provide more binding
than the bare interaction when used in exact calculations.
In two-body approximation the interaction is transformed
independently in all spin-isospin channels. It is therefore
possible to obtain the full contribution of the tensor force in the
S = 1, T = 0 channel without having to pay the price of the
three-body correlations. With increasing range of the tensor
correlations (in the UCOM approach) or a lower cut-off (in
the Vlow−k or SRG approaches) the effective interaction will
induce smaller three-body correlations. Smaller three-body
correlations means that less nucleon pairs are moved from the
S = 0, T = 1 to the S = 1, T = 1 channel. As in the odd
channel the potential is less attractive and the kinetic energy
is much larger, the three-body correlations provide a repulsive
contribution to the energy.

It has already been realized that a term in the effective
interaction called antisymmetric spin-orbit (ALS) force that
connects S = 0 with S = 1 states and changes the relative
angular momentum by �L = 1, such as (l1 − l2) · (σ 1 − σ 2),

is able to improve spectra and transition rates in sd-shell model
calculations [40,41]. But as such a term is not conserving
translational and Galilei invariance it is not allowed in the
free nucleon-nucleon interaction and can only be obtained by
integrating many-body forces over additional particle degrees
of freedom.

We want to stress the point that in our discussion no genuine
three-body forces are considered. The three-body correlations
are induced by the two-body tensor force. When genuine three-
body forces are included we of course expect additional or
modified three-body correlations.

F. Comparison with unitary correlation operator method

The universality of short-range correlations is not only
interesting in itself but also confirms the basic assumptions
that underlie methods to derive effective low-momentum
interactions such as UCOM, Vlow−k, and SRG. We will discuss
here the UCOM approach as it provides the most direct
connection to the short-range correlations in the nucleus.

The basic idea of the UCOM approach is to imprint the
short-range central and tensor correlations into the nuclear
many-body wave functions explicitly be means of a unitary
correlation operator Ĉ. Starting from an uncorrelated trial state
|	〉 the correlated state

|�〉 = Ĉ |	〉 (12)

then features the short-range central and tensor correlations.
Long-range correlations still have to be incorporated explicitly
in the trial state |	〉.

To explain the action of the correlation operators we discuss
first how the relative motion of two nucleons is affected by the
correlation operators. For that we use basis states

|φ(LS)JM; T MT 〉, (13)

where the relative orbital angular momentum L is coupled
with the spin S of the two nucleons to total angular momentum
J,M . The isospin is coupled to T ,MT . The radial part of the
relative wave function is given by φ(r).

In the S = 0 channels only the central correlation operator
acts and the correlated relative wave function is given, using
the correlation function R−(r), as

ψSJT
L (r) = 〈r(LS)JT | Ĉr |φ(LS)JT 〉

= R−(r)

r

√
R′−(r) φ(R−(r)) , (14)

whereas in the S = 1 channels both central and tensor
correlation operators act and we obtain the correlated radial
wave functions

ψSJT
L;L′ (r) = 〈r(L′S)JT | Ĉ�Ĉr |φ(LS)JT 〉 =

⎧⎪⎨
⎪⎩

R−(r)
r

√
R′−(r) φ(R−(r)); L′ = L = J

cos θJ (r)R−(r)
r

√
R′−(r) φ(R−(r)); L′ = L = J ± 1

± sin θJ (r)R−(r)
r

√
R′−(r) φ(R−(r)); L′ = J ± 1, L = J ∓ 1

(15)
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with the tensor correlation function

θJ (r) = 3
√

J (J + 1) ϑ(r). (16)

The functions R−(r) and ϑ(r) also carry implicitly the appropriate quantum numbers, which are omitted here.
To calculate the two-body density in momentum space we will need the relative wave function in momentum space as obtained

by Fourier transformation

〈q(L′S)JT | Ĉ�Ĉr |φ(LS)JT 〉 =
√

2

π
iL

′
∫ ∞

0
dr r2jL′(qr)〈r(L′S)JT |Ĉ�Ĉr |φ(LS)JT 〉. (17)

To illustrate the action of the correlation operators we
restrict the discussion here to the most simple trial state for 4He
where all nucleons occupy the s orbit in a harmonic oscillator

|	〉 = |(0s)4〉. (18)

The harmonic oscillator width parameter a = 1.98 fm2 is
adjusted to reproduce the radius of the 4He nucleus as obtained
in the exact calculation with the correlated Gaussian approach.

We can then express the uncorrelated two-body density
operator for this state as

ρ̂(2)
uncorr =

∑
MT

|φ0(00)0; 1MT 〉〈φ0(00)0; 1MT |

+
∑
M

|φ0(01)1M; 00〉〈φ0(01)1M; 00| (19)

with the relative L = 0 wave function

φ0(r) =
(

2

πa3

)1/4

exp

{
− r2

4a

}
. (20)

Including short-range central and tensor correlations with
the UCOM correlation operators the two-body density operator
of the correlated state is given in two-body approximation as

ρ̂(2) = Ĉ�Ĉr ρ̂(2)
uncorr Ĉ†

r Ĉ
†
�

=
∑
MT

∣∣ψ001
0 (00)0; 1MT

〉〈
ψ001

0 (00)0; 1MT

∣∣
+

∑
M

( ∣∣ψ110
0;0 (01)1M; 00

〉 + ∣∣ψ110
0;2 (21)1M; 00

〉)
× (〈

ψ110
0;0 (01)1M; 00

∣∣ + 〈
ψ110

0;2 (21)1M; 00
∣∣ ), (21)

where L = 2 components appear in the S = 1, T = 0 channel
due to the tensor correlation operator.

In the following we use correlation functions derived from
an SRG evolved AV8′ Hamiltonian [39,42]. The used flow
parameters α = 0.04 fm4 and α = 0.20 fm4 correspond to
cutoff parameters of λ ≈ 2.2 fm−1 (soft) and λ ≈ 1.5 fm−1

(very soft). The labels UCOM04 and UCOM20 will be used in
the following to identify these two sets of correlation functions.
In exact calculations using the no-core shell model [39] the
corresponding UCOM interactions provide binding energies
that are close to the experimental binding energies for 3H
and 4He. Using the simple trial state in Eq. (18) we obtain
4He binding energies of −18.50 MeV and −25.10 MeV with
UCOM04 and UCOM20, respectively.

In Figs. 14 and 15 we compare for the two even channels
the two-body densities in coordinate space given by Eq. (21)
with the two-body densities calculated from the exact solution
for 4He. The two-body densities obtained within the UCOM
approach agree very well with the exact two-body densities
at small distances. Compared with the uncorrelated wave
function the two-body density is strongly suppressed at short
distances. At r around 1 fm the UCOM two-body densities
depend on the specific choice of the correlation functions and
deviate by 0–20 % from the exact results. In the S = 0, T = 1
channel the UCOM two-body densities are always larger than
the exact results. The main reason for this discrepancy is the
two-body approximation that we used to obtain the correlated
two-body density. The UCOM results do not include the effects
of three-body correlations and the number of pairs in the
presented UCOM result is exactly three in both even channels.

In the S = 1, T = 0 channel (Fig. 15) we find an almost
perfect agreement of the exact two-body densities with the
UCOM20 result which uses long-range correlation functions.
This holds not only for the radial dependence due to short-
range repulsion but also for the angular dependence of the two-
body density due to the tensor correlations. For the shorter-
ranged correlation functions UCOM04 the agreement is not
so good. This is caused by the different ranges of the tensor
correlation functions. It appears that the long-range correlation
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FIG. 14. (Color online) Comparison of the coordinate space
two-body density in the S = 0, T = 1 channel in 4He between
the UCOM and the exact many-body calculation using correlated
Gaussians denoted by CG. See the text for the different UCOM and
uncorrelated results.
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FIG. 15. (Color online) The same as Fig. 14 but for the two-body
density in the S = 1, T = 0 channel as a function of x and z.

functions in UCOM20 are able to describe most of the tensor
correlations found in 4He whereas with the short-ranged tensor
correlation functions in UCOM04 a significant part of the
medium to long-range tensor correlations is missing.

The two-body densities in momentum space obtained with
the UCOM densities given in Eq. (21) are compared with the
exact results in Figs. 16 and 17. The effect of the short-range
correlations are reflected in the high-momentum components.
For relative momenta larger than about 3 fm−1 we find good
agreement with the exact result for both UCOM transforma-
tions. In the S = 0, T = 1 channel the UCOM densities are
much too small in the intermediate momentum region from
1.4 to 3 fm−1. This reflects the oversimplified Gaussian trial
wave function and missing many-body correlations.

For the two-body densities in the S = 1, T = 0 channel
(Fig. 17) we have decomposed the UCOM results in the
L = 0 and the L = 2 components. The L = 0 component
looks very similar to the two-body densities obtained in
the S = 0, T = 1 channel and does not contribute in the
intermediate momentum-region. The L = 2 component, in-
troduced by the tensor correlation operator, on the other hand
actually dominates the medium- and high-momentum part of
the two-body density. There is a strong dependence on the
range of the correlation functions but even in the UCOM20
case the exact two-body densities are still significantly larger
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FIG. 16. (Color online) UCOM two-body density in momentum
space for the S = 0, T = 1 channel in 4He compared with exact
many-body calculation denoted by CG.
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FIG. 17. (Color online) The same as Fig. 16 but for the
S = 1, T = 0 channel. Contributions from the L = 0 and L = 2
components are shown for the UCOM densities.

in the intermediate momentum region. Again, contributions
due to long-range correlations are missing.

To include these missing contributions consistently the
UCOM two-body densities should be calculated not from the
simple trial state in Eq. (18) but from an exact solution |	〉 of
the many-body problem

ĤUCOM |	〉 = E |	〉 (22)

using the UCOM effective Hamiltonian in two-body approxi-
mation

ĤUCOM = Ĉ†Ĥ Ĉ . (23)

Such calculations are in preparation using the no-core shell
model. Nevertheless we can not expect perfect agreement even
in this case due to the two-body approximation. Using an
effective interaction like UCOM the three-body correlations
as discussed in Sec. III E will not be fully included. The
deviations between the exact two-body densities and the
two-body densities obtained using effective interactions in
two-body approximations will depend on the range of the
correlation operators (in the UCOM approach) or on the value
of the cutoff (in SRG and Vlow−k).

A detailed discussion of the operator evolution in the SRG
for the deuteron is provided by Anderson et al. [43]. The
authors study the evolution of high-momentum operators such
as the momentum distribution within the SRG and investigate
to what extent a decoupling between low- and high-momentum
components occurs.

IV. CONCLUSION

In this paper we have studied the two-body densities in
coordinate and momentum space for the deuteron, 3H, 3He,
4He, and the first excited 0+ state in 4He. Fully converged
solutions for these light nuclei could be achieved using
the correlated Gaussian basis approach for the Argonne v8′
interaction. The short-range repulsion and the tensor force
induce strong short-range correlations in the many-body wave
functions, reflected in the two-body densities. If the two-body
densities in coordinate space are normalized at short distances,
we find in the different spin-isospin channels a universal
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behavior up to about 1 fm in all nuclei. Using the same
normalization we observe a corresponding universal behavior
of the two-body densities in momentum space at relative
momenta larger than about 3 fm−1. Although we only have
two-body forces we could identify three-body correlations
due to the long-range tensor correlations in the S = 1, T = 0
channel. They manifest themselves in the two-body densities
by a reshuffling of pairs from the S = 0, T = 1 channel into
the S = 1, T = 1 channel.

The universal behavior of the short-range correlations
explains the success of approaches such as Vlow−k [35], or
SRG [36] and UCOM [39] that use unitary transformations
to derive an effective low-momentum interaction. The idea
of the unitary transformation is to decouple the short-
range from the long-range or the high-momentum from the
low-momentum physics. Using such transformed low-
momentum interactions the wave functions no longer show
the strong short-range correlations induced by the original
interaction. To recover short-range correlations the two-body
densities have to be transformed using the same unitary trans-
formation. We compared in coordinate and momentum space
the exact two-body densities of 4He to those obtained from a
simple 0h̄� trial wave function and the UCOM transformation
for the Argonne v8′ interaction. In the S = 1, T = 0 channel
we find a very good agreement for the short-range and the high-
momentum behavior of the two-body densities. Differences
show up mostly in the intermediate momentum range from 1.5
to 3 fm−1. In this region long-range correlations, missing in
the very simple trial wave function, become important. In the
S = 0, T = 1 channel the agreement is spoiled by the missing
three-body correlations in the UCOM approach. To recover
these differences the unitary transformation would have to be
performed not in a two-body approximation as done here but
on the three-body level.

In a more elaborate approach short-range correlations in
heavier nuclei will be studied by solving the many-body
problem with a soft unitarily transformed interaction for

example with the no-core shell model [39] and then calculating
the unitarily transformed two-body densities. This will allow
to include both long-range correlations by the many-body
approach and short-range correlations by the unitary trans-
formation. In the two-body approximation the role of three-
body correlations could be investigated by varying the cutoff
of the transformation. An explicit treatment of three-body
correlations is possible in principle but would become very
involved.

We studied the two-body densities in this paper only as
a function of the distance or the relative momentum of the
nucleons, but it would also be interesting to investigate the
dependence on the center-of-mass momentum of the nucleon
pairs. Wiringa et al. found that the short-range correlation
effects are most pronounced at vanishing center-of-mass
momentum for the pairs [23]. For larger center-of-mass
momentum the short-range correlations are smeared out as
there is a higher probability to find one nucleon inside the
Fermi sphere even at high relative momentum. It might also
be interesting to study the two-body densities as a function of
the center-of-mass position. In particular it might be possible
to study short-range correlations of neutrons in the surface
of neutron-rich exotic nuclei. Because of the universality of
the short-range correlations information from this low-density
regime should also be important for the saturation properties of
neutron matter at higher densities. Of course three-body forces
will become more and more important with increasing density.
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[5] W. N. Polyzou and W. Glöckle, Few-Body Syst. 9, 97 (1990).
[6] L. Frankfurt, M. Sargsian, and M. Strikman, Int. J. Mod. Phys.

A 23, 2991 (2008).
[7] J. Arrington, D. W. Higinbotham, G. Rosner, and M. Sargsian,

e-print arXiv:1104.1196, Prog. Part. Nucl. Phys. (to be pub-
lished).

[8] K. S. Egiyan et al., Phys. Rev. Lett. 96, 082501 (2006).
[9] H. Baghdasaryan et al., Phys. Rev. Lett. 105, 222501

(2010).
[10] E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, and J. W.

Watson, Phys. Rev. Lett. 97, 162504 (2006).
[11] R. Subedi et al., Science 320, 1476 (2008).
[12] I. Tanihata, Mod. Phys. Lett. A 25, 1886 (2010).

[13] J. G. Zabolitzky and W. Ey, Phys. Lett. B 76, 527 (1978).
[14] G. Co’, A. Fabrocini, and S. Fantoni, Nucl. Phys. A 568, 73

(1994).
[15] A. Fabrocini, F. Arias de Saavedra, and G. Co’, Phys. Rev. C 61,

044302 (2000).
[16] W. H. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52, 377

(2004).
[17] S. C. Pieper, R. B. Wiringa, and V. R. Pandharipande, Phys. Rev.

C 46, 1741 (1992).
[18] M. Alvioli, C. Ciofi degli Atti, and H. Morita, Phys. Rev. C 72,

054310 (2005).
[19] M. Alvioli and C. Ciofi degli Atti, Phys. Rev. Lett. 100, 162503

(2008).
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