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I. INTRODUCTION

Chiral effective field theory allows for a consistent cal-
culation of forces between two, three, and more nucleons
(for recent reviews, see Refs. [1–3]). In this paper, we fill
in the last missing part of the nuclear forces calculated at
next-to-next-to-next-to-leading order (N3LO) in the chiral
expansion; namely, the short-range contributions and the
leading relativistic corrections to the three-nucleon force
(3NF). At this order, the 3NF is given by five topologies as
shown in Ref. [4]. Three of these do not involve multinucleon
operators and thus contribute at long range r ∼ 1/Mπ and r ∼
1/(2Mπ ), with Mπ being the pion mass. The corresponding
momentum and coordinate-space representations are given in
that paper (see also [5]). Here, we work out the remaining terms
corresponding to the two topologies involving four-nucleon
operators (the short-range terms) as well as the relativistic
(1/m) corrections to the leading one- and two-pion exchange
corrections. These appear at next-to-next-to-leading order
(N2LO). Throughout, m denotes the nucleon mass. Special
care has to be taken to calculate these corrections consistently
with the ones contributing to the two-nucleon force. With the
formalism given here, one is now in the position to perform
calculations in three (or more) nucleon systems consistently
at N3LO. It is important to stress that the 3NF at this order
does not involve any new and unknown low-energy constants
(LECs)—the full 3NF to this order thus depends just on two
LECs, commonly called D and E, that parametrize the leading
one-pion-contact term topology and the six-nucleon contact
term at N2LO. Note that an exploratory study of the effects
of the long-range parts of the 3NF at N3LO in the triton was
recently presented in [6].

Our manuscript is organized as follows: In Sec. II
we discuss the contributions of the one-pion-exchange-
contact topology. Section III describes the calculation of the
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two-pion-exchange-contact topology while Sec. IV is devoted
to the analysis of the leading relativistic corrections that also
appear at N3LO. We end with a brief summary and outlook. For
the sake of completeness, in Appendix A we give the formal
algebraic structure of the parts of the nuclear Hamiltonian
which are relevant for our work. Finally, Appendix B contains
the coordinate-space representation of the obtained results.

II. ONE-PION-EXCHANGE-CONTACT TOPOLOGY

We begin with the discussion of the one-pion-exchange
contributions involving short-range contact interactions be-
tween two nucleons, which are shown in Fig. 1. It is important
to keep in mind that these diagrams do not correspond to
Feynman graphs. Rather, they schematically represent various
contributions to the connected, irreducible part of the three-
nucleon amplitude which gives rise to the three-nucleon force.
Each diagram is to be understood as a set of all possible
time-ordered-like graphs of the same topology (i.e., the same
sequence of vertices). The precise meaning of the diagrams and
their contributions to the nuclear Hamiltonian depend, strictly
speaking, on the approach used to extract the irreducible part
of the amplitude.1 In this work, we adopt the method of
unitary transformation which was already successfully applied
to the derivation of nuclear forces Ref. [7–11] and more
recently electromagnetic nuclear exchange current and charge
operators [12,13]. It is also the same method that we used
in Ref. [4] to compute the long-range parts of the 3NF at
N3LO. The resulting two- and many-body forces as well as
the exchange currents are thus derived in the same theoretical
approach from the effective chiral Lagrangian and are, per
construction, consistent with each other.

Before discussing the results for individual diagrams
we first outline the way the actual calculation is carried
out. Starting from the effective chiral Lagrangian for pions
and nucleons, we first compute the corresponding Hamilton
density using the canonical formalism; see [14] for more

1We remind the reader that nuclear potentials do not correspond to
observable quantities and are, in general, scheme dependent.

054001-10556-2813/2011/84(5)/054001(12) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.84.054001


BERNARD, EPELBAUM, KREBS, AND MEIßNER PHYSICAL REVIEW C 84, 054001 (2011)

(29)(25) (26) (27)

(23) (24)

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

(13) (14) (15) (16) (17) (18)

(19) (20) (21) (22)

(28)

FIG. 1. Diagrams contributing to the one-pion-exchange-contact 3NF. Solid and dashed lines represent nucleons and pions, respectively.
Solid dots refer to the lowest-order (dimension one) vertices from the chiral Lagrangian. Diagrams which result from the interchange of the
nucleon lines and/or application of the time reversal operation are not shown.

details. In order to arrive at nuclear forces (and current opera-
tors) valid in the low-energy region (i.e., well below the pion
production threshold), the pion fields need to be integrated out.
This is achieved through decoupling of the purely nucleonic
subspace of the Fock space from the rest via a suitably chosen
unitary transformation (UT) [7–9]. This step is carried out
perturbatively utilizing the chiral expansion and making use of
the standard chiral power counting based on naive dimensional
analysis. We also exploit the freedom to choose the basis states
in the nucleonic subspace of the Fock space and include a
large number of additional unitary transformations which can
be constructed at the given chiral order [11]. It turns out that
the resulting unitary ambiguity of the nuclear Hamiltonian and
exchange currents is strongly constrained by requiring that the
resulting nuclear potentials and currents are renormalizable;
see [11] for a detailed discussion. The explicit form of the
(purely strong) unitary transformation compatible with the
renormalizability requirement and the operators contributing
to effective nuclear Hamiltonian which are needed in the
present calculation can be found in Appendix A (see also
Ref. [11]). Once the unitary operator is determined at the

desired order in the chiral expansion, the effective, purely
nucleonic Hamiltonian can be computed straightforwardly.
One ends up with terms given by a sequence of vertices
and energy denominators which are similar to the ones
emerging in time-ordered perturbation theory. However, the
energy denominators and the coefficients in front of each
term generally differ from the ones arising in the context of
time-ordered perturbation theory. We refer to Ref. [15] for
more details on the method of unitary transformation.

We now discuss the individual contributions to the three-
nucleon force. Unless stated otherwise, the expressions for the
3N potentials are to be understood as matrix elements with
respect to the nucleon momenta and as operators with respect
to spin and isospin quantum numbers. We begin with diagrams
(1)–(6) in Fig. 1 with one self-energy or vertex-correction
insertion on the second nucleon. The contribution of these
diagrams to the 3NF depends on the unitary transformations
given in Eqs. (3.24), (3.25), and (3.48) of Ref. [11]. Fixing
the corresponding rotation angles α1, α2, and α6 in the
way compatible with renormalizability as described in that
work leads to the following result for the corresponding 3NF
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contribution:

V = g4
ACT

4F 4
π

τ 1 · τ 2
�σ1 · �q1

q2
1 + M2

π

∫
d3l

(2π )3

1

ω4
l

× [−(�q1 · �l)(�l · �σ3) + (�q1 · �σ3)�l2]

DR= − g4
ACT

16πF 4
π

Mπτ 1 · τ 2
(�σ1 · �q1)(�σ3 · �q1)

q2
1 + M2

π

, (2.1)

where �σi (τ i) refer to the Pauli spin (isospin) matrices while
�qi ≡ �pi

′ − �pi denote the momentum transfer of the nucleon
i. Furthermore, gA and Fπ stay for the nucleon axial-vector
and pion decay coupling constant, respectively, while CT

is the low-energy constant accompanying the lowest-order
(spin-dependent) two-nucleon contact interaction. We empha-
size that the Wigner-symmetry-invariant two-nucleon contact
interaction proportional to CS yields a vanishing contribution
which can be traced back to the fact that it commutes with

the pion-nucleon vertex. Here and in what follows, we use
dimensional regularization (DR) in the derivation of the 3NF.
Furthermore, we adopt the same notation as in Ref. [4] and
give results for a particular choice of nucleon labels (unless
stated otherwise). The full expression for the 3NF results by
taking into account all possible permutations of the nucleons,2

that is,

V full
3N = V3N + all permutations. (2.2)

Next, the contribution of diagrams (7)–(9) in Fig. 1 with one
self-energy or vertex-correction insertion on the third nucleon
is found to vanish completely. This feature does not depend
on the structure of vertices appearing in these diagrams and
emerges from the renormalizability constraints; see Ref. [11].
On the other hand, diagrams (10)–(15) with pions being
exchanged between the nucleons (1 and 2) and (2 and 3) do
yield a nonvanishing contribution of the form

V = g4
ACT

4F 4
π

�σ1 · �q1

q2
1 + M2

π

∫
d3l

(2π )3

1

ω4
l

{τ 1 · τ 3[(�q1 · �l)(�l · �σ3) − (�q1 · �σ3)l2] + (τ 1 × τ 2) · τ 3�l · (�σ2 × �σ3)�q1 · �l}

DR= g4
ACT

32πF 4
π

Mπ

�σ1 · �q1

q2
1 + M2

π

[2τ 1 · τ 3(�q1 · �σ3) − τ 1 · (τ 2 × τ 3)�q1 · (�σ2 × �σ3)]. (2.3)

We find that diagrams (16)–(18) involving a single self-energy
or vertex-correction insertion on nucleon 1 do not generate
3NF contributions. For graph (17), this feature is quite general
and does not depend on the vertex structure. Regardless of the
choice for the additional unitary transformations, this diagram
appears to be purely reducible at the order considered. Its
contribution to the scattering amplitude is, therefore, properly
accounted for by iterating the dynamical equation. The two
self-energy corrections do yield nonvanishing irreducible
contributions of opposite sign when considered separately.
Since the leading nucleon self-energy correction is scalar,
isoscalar, and independent of the nucleon momentum, the
contributions of these two diagrams sum up to zero.

Similarly, diagrams (19)–(25) proportional to g2
ACS,T

produce onlyvanishing 3NF contributions. This is because
the integrands entering the corresponding loop integrals are
always odd functions of the loop momentum. This feature
depends crucially on the renormalizability constraints dis-
cussed above which ensure that the pion-exchange between the
nucleons 1 and 2 factorizes out in all irreducible contributions
emerging from these diagrams. Thus, the pion loop integrals
are always proportional to ω−2

l (which can be understood from
the dimensional analysis) and involve a single power of the
loop momentum �l in the numerators emerging from the leading
(derivative) pion-nucleon vertex (∼gA).

Next, diagrams (26) and (27) in Fig. 1, which are propor-
tional to g2

AC2
S and g2

AC2
T also lead to vanishing 3NF contribu-

tions for the choices of the additional UTs compatible with the
renormalizability constraints.3 It should be emphasized that
there are also purely short-range contributions to the 3NF ∝
g2

AC2
S and g2

ACT emerging from diagrams shown in Fig. 2 with

nucleon-nucleon (NN) contact interactions acting between
different pairs of nucleons. While these graphs (presumably)
generate nonvanishing 3NFs, their contributions are purely
short-range and only provide a finite shift ∝Mπ to the LEC
E which accompanies the contact 3NF at N2LO. In any case,
since we work with the bare LEC E, which needs to be refit to
experimental data at each order in the chiral expansion, there
is no need to explicitly evaluate these contributions unless one
is interested in the quark mass dependence of the 3NF and
few-nucleon observables.

Finally, the last two diagrams in Fig. 1 clearly do not yield
any contributions in a complete analogy with next-to-leading-
order (NLO) one-pion-exchange-contact diagrams. Finally,

2For three nucleons there are altogether 6 permutations.
3To avoid possible confusion, we emphasize once again that these

diagrams correspond to all possible noniterative time-ordered graphs
which nucleons treated as static sources. Nonstatic corrections are
computed perturbatively, as discussed in Sec. IV.

FIG. 2. Examples of diagrams ∝g2
AC2

S,T which lead to finite shifts
of the purely short-range 3NF at N2LO as explained in the text. For
notation see Fig. 1.

054001-3



BERNARD, EPELBAUM, KREBS, AND MEIßNER PHYSICAL REVIEW C 84, 054001 (2011)

(7)(1) (2) (3) (4) (5) (6)

FIG. 3. Tree diagrams contributing to the two-pion-exchange and one-pion-exchange-contact topology of the 3NF at N3LO. The solid
boxes denote insertions of either subsubleading di vertices from the effective pion-nucleon Lagrangian or the leading 1/m corrections. For
notation see Fig. 1.

there are also no contributions at N3LO from tree diagrams
involving one insertion of the higher-order di vertices in the
effective Lagrangian [see graphs (6) and (7) in Fig. 3] except
for the relativistic corrections which will be considered in
Sec. IV. As explained in Ref. [4], the contributions from these
diagrams are suppressed by at least one power of Q/m where
Q denotes a genuine soft scale.

We are thus left with Eqs. (2.1) and (2.3) as the only
nonvanishing contributions to the one-pion-exchange-contact
3NF topology. We now show that these terms cancel each
other exactly if one takes into account the antisymmetric
nature of few-nucleon states. In particular, we use the
identities

(
τ 3σ

i
3 + τ 2σ

i
2

)
A23 = 1

4

(
τ 3σ

i
3 + τ 2σ

i
2 − τ 3σ

i
2 − τ 2σ

i
3

+ τ 2 × τ 3[�σ2 × �σ3]i
) ≡ Bi ,

(τ 2 × τ 3[�σ2 × �σ3]i)A23 = 2Bi ,(
τ 3σ

i
2 + τ 2σ

i
3

)
A23 = −Bi , (2.4)

where the superscript i refers to the Cartesian component of
the Pauli spin matrices and A23 denotes antisymmetrization
with respect to nucleons 2 and 3, which, for a momentum-
independent operator X, can be written in the form

(X)A23 ≡ 1

2

(
X − 1 + �σ2 · �σ3

2

1 + τ 2 · τ 3

2
X

)
. (2.5)

It is easy to see that adding the contribution from interchanging
the nucleons 2 and 3 to Eqs. (2.1) and (2.3) and performing
antisymmetrization with respect to these nucleons leads to
a vanishing result. Therefore, we conclude that there are no
one-pion-exchange-contact terms in the 3NF at N3LO.

III. TWO-PION-EXCHANGE-CONTACT TOPOLOGY

We now turn to the two-pion-exchange-contact diagrams
shown in Fig. 4. Evaluating the matrix elements of the
operators listed in Eq. (A1)

for diagrams (1)–(7) in this figure we find the g4
ACS and g4

ACT contributions to the two-pion-exchange-contact topology of the
form

V2π-cont = g4
ACT

8F 4
π

∫
d3l

(2π )3

[
τ 1 · τ 2

{(
1

ω4+ω2−
+ 1

ω2+ω4−

)[
q2

1 (�q1 · �σ2) (�q1 · �σ3) + 2q2
1 l2 (�σ2 · �σ3) − q2

1 (�l · �σ2)(�l · �σ3)

−q4
1 (�σ2 · �σ3) − l2(�q1 · �σ2)(�q1 · �σ3) + l2(�l · �σ2)(�l · �σ3) − l4(�σ2 · �σ3)

] +
(

1

ω4+ω2−
− 1

ω2+ω4−

)

×[ − q2
1 (�q1 · �σ2)(�l · �σ3) + q2

1 (�l · �σ2)(�q1 · �σ3) + l2(�q1 · �σ2)(�l · �σ3) − l2(�l · �σ2)(�q1 · �σ3)
]}

+2τ 2 · τ 3

(
1

ω4+ω2−
+ 1

ω2+ω4−

) [
q2

1 l2(�σ1 · �σ2) + q2
1 (�l · �σ1)(�l · �σ2) + (�q1 · �l)(�q1 · �σ1)(�l · �σ2)

+(�q1 · �l)(�l · �σ1)(�q1 · �σ2) − (�q1 · �l)2(�σ1 · �σ2) − l2(�q1 · �σ1)(�q1 · �σ2)
] + 6

(
1

ω4+ω2−
+ 1

ω2+ω4−

)

×[ − q2
1 l2(�σ1 · �σ2) + q2

1 (�l · �σ1)(�l · �σ2) − (�q1 · �l)(�q1 · �σ1)(�l · �σ2)

− (�q1 · �l)(�l · �σ1)(�q1 · �σ2) + (�q1 · �l)2(�σ1 · �σ2) + l2(�q1 · �σ1)(�q1 · �σ2)
]]

DR= g4
ACT

48πF 4
π

{
2τ 1 · τ 2(�σ2 · �σ3)

[
3Mπ − M3

π

4M2
π + q2

1

+ 2
(
2M2

π + q2
1

)
A(q1)

]

+9
[
(�q1 · �σ1)(�q1 · �σ2) − q2

1 (�σ1 · �σ2)
]
A(q1)

}
, (3.1)
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FIG. 4. Diagrams contributing to the two-pion-exchange-contact topology of the 3NF. For notation see Fig. 1.

where the loop function A(q) is defined according to

A(q) = 1

2q
arctan

(
q

2Mπ

)
. (3.2)

Notice that we have exploited the fermionic nature of the
nucleons in order to simplify the above expression and made
use of the following identities:

[
(τ 2 + τ 3)σ i

2σ
j

3

]
A23 = − 1

4 (τ 2 + τ 3)δij (1 − �σ2 · �σ3) + · · · ,[
τ 2 · τ 3(�σ2 + �σ3)

]
A23 = −3 (�σ2 + �σ3)A23

= − 3
4 (�σ2 + �σ3) + 3

4τ 2 · τ 3(�σ2 + �σ3),

(3.3)

where the ellipses in the first line refer to terms which are
antisymmetric with respect to the interchange of the indices
i, j and therefore do not contribute to the final result.

We now turn to diagrams (8)–(12) in Fig. 4 whose contribu-
tions are proportional to g2

ACS,T . We find that graph (12) does
not contain any irreducible pieces, while the contributions of
diagrams (8)–(11) reads

V2π-cont = g2
A

32F 4
π

∫
d3l

(2π )3

1

ω2+ω2−

[
i(CS + CT )[τ 1 × τ 2] · τ 3

× [−(�q1 · �σ2)(�l · �σ3) + (�l · �σ2)(�q1 · �σ3)]

+4CT τ 1 · τ 2
{ − q2

1 (�σ2 · �σ3) + (�q1 · �σ2)(�q1 · �σ3)

+ l2(�σ2 · �σ3)−(�l · �σ2)(�l · �σ3)−2i[�q1 × �l] · �σ3
}]

.

(3.4)

It is easy to see that all terms involving the imaginary unit
number i are vanishing. Using dimensional regularization and
performing antisymmetrization with respect to the nucleons 2
and 3 we arrive at the following final result for the g2

ACS and

g2
ACT contributions to V2π-cont:

V2π-cont
DR= − g2

ACT

24πF 4
π

τ 1 · τ 2(�σ2 · �σ3)
[
Mπ+(

2M2
π+q2

1

)
A(q1)

]
.

(3.5)

Finally, it is easy to see that the last diagram in Fig. 4 does
not contribute to 3NF as the corresponding Feynman graph
involves at this order in the chiral expansion only reducible
pieces. To summarize, the complete contribution of the two-
pion-exchange-contact topology of the 3NF at N3LO is given
by Eqs. (3.1) and (3.5) using the convention of Eq. (2.2).

IV. LEADING RELATIVISTIC CORRECTIONS

The leading relativistic corrections (i.e., the corrections of
the operators in 1/m) to the 3NF provide further contributions
to the two-pion-exchange and one-pion-exchange-contact
topologies. They emerge from two different sources. We
remind the reader that the formally leading 3NF generated
by the tree-level two-pion-exchange4 and one-pion-exchange
contact diagrams vanishes at NLO. Stated differently, the
resulting contributions to the scattering amplitude are either
purely reducible (at that order) or shifted to N3LO due to
the suppression by one power of Q/m caused by the time
derivative entering the Weinberg-Tomozawa vertex [16,17].
The first kind of relativistic correction emerges from taking
into account retardation effects in NLO diagrams; see graphs
(1), (2), and (6) in Fig. 3. As will be shown below and contrary
to the case when the nucleons are treated as static sources, these
diagrams do produce nonvanishing 3NFs. Second, one also
needs to take into account the 1/m corrections to the leading

4There are two such diagrams: one proportional to g4
A and one

involving a Weinberg-Tomozawa vertex, which is proportional to g2
A.
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πNN and ππNN vertices which leads to graphs (3), (4), (5),
and (7) in Fig. 3. Notice that there are no 1/m corrections to
the leading two-nucleon contact interactions.

We begin with the retardation corrections to the two-pion
exchange 3NF corresponding to diagram (1) in Fig. 3. When
evaluating its contribution to the potential, one needs, in
addition to the terms listed in Eq. (A.1) of Ref. [11], to
take into account effects induced by the additional unitary
transformation driven by the operator S8 in Eq. (4.14) of
Ref. [13], which is parametrized in that work by a constant
β̄8. The explicit form of the operators to be evaluated is given
in Eq. (A3). The resulting 3NF contribution has the form

V2π,1/m = − g4
A

32mF 4
π

(�σ1 · �q1)(�σ3 · �q3)(
q2

1 + M2
π

)2(
q2

3 + M2
π

) [(1−2β̄8){τ 1 · τ 3

× (�q1 · �q3)2+[τ 1 × τ 2] · τ 3[�q1 × �q3] · �σ2(�q1 · �q3)}
−2i{τ 1 · τ 3[�q1 × �q3] · �σ2 − [τ 1 × τ 2] · τ 3(�q1 · �q3)}
×{(1 − 2β̄8)(�q1 · �k2) + (1 + 2β̄8)(�q1 · �k1)}], (4.1)

where �ki ≡ ( �pi + �pi
′)/2. Notice that the unitary transfor-

mation considered above also affects the form of the 1/m2

corrections to the one-pion exchange and 1/m corrections to
the two-pion exchange two-nucleon potentials at N3LO. To be
consistent with the N3LO potential of Ref. [10], one has to
choose β̄8 = 1/4. The contribution of diagram (2) in Fig. 3 is
not affected by the above UT and has the form

V2π,1/m = i
g2

A

32mF 4
π

(�σ1 · �q1)(�σ3 · �q3)(
q2

1 + M2
π

)(
q2

3 + M2
π

)
× [τ 1 × τ 2] · τ 3(�q3 · �k3 − �q1 · �k1). (4.2)

Finally, retardation corrections to the one-pion-exchange-
contact topology from diagram (6) in Fig. 3 have the form

V1π-cont,1/m = g2
A

8mF 2
π

�σ1 · �q1(
q2

1 + M2
π

)2 τ 1 · τ 2

×{(1−2β̄8)(�q1 · �q3)[CS(�q1 · �σ2)+CT (�q1 · �σ3)]

+ 2iCT �q1 · [�σ2 × �σ3][(1 − 2β̄8)(�q1 · �k2)

+ (1 + 2β̄8)(�q1 · �k1)]}. (4.3)

We now turn to contributions emerging from relativistic
corrections to vertices in the pion-nucleon Hamilton density.
Consider first the contributions of diagrams (3), (4), and (7)
in Fig. 3. The relevant terms in the effective Lagrangian and
Hamiltonian have the form5

LπN = −HπN = − gA

2Fπ

N †τ �σ · �∇πN

− i
gA

4mFπ

N †τ �σ · (
←−∇ − −→∇ )N ·π̇ , (4.4)

5Different conventions for the sign of the axial vector coupling
constant gA are used in the literature. For example, gA in Ref. [18]
corresponds to −gA in the present work. This difference does not
affect the expressions for nuclear forces and currents where the LEC
gA enters quadratically. It is important, however, to use the same
convention for both terms in Eq. (4.4).

where N and π refer to the nucleon and pion fields, re-
spectively. Similarly to the retardation corrections considered
above, it is possible to construct an additional UT with the
generator proportional to g2

A/m which affects the contributions
of diagrams (3) and (7) when acting on the one-pion exchange
and the leading contact potentials, respectively. We adopt
here the notation of Ref. [13], where this unitary operator is
parameterized in terms of another arbitrary parameter β̄9, see
Eq. (4.14) of that work. Again, the UT also affects the 1/m2

and 1/m corrections to the one-pion and two-pion exchange
potential at N3LO, respectively, so that the parameter β̄9 needs
to be chosen consistently. Using the explicit expressions for
the operator structure of the unitarily transformed Hamilton
operator in Eq. (A.4) of Ref. [11] and adding terms induced
by the above mentioned UT we obtain the following 3NF
contribution from diagram (3):

V2π,1/m = − g4
A

32mF 4
π

�σ1 · �q1(
q2

1 + M2
π

)(
q2

3 + M2
π

) {τ 1 · τ 3

×[(2β̄9 − 1)(�σ3 · �q3)(q2
1 + 2i[�q1 × �k2] · �σ2)

− 2i(2β̄9 + 1)(�σ3 · �k3)[�q1 × �q3] · �σ2]

+ 2i[τ 1 × τ 2] · τ 3[−(2β̄9 − 1)(�σ3 · �q3)(�q1 · �k2)

+ (2β̄9 + 1)(�σ3 · �k3)(�q1 · �q3)]}. (4.5)

Next, it is easy to see that diagram (4) does not generate
any 3NF at the considered order in the chiral expansion.
Similarly to the corresponding NLO diagram (same topology
constructed from the lowest-order vertices), there is suppres-
sion by, in this case, two factors of Q/m due to the time
derivatives entering the Weinberg-Tomozawa vertex and the
1/m correction to the πNN vertex in Eq. (4.4). Consequently,
within the power-counting scheme adopted in the present
work, this diagram contributes to the 3NF only at order N5LO.
Finally, the contribution of diagram (7) in Fig. 3 is clearly also
affected by the above-mentioned unitary transformation and is
given by

V1π-cont,1/m = − g2
ACT

8mF 2
π

1

q2
1 + M2

π

τ 1 · τ 2{2i(2β̄9 + 1)(�k1 · �σ1)

× �q1 · [�σ2 × �σ3] − (
2β̄9 − 1

)
(�q1 · �σ1)(�q3 · �σ3)

− 2i(2β̄9 − 1)(�q1 · �σ1)�k2 · [�σ2 × �σ3]}

+ g2
ACS

8mF 2
π

1

q2
1 + M2

π

τ 1 · τ 2

× (2β̄9 − 1)(�q1 · �σ1)(�q3 · �σ2). (4.6)

Finally, consider the contribution of diagram (5). Since this
graph does not induce any reducible pieces, the corresponding
3NF can be identified with the amplitude and computed
using the Feynman-diagram technique. The Feynman rule for
the 1/m correction to the ππNN vertex can be found, for
example, Ref. [19]. In our notation the relevant terms6 have

6We do not show terms involving zeroth components of the nucleon
momenta since they do not contribute to the 3NF at N3LO.
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the form

− 1

8mF 2
π

εabcτ c( �p + �p ′) · (�q1 + �q2)

− i

4mF 2
π

εabcτ c[�q1 × �q2] · �σ , (4.7)

where �q1, a (�q2, b) denote the momentum and isospin quantum
number of the incoming (outgoing) pion. We then obtain for
the contribution of diagram (5)

V2π,1/m = g2
A

32mF 4
π

(�σ1 · �q1)(�σ3 · �q3)(
q2

1 + M2
π

)(
q2

3 + M2
π

) [τ 1 × τ 3] · τ 2

× ([�q1 × �q3] · �σ2 + i�k2 · (�q3 − �q1)). (4.8)

To summarize, our results for the relativistic (1/m) correc-
tions to the 3NF at N3LO are given by Eqs. (4.1)–(4.3), (4.5),
(4.6), and (4.8). Adding up these expressions, the two-pion
exchange contribution can be written in the form

V2π,1/m = g2
A

32mF 4
π

1(
q2

1 + M2
π

)(
q2

3 + M2
π

) (τ 1 · τ 3A123

+ [τ 1 × τ 2] · τ 3B123) + 5 permutations, (4.9)

where

A123 = (�σ1 · �q1)(�σ3 · �q3)a123 + (�σ1 · �q1)(�σ3 · �k3)c123,
(4.10)

B123 = (�σ1 · �q1)(�σ3 · �q3)b123 + (�σ1 · �q1)(�σ3 · �k3)d123,

and the functions a123, b123, c123, and d123 are given by

a123 = − g2
A

q2
1 + M2

π

{(1 − 2β̄8)(�q1 · �q3)2 − 2i[�q1 × �q3] · �σ2

× [(1 − 2β̄8)(�q1 · �k2) + (1 + 2β̄8)(�q1 · �k1)]}
−g2

A(2β̄9 − 1)
(
q2

1 + 2i[�q1 × �k2] · �σ2
)
,

c123 = 2ig2
A

(
2β̄9 + 1

)
[�q1 × �q3] · �σ2,

b123 = − g2
A

q2
1+M2

π

{(1−2β̄8)[�q1 × �q3] · �σ2(�q1 · �q3)+2i(�q1 · �q3)

× [(1 − 2β̄8)(�q1 · �k2) + (1 + 2β̄8)(�q1 · �k1)]}
+ 2i �q3 · (�k3 − �k2) + 2ig2

A(2β̄9 − 1)(�q1 · �k2)

− [�q1 × �q3] · �σ2,

d123 = −2ig2
A(2β̄9 + 1)(�q1 · �q3). (4.11)

The relativistic corrections to the one-pion-exchange-contact
topology have the form

V1π-cont,1/m = g2
A

8mF 2
π

1

q2
1 + M2

π

τ 1 · τ 2

× [(�σ1 · �q1)f123 + (�σ1 · �k1)g123]+5 permutations,

(4.12)

where

f123 = 1

q2
1 + M2

π

{(1 − 2β̄8)(�q1 · �q3)[CS(�q1 · �σ2)

+CT (�q1 · �σ3)]+2iCT �q1 · [�σ2 × �σ3][(1−2β̄8)(�q1 · �k2)

+ (1 + 2β̄8)(�q1 · �k1)]} + (2β̄9 − 1)[CS(�q3 · �σ2)

+CT (�q3 · �σ3)] + 2iCT (2β̄9 − 1)�k2 · [�σ2 × �σ3],

g123 = −2iCT (2β̄9 + 1)�q1 · [�σ2 × �σ3]. (4.13)

The above expressions are written in a general form including
the dependence on the constants β̄8 and β̄9 which parametrize
the unitary ambiguity of these potentials. The 1/m2 correc-
tions (1/m corrections) to the one-pion exchange (two-pion-
exchange) two-nucleon potential at N3LO are also affected
by this unitary ambiguity. A comprehensive discussion on this
issue and on the relation between different forms of relativistic
extensions of the Schrödinger equation and nonstatic terms in
the two-nucleon potential can be found in Ref. [20]. To be
consistent with the two-nucleon potential of Ref. [10], one
needs to choose

β̄8 = 1

4
, β̄9 = 0. (4.14)

We emphasize that, in order to completely take into account
the relativistic corrections at N3LO in few-body calculations,
one needs to use the Schrödinger equation with the relativistic
expression for the nucleon kinetic energy, the proper forms
of the 1/m2 corrections to the 1π -exchange NN potential, as
well as 1/m corrections to the NN and 3N forces. In addition,
one has to take into account boost corrections to the leading-
order two-nucleon potential (i.e., the �P dependence in the
1π -exchange potential and the leading contact interactions;
see Ref. [21]).

While 1/m corrections to the one-pion-exchange-contact
3NF given in Eq. (4.12) have been never considered before,
the leading relativistic corrections to the two-pion exchange
3NF were studied by Friar and Coon in Ref. [22]; however,
they only provide expressions in coordinate space. In order to
facilitate a comparison between our results and the ones by
Friar and Coon, we give in Appendix B the coordinate-space
representation of the obtained 3NF contributions. Our profile
functions are related to the one used in Ref. [22] according to

U1(Mπr) = 4π

Mπ

h0(r), �∇�rU2(Mπr) = −4πMπ �rh0(r),

(4.15)

where the function h0 is defined in Eq. (24c) of that work.
Furthermore, f 2 (M) in Ref. [22] correspond to [gA/(2Fπ )]2

(m) in our notation. Friar and Coon also discuss the unitary
ambiguity of the resulting 3N potentials associated with the
UTs ∝ 1/m. They parametrized it in terms of the arbitrary
parameters μ and ν; see also Ref. [20]. The relations between
their μ, ν and our β̄8 and β̄9 are given by

μ = 4β̄9 + 1, ν = 2β̄8. (4.16)

Taking into account the typographical error in [22] as pointed
out in [5] of Ref. [20], we observe that our results for the 1/m

corrections to the two-pion exchange 3NF in Eqs.(B3)–(B5)
agree with the ones in Eqs. (23a)– (23c) and (33a)–(33d) of
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Ref. [22] except for the retardation corrections in ã123 and
b̃123 emerging from diagram (1) in Fig. 3. More precisely,
we reproduce the results of Friar and Coon if we make the
replacement

(1 − 2β̄8)(�q1 · �k2) + (1 + 2β̄8)(�q1 · �k1) →
(1 − 2β̄8)(�q1 · �k2) + (1 + 2β̄8)(�q1 · �k1) + δ (4.17)

in a123 and b123 in Eq. (4.11) with δ given by

δ = (1 − 2β̄8)�q1 · (�k2 − �k1) + (1 − 2β̄8)�q3 · (�k2 − �k3)

= 1
2

(
1 − 2β̄8)

(
p2

1 + p2
2 + p2

3 − p′
1

2 − p′
2

2 − p′
3

2)
,

(4.18)

where we made use of the identity �q1 + �q2 + �q3 = 0. This
implies that the difference between our results appears only
when the nucleons are off-the-energy shell. We conjecture that
this difference originates from the additional UTs exp(α1S1 +
α2S2) with α1 and α2 denoting the transformation angles and
S1 and S2 denoting the generators of the two-pion-exchange
range whose explicit form is given in Eq. (3.25) of Ref. [11].
The corresponding unitary ambiguity is not explored by Friar
and Coon. It is easy to see that these UTs induce, among
others, terms in the 3NF ∝ [Ekin, (α1S1 + α2S2)] which have
the same structure as the δ terms discussed above. As explained
in Ref. [11], the angles α1 and α2 have to be chosen in a
specific way [see Eq. (3.31) of that work] in order to maintain
renormalizability of the leading loop corrections to the 3NF.
Our findings therefore indicate that the particular choice made
in Ref. [22] for α1 and α2 is not compatible with the above-
mentioned renormalizability constraint.

V. SUMMARY AND CONCLUSIONS

In this work, we have derived the short-range part and the
relativistic (1/m) corrections to the 3NF in chiral effective
field theory at N3LO. Combined with the long-range parts
already given in Ref. [4], this completes the calculation of
two-, three-, and four-nucleon forces at this order in the
formulation without explicit �(1232) degrees of freedom.
The short-range parts considered here consists formally of
two different topologies. Remarkably, there is no contribution
from the one-pion-exchange-contact topology at N3LO as we
have demonstrated in Sec. II. The total contribution from the
two-pion-exchange-contact topology is given in Eqs. (3.1) and

(3.5) supplemented with Eq. (2.2). Furthermore, there are
relativistic (1/m) corrections to the leading 3NF at N2LO,
which are worked out in Sec. IV. The corresponding terms
of the 3NF are summarized in Eqs. (4.9) and (4.12). We also
provide the coordinate-space representation of the obtained
results in Appendix B and compare our findings for the
long-range 1/m corrections with the earlier calculation by
Friar and Coon [22].

We stress again that at N3LO, the 3NF is free of unknown
LECs, so the complete 3NF consisting of terms at N2LO
and N3LO contains altogether only the two LECs D and E

which need to be determined from few-nucleon data. With the
results presented here, one is now in the position to analyze
in detail the many data in few-nucleon and heavier systems
based on consistent and precise two- and three-nucleon forces.
In particular, it will be interesting to find out whether the
remaining discrepancies in the three- and four-nucleon systems
will be overcome employing the force derived in Ref. [4] and
here. Work along these lines is in progress.
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APPENDIX A: FORMAL ALGEBRAIC STRUCTURE
OF THE 3NF CORRECTIONS

In this appendix we list the formal operator structure of
the various N3LO contributions to the nuclear Hamiltonian
relevant for the present calculations. A detailed discussion
on these terms can be found in Ref. [11]. We include
contributions induced by the additional UTs considered in
that work and in Eq. (4.23) of Ref. [13]. Except for α5, β̄8,
and β̄9, the corresponding transformation angles are fixed by
the renormalizability constraints as discussed in [11]. In all
applications to nuclear forces and currents considered so far,
the dependence on α5 drops in the final results.
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η + H.c. (A1)

(2) Terms ∝ g2
ACS and g2
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(3) Retardation corrections ∝ g4
A/m:
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(4) Retardation corrections ∝ g2
A/m:
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(5) Retardation corrections ∝ g2
ACS/m and g2
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(6) Terms involving 1/m corrections to the gA vertex, ∝g4
A/m:

V = η

[(
1

2
+ β̄9

)
H

(1)
21

λ1

Eπ

H
(1)
21 ηH

(1)
21

λ1

E2
π

H
(3)
21 +

(
1

2
− β̄9

)
H

(1)
21

λ1

Eπ

H
(1)
21 ηH

(3)
21

λ1

E2
π

H
(1)
21

−H
(1)
21

λ1

Eπ

H
(1)
21

λ2

Eπ

H
(1)
21

λ1

Eπ

H
(3)
21 − H

(1)
21

λ1

Eπ

H
(1)
21

λ2

Eπ

H
(3)
21

λ1

Eπ

H
(1)
21

+ 1

2
H

(1)
21

λ1

E2
π

H
(1)
21 ηH

(1)
21

λ1

Eπ

H
(3)
21 + 1

2
H

(1)
21

λ1

E2
π

H
(1)
21 ηH

(3)
21

λ1

Eπ

H
(1)
21

]
η + H.c. (A6)

(7) Terms involving 1/m corrections to the gA vertex, ∝g2
ACS/m and g2

ACT /m:

V = η

[
H

(1)
21

λ1

Eπ

H
(2)
40

λ1

Eπ

H
(3)
21 −

(
1

2
− β̄9

)
H

(1)
21

λ1

E2
π

H
(3)
21 ηH

(2)
40

−
(

1

2
+ β̄9

)
H

(3)
21

λ1

E2
π

H
(1)
21 ηH

(2)
40

]
η + H.c. (A7)

Here and in what follows, we adopt the notation of Refs.
[4,11–13]. In particular, the subscripts a and b in H

(κ)
ab refer

to the number of the nucleon and pion fields, respectively,
while the superscript κ gives the inverse mass dimension of
the corresponding coupling constant;7 see Ref. [11] for more
details. The chiral order associated with a given contribution
can easily be read off by adding together the dimensions κ of
H

(κ)
ab . More precisely, it is given by

∑
i κi − 2. In the above

equations, η (λ) denote projection operators onto the purely
nucleonic (the remaining) part of the Fock space satisfying
η2 = η, λ2 = λ, ηλ = λη = 0, and λ + η = 1. The superscript
i of λi refers to the number of pions in the corresponding
intermediate state. Furthermore, Eπ denotes the total energy of
the pions in the corresponding state, Eπ = ∑

i(�li 2 + M2
π )1/2,

with �li being the corresponding pion momenta.

APPENDIX B: COORDINATE-SPACE REPRESENTATION

In this appendix we give the coordinate-space represen-
tation of the obtained 3NF contributions. Here and in what
follows, we adopt the notation of Refs. [4,11] and use the
dimensionless profile functions U1,2, W , and W1,2 defined for

7For 1/m corrections, κi corresponds to the inverse power of
coupling constants plus twice the power of m−1. In particular, κ = 2
for the nucleon kinetic energy term H20.

a general form of a local regulator function F� according to

U1(x) = 4π

Mπ

∫
d3q

(2π )3

ei �q·�x/Mπ

�q 2 + M2
π

F�(q)
�→∞−→ e−x

x
,

U2(x) = 8πMπ

∫
d3q

(2π )3

ei �q·�x/Mπ(�q 2 + M2
π

)2 F�(q)
�→∞−→ e−x,

W (x) = 1

M3
π

∫
d3q

(2π )3
ei �q·�x/Mπ F�(q)

�→∞−→ δ3(x),

W1(x) = 4π

M2
π

∫
d3q

(2π )3
ei �q·�x/Mπ A(q)F�(q)

�→∞−→ e−2x

2x2
,

W2(x) = 4π

M4
π

∫
d3q

(2π )3
ei �q·�x/Mπ q2A(q)F�(q) = −∇2

xW1(x).

(B1)

For the two-pion-exchange-contact terms in Eqs. (3.1) and
(3.5) we find

V2π-cont = g2
ACT M7

π

192π2F 4
π

[
2τ 1 · τ 2(�σ2 · �σ3)

× {
4π

(
3g2

A − 1
)
W (x12) − 2g2

AU1(2x12)

+ (
2g2

A − 1
)
[2W1(x12) + W2(x12)]

}
− 9g2

A[(�σ1 · �∇12)(�σ2 · �∇12)W1(x12)

+ (�σ1 · �σ2)W2(x12)]
]
W (x32) + 5 permutations.

(B2)
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Next, the coordinate-space representation of the relativistic corrections to the two-pion exchange 3NF emerges from
taking the Fourier transform of Eq. (4.9):

V2π,1/m = g2
AM6

π

1024mπ2F 4
π

(τ 1 · τ 3Ã123 + [τ 1 × τ 2] · τ 3B̃123) + 5 permutations, (B3)

where

Ã123 = (�σ1 · �∇12)(�σ3 · �∇32)ã123 +
{(

�σ3 · �p3

Mπ

)
, (�σ1 · �∇12)c̃123

}
,

B̃123 = (�σ1 · �∇12)(�σ3 · �∇32)b̃123 +
{(

�σ3 · �p3

Mπ

)
, (�σ1 · �∇12)d̃123

}
, (B4)

and the functions ã123, b̃123, c̃123, and d̃123 are given by

ã123 = g2
A(1 − 2β̄8)( �∇12 · �∇32)2U2(x12)U1(x32) + g2

A

{
(1 − 2β̄8)

�p2

Mπ

+ (1 + 2β̄8)
�p1

Mπ

, �∇12[ �∇12 × �∇32] · �σ2U2(x12)U1(x32)

}

−2g2
A(2β̄9 − 1)∇2

12U1(x12)U1(x32) + 2g2
A(2β̄9 − 1)

{ �p2

Mπ

, [�σ2 × �∇12]U1(x12)U1(x32)

}
,

c̃123 = −2g2
A(2β̄9 + 1)[ �∇12 × �∇32] · �σ2U1(x12)U1(x32),

b̃123 = g2
A(1 − 2β̄8)[ �∇12 × �∇32] · �σ2( �∇12 · �∇32)U2(x12)U1(x32)

−g2
A

{
(1 − 2β̄8)

�p2

Mπ

+ (1 + 2β̄8)
�p1

Mπ

, �∇12( �∇12 · �∇32)U2(x12)U1(x32)

}
− 2

{ �p3

Mπ

− �p2

Mπ

, �∇32U1(x12)U1(x32)

}

− 2g2
A(2β̄9 − 1)

{ �p2

Mπ

, �∇12U1(x12)U1(x32)

}
− 2[ �∇12 × �∇32] · �σ2U1(x12)U1(x32),

d̃123 = 2g2
A(2β̄9 + 1)( �∇12 · �∇32)U1(x12)U1(x32), (B5)

where �xij ≡ Mπ �rij , xij ≡ |�xij |, and �rij = �ri − �rj is the distance between the nucleons i and j . Furthermore, the �∇ij act on �xij (i.e.,
are dimensionless) and �pi refer to the momentum operator of the nucleon i. Curly brackets denote, as usual, the anticommutator
of two operators, {X, Y } ≡ XY + YX, and { �X, �Y } ≡ �X · �Y + �Y · �X.

Finally, the 1/m corrections to the one-pion-exchange-contact topology have the form

V1π-cont,1/m = g2
AM6

π

64mπF 2
π

τ 1 · τ 2

[
(�σ1 · �∇12)f̃123 +

{
�σ1 · �p1

Mπ

, g̃123

}]
+ 5 permutations, (B6)

with the functions f̃123 and g̃123 given by

f̃123 = (1 − 2β̄8)( �∇12 · �∇32)
[
CS( �∇12 · �σ2) + CT ( �∇12 · �σ3)

]
U2(x12)W (x32)

−CT

{
(1 − 2β̄8)

�p2

Mπ

+ (1 + 2β̄8)
�p1

Mπ

, �∇12 �∇12 · [�σ2 × �σ3]U2(x12)W (x32)

}

− 2(2β̄9 − 1)
[
CS( �∇32 · �σ2) + CT ( �∇32 · �σ3)

]
U1(x12)W (x32)

+ 2CT (2β̄9 − 1)

{ �p2

Mπ

, [�σ2 × �σ3]U1(x12)W (x32)

}
,

g̃123 = −2CT (2β̄9 + 1) �∇12 · [�σ2 × �σ3]U1(x12)W (x32). (B7)
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714, 535 (2003).
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