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A fully symmetry unrestricted time-dependent density functional theory extended to include pairing
correlations is used to calculate properties of the isovector giant dipole resonances of the deformed open-shell
nuclei 172Yb (axially deformed), 188Os (triaxially deformed), and 238U (axially deformed) and to demonstrate
good agreement with experimental data on nuclear photo-absorption cross sections for two different Skyrme
force parametrizations of the energy density functionals SkP and SLy4.
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The isovector giant dipole resonance (GDR) is perhaps
the simplest example of a nuclear collective motion of all
the protons against all the neutrons. Since its observation in the
photo-absorption cross section [1], it has been intensively stud-
ied as it combines several challenging aspects of the physics
of the atomic nucleus [2,3]. Even though GDR is practically
harmonic in character, it is not an adiabatic collective mode,
and various damping mechanisms of the collective energy are
at work [4]. In the models of Migdal [5], Goldhaber-Teller [6],
and Steinwedel-Jensen [7], GDR is described as the relative
motion of two fluids, either compressible or incompressible,
with neutrons and protons vibrating around a common center
of mass, and the mass dependence of the excitation energy
reads as A−1/6 and A−1/3 respectively [8]. A good estimation
of the GDR vibrational frequency is h̄ω ≈ 80 MeV A−1/3 for
spherical nuclei. GDR is interpreted simply as the equivalent
of the zero sound in a nuclear system, and the size of the
nucleus sets a constraint on the largest wavelength. In the
case of deformed nuclei, the GDR peak is split, with various
frequencies revealing different principal axes of the nuclear
shape. Since the GDR state is not an eigenstate of the nuclear
Hamiltonian, it is characterized by a spreading width that
cannot be extracted from a simple hydrodynamical approach.
The spreading width in principle can be calculated within a
microscopic model of the atomic nucleus. The total width of
the GDR is mainly due to a couple of mechanisms: the coupling
of the GDR to complex nuclear configurations �↓ and the
coupling to the continuum, leading to the escape of neutrons
and protons �↑. These two widths contribute to the total width
of the GDR, � = �↓ + �↑, and their relative contributions
vary depending on the mass number A and the N/Z ratio. The
escape width is typically more important for light nuclei. The
physical mechanisms related to �↓ may be quite complicated
and involve coupling to low-energy surface vibrations, Landau
damping, and collisional damping [4].

The theoretical approach to GDR is typically within the
linear response of the nuclear system to an external probe [9].
In contemporary approaches, the description of the atomic
nucleus is provided by density functional theory (DFT) [10],
and the GDR is described within the small amplitude limit of

the time-dependent version of DFT. This approach leads to
the well-known (quasiparticle) random-phase approximation
[(Q)RPA], which has been used with a variety of nuclear
density functionals, though only very recently for deformed
systems; see Refs. [11–21] for several representative cal-
culations. When applied to open-shell and, in particular,
deformed nuclei, QRPA requires diagonalizations of matri-
ces of extremely large sizes and often severe truncations
of the quasiparticle basis set. Truncations lead to a number
of undesired features; in particular, spurious states, instead of
having a zero excitation energy, get admixed to transitions
of physical interest. In a deformed open-shell nucleus, states
corresponding to the excitation of the center-of-mass motion,
rotation of the system, and gauge transformations arising from
the breaking of the proton and neutron number conservations
all have zero-energy excitation energy (sometimes referred to
as Goldstone modes). When (Q)RPA is derived, one usually
allows for small violations of the Pauli principle, which
have only a negligible effect when one is considering the
most collective transitions. (Q)RPA formally is an approach
in which the fermionic nuclear Hamiltonian is bosonized
and the number of bosonic excitations allowed to exist is
significantly much larger than the number of true physical
excitations. Significant difficulties arise when one tries to go
beyond the (Q)RPA and consider coupling to more complex
configurations and describing the spreading width �↓. In spite
of the efforts of many generations of theorists and many
approaches suggested so far (nuclear field theory [22], boson
expansion methods [8,23], and diagrammatic methods [4]), a
truly satisfactory microscopic treatment is still lacking, and
theorists resort to either phenomenological models, such as
optical potentials (which can easily lead to overestimates of
�↓ unless vertex corrections are accounted for as well [4]),
or simple prescriptions, such as adding a popular but arbitrary
energy smoothing of the (Q)RPA strength.

Here we present an approach to GDR in open-shell nuclei
based on an extension of the DFT to superfluid systems,
superfluid local density approximation (SLDA), and its further
extension to time-dependent phenomena (TDSLDA), which
was developed over the years and applied to a number
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physical systems and phenomena; see Refs. [24–35]. The
time-dependent Hartree-Fock-Bogoliubov (TDHFB) approxi-
mation has been used previously as an alternative to QRPA
in spherical nuclei [36] and with a number of further
approximations in deformed nuclei [37,38]. TDSLDA appears
formally as a time-dependent self-consistent local mean-field
approximation. No spurious modes are admixed to physical
transitions, since the energy density functional respects all the
required symmetries (translational and rotational symmetry,
Galilean invariance [39], parity, isospin symmetry, gauge
symmetry), and no further approximations are introduced,
apart from discretization errors, which are under control.
Isospin symmetry is broken only by the proton/neutron mass
difference and by the Coulomb energy, which we treat in
the Hartree approximation. We use an approximation to the
normal part of the nuclear energy density functional provided
by various Skyrme force parametrizations [40–42], and all the
terms are taken into account numerically. The pairing part
of the energy density functional is treated as described in
Refs. [24] and [25], when a single coupling constant is used for
both protons and neutrons, and even and odd particle numbers
as well, unlike most phenomenological approaches to nuclear
pairing that break isospin invariance in the pairing channel.
In such approaches (see Refs. [12] and [15] for examples of
QRPA calculations), the proton pairing coupling constant is
larger in magnitude than the neutron pairing coupling constant,
|Vp| > |Vn|. This leads to a flagrant violation of isospin
invariance in the energy density functional, the magnitude of
which is clearly not due to charge-symmetry-breaking forces.
Such effective pairing couplings would be consistent with
a new kind of pairing energy that does not violate charge
symmetry breaking [43]. The Coulomb interaction will lead to
just an opposite relation [44], namely to |Vp| < |Vn|. Galilean
invariance [39] requires the presence of currents in the energy
density functional, and although their contribution is vanishing
in the ground states of even-even nuclei, it is important for the
excited states [45,46].

Within TDSLDA, one describes accurately the interac-
tion in both particle-hole and particle-particle channels, the
treatment is fully self-consistent, and all symmetries of the
Hamiltonian are properly accounted for. We place the nuclear
system on a 3D spatial lattice, needed spatial derivatives
are determined using fast Fourier transform, and we at
first determine the ground-state properties within SLDA and
subsequently subject the system to an external time-dependent
one-body potential [33,35,47]. The Coulomb interaction is
treated with particular care so as not to introduce the potential
due to image charges, which appear naturally in a spatial lattice
formulation with periodic boundary conditions. Although
we study the small amplitude limit, the equations we solve
here are the same as for a motion of arbitrary amplitude. The
emerging equations are formally equivalent to the TDHFB
approximation with local potentials, or to the time-dependent
Bogoliubov–de Gennes (TDBdG) equations:
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where we have suppressed the spatial r and time coordi-
nate and k is the label of each quasiparticle wave func-
tion [ukσ (r, t), vkσ (r, t)]. where σ = ↑,↓. The single-particle
Hamiltonian hσσ ′(r, t) is a partial differential operator (thus
local) and �(r, t) is a pairing field, all defined through the
normal, anomalous, spin, and isospin densities and currents.
The interaction with various applied external fields (spin,
position, and/or time dependent) is described by including
the corresponding potentials in the single-particle Hamiltonian
hσσ ′(r, t). This approach represents a flexible tool to describe
in general large amplitude nuclear motion as it contains the
coupling to the continuum and between single-particle and
collective degrees of freedom, since the mean field is explicitly
time dependent. However, the latter type of coupling between
single-particle and collective degrees of freedom will account
only for a part of the diagrams discussed in Ref. [4]. If
the external field will act along one of the symmetry axes,
for example, only collective oscillations along that axis will
be excited but not in the perpendicular direction. Although
the TDSLDA is designed to provide the values of one-body
densities, a simple modification of the variational principle
extends the approach to two-body observables, for example,
particle number fluctuation [48–52]. Another straightforward
extension of the formalism leads to the stochastic TDSLDA,
with hopping between various time-dependent mean fields,
and can account for dissipation [53].

The most convenient quantity for studying the GDR is the
strength distribution: S(E) = ∑

ν |〈ν|F̂ |0〉|2δ(E − Eν), where
|ν〉 are nuclear eigenstates corresponding to energies Eν . In
our case, the operator F̂ is a sum of two operators depending
on neutron and proton coordinates, respectively: Fτ (r) =
Nτ sin(k · rτ )/|k|, where τ = n, p, |k| = 2π/L, L is a lattice
size of the box, Nn = −Z,Np = N are neutron and proton
numbers, respectively, and A = N + Z. The operator Fτ (r)
generates all the odd multipoles, but the predominant contri-
bution comes from the dipole mode. In practice, depending on
the symmetry of the ground state, we calculate the response
of the nucleus to different external fields. Thus, for a spherical
nucleus, we can chose rp and rn along any direction; for an
axially deformed nucleus, we compute two different responses
with rp and rn along two symmetry axes; while for a triaxial
nucleus, we compute the responses along three principal
axes. Within our formalism, the external perturbation is added
to the Hamiltonian hτ,σσ (r, t) ⇒ hτ,σσ (r, t) + Fτ (r)f (t) and
switched on adiabatically, where f (t) = C exp[−(t − 10)2/2]
(time in units of fm/c) and C defines the intensity of the
perturbation, which has to be kept sufficiently small to stay
in the linear response regime but large enough to excite the
modes of interest. The amount of energy deposited into a
nucleus was in the range 45–50 MeV. For such perturbations,
which imply harmonicity of the excitation, the response
function to the external perturbation F̂ f (t) is given by Ref.
[47]: S(ω) = Im{δF (ω)/[πf (ω)]}, where δF (ω) is the Fourier
transform of the fluctuation of the expectation value: δF (t) =
〈F̂ 〉t − 〈F̂ 〉0 = ∫

d3rδρ(r, t)F (r). The extraction procedure
of the strength function is simple to state: Obtain the self-
consistent stationary solution using the stationary SLDA solver
to high precision so the spurious contributions due to global
excitations (center-of-mass motion, rotations for deformed
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nuclei, proton and neutron pairing Goldstone modes) are
decoupled, and subsequently use this solution as input for
the TDSLDA code where it is perturbed by the external field
and evolved for a period of time, T . The energy resolution
due to taking the Fourier transform in the finite window T is
δE = 2πh̄/T , and so it is important to perform propagation to
sufficiently large T (here T ≈ 1600 fm/c and δE ≈ 0.8 MeV).
We have used a cubic lattice box with L = 32.5 fm on a
side and a lattice constant 1.25 fm, which allows us to obtain
the ground-state energy with an accuracy of a few tens of
kilo-electron-volts for a number of spherical light open-shell
nuclei. The TDSLDA equations were integrated in time using a
fifth-order multistep method with a time step �t ≈ 0.12 fm/c
chosen to maintain a 10−7 relative accuracy; see Refs. [33,35].
The changes in proton and neutron numbers during the
time evolution change are |�Z| < 10−4 and |�N | < 10−4

respectively. TDSLDA, when the external perturbation does
not change the particle number, as in the GDR case, the
particle number in the time-dependent solution is exactly
conserved, and thus all the excited modes have exactly the
same average proton and neutron particle number as the ground
state. The method recently suggested in Ref. [17], with the
technical improvements described in Ref. [18], has the promise
to become the leading approach for QRPA calculations in
open-shell nuclei because of the simplicity of its numerical
implementation and its accuracy. The solutions of the QRPA,
however, are harder to interpret [11], since for a given nucleus
these equations will provide solutions for �N = 0,�Z = 0,
as well as pairing vibration-type transitions with �N = ±2
and/or �Z = ±2 respectively. TDSLDA has been applied so
far to describe excitations with no change in particle number
�N = 0 due to time-dependent external fields, which do not
change the particle number [33,34], as well as excitations with
�N 
= 0 [31] in the case of more complicated time-dependent
external probes.

From the TDSLDA solutions, we construct the occupation
probabilities for both proton and neutron quasiparticle states:

nk(t) =
∑

σ=↑,↓

∫
d3r|vk,σ (rt)|2,

where k labels the proton and neutron quasiparticle wave
functions respectively. Because of the complexity of the QRPA
equations, two types of approximations have been often used
in the past in the literature. In one kind of approximation, the
proton and neutron densities are constructed from

vk(r, σ, t) =
√

nk(t)φk(r, σ, t),

where φk(r, σ, t) satisfy TDHF-like equations. The occupation
probabilities nk(t) are obtained either in a TDBCS formalism
or are simply assumed to be frozen at their ground-state
values. One can easily show that in the case of TDBCS
the continuity equation is not satisfied [54] and thus particle
number conservation is violated. The assumption that occu-
pation probabilities are frozen to their ground-state values is
violated strongly as well, as the two plots in Fig. 1 here amply
demonstrate. A typical example of this frozen occupation
probabilities approximate approach is in Ref. [55], in which
one can find a calculation of the GDR in the triaxial nucleus
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FIG. 1. (Color online) The time-dependent proton and neutron
occupation probabilities of a set of quasiparticle states around
the Fermi level for 238U calculated as described in the main text
with an approximate energy density functional using the SLy4
parametrization.

188Os with SLy6, which is very similar to SLy4. The shape
of the GDR line shape calculated in Ref. [55] is noticeably
different from both the experimental one and our results; see
Fig. 2. We notice that there are experimental indications that
a pygmy resonance exists in the nucleus 172Yb [56]. We did
not find any evidence of a pygmy resonance using either of the
two Skyrme energy-density functional parametrizations SLy4
and SkP, and neither did Terasaki and Engel using SkM* [12].
In Ref. [12], pairing correlations were treated using a sharp
cutoff, a prescription that shows a strong dependence on the
cutoff energy, at least in the case of low-lying states [57]. The
approach adopted by us is free of such cutoff dependency in
the pairing channel, once the cutoff energy is chosen roughly
above 50 MeV [24].

In Fig. 2, we show the results of our calculations and
compare them with experimental data [58]. For the axially
deformed nuclei, we performed two calculations perturbing the
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FIG. 2. (Color online) The calculated photo-absorption cross
section (solid black line), using two Skyrme force parametrizations
for three deformed open-shell nuclei and the experimental (γ, n)
cross sections (solid purple circles with error bars), extracted from
Ref. [58]. With dashed (green), dotted (red), and dot-dashed (blue)
lines, we display the contribution to the cross section arising from
exciting the corresponding nucleus along the long axis, the short axis
(multiplied by 2 for the prolate nuclei 172Yb and 238U), and the third
middle axis in the case of the triaxial nucleus 188Os.

systems along the longer and the shorter axis, respectively. The
triaxial nucleus 188Os required three runs. The experimental
data include several effects: the coupling of the collective
strength to the 1p-1h states, especially to the low-lying

collective vibrations, Landau damping (�L ≈ h̄vF /R, where
vF is the Fermi velocity and R the nuclear radius), particle
escape into the continuum (�↑), and coupling to more complex
states (�↓). The theoretical Thomas-Reiche-Kuhn sum rule for
these nuclei are 2.49 (172Yb), 2.81 (188Os), and 3.38 (238U)
in MeV barn respectively [8]. The corresponding energy-
integrated photo-absorption cross sections in the interval 8-
to 20-MeV are 2.47, 2.73, and 3.06 in the experiment; 1.94,
2.26, and 2.49 for SkP; and 1.84, 2.01, and 2.35 for SLy4
respectively. Both SkP and SLy4 forces underestimate the
energy-integrated cross section in this energy interval, even
though both Skyrme parametrizations adequately reproduce
the average peak position and even the width, in spite of great
difference in the isoscalar nucleon effective mass m∗

is = m

and m∗
is = 0.7m, but very similar isovector effective mass,

m∗
iv = 0.74m and m∗

iv = 0.8m for SKP and SLy4 respectively.
The use of periodic boundary conditions forced us to use
|k| = 2π/L in Fτ (x) = Nτ sin(k · rτ )/|k|, instead of |k| → 0,
which leads to an underestimation of the cross sections by
≈25%. With this trivial correction (obtained by calculating
the energy-weighted sum rule for the external probe), we
obtain 2.63(6) (172Yb), 3.11(7) (188Os), and 3.55(8) (238U)
for SkP and 2.50(5) (172Yb), 2.77(5) (188Os), and 3.35(8)
(238U), with the SLy4 results being in slightly better agreement
with experimental results. The mixing with more complex
configurations (�↓) will lead to some depletion of the transition
strength out of this energy interval.
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