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Special six- j and nine- j symbols for a single- j shell
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In this Brief Report, we propose general expressions for six-j and nine-j coefficients arising in the study of
the J -pairing interaction of identical fermions in a single-j shell. In the literature such coefficients are available
only for a number of given angular momenta.
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(i) Introduction. The present work concerns six-j and
nine-j coefficients frequently encountered in nuclear-shell
theory. In a series of papers [1–5], Hamiltonians with attractive
interactions between pairs of nucleons coupled to angular mo-
mentum J were investigated. The related calculations involve
six-j and nine-j coefficients, for which analytical formulas
were given only for fixed values of angular momentum I

entering as a parameter. In (ii), an explicit form for a six-j
coefficient used in Ref. [2] is presented, together with a sum
rule including a weighting factor of the kind (−1)J (2J + 1).
In (iii), analytical formulas for two nine-j coefficients studied
in Refs. [1,3] are provided.

(ii) Six-j coefficients. In Ref. [2], Zhao and Arima proved
that a system of three fermions in a single j shell is exactly
solvable in the presence of an angular-momentum J -pairing
interaction. They found that when the Hamiltonian contains
only an interaction between pairs of fermions coupled to
spin J = Jmax = 2j − 1, the noninteger eigenvalues of three
fermions with angular momentum I around the maximum
appear as noninteger eigenvalues of four fermions if I is close
to or larger than Jmax. The calculations involve the following
six-j coefficient: {

j j J

j I J

}
, (1)

for which only expressions for J = 2j − 1 and special cases
I = j − 1, j , and j + 1 are displayed [2]. The value of j can
be either integer or half integer. For J = 2j − 1, the six-j
coefficient presents the particularity that one of the arguments
of its first row is smaller by unity than the sum of the two
others. Using the following formula given in Ref. [6]:{

a b a + b − 1
a e a + b − 1

}
= (−1)2a+b+e

× 2{b(2a + b − 1)(2a + b)

−be(e + 1) − 2a2}
× (2a − 1)!(b + e − 1)!

(2a + 2b)!(−b + e + 1)!
, (2)

with a = b = j and e = I , we obtain the following expression:{
j j 2j − 1
j I 2j − 1

}
= (−1)3j+I {9j 2 − 5j − I (I + 1)}

× (2j )!

(4j )!

(j + I − 1)!

(I − j + 1)!

= (−1)3j+I

22j

{9j 2 − 5j − I (I + 1)}
(4j − 1)!!

× (j + I − 1)!

(I − j + 1)!
, (3)

with n! = n(n − 1)(n − 2) · · · and n!! = n(n − 2)(n − 4) · · ·.
One has (−1)!! = 1 (occurring for j = 0) and, when n is even,
n!! = 2n/2(n/2)!. Equation (3) is readily obtained by using
the MATHEMATICA R© calculator in terms of � functions. It is
interesting to remember that the six-j coefficients of Eq. (1)
for I = j follow the sum rule [1,2,7–9]:

1

3

(
2j + 1

2
+2

∑
even J

(2J +1)

{
j j J

j j J

})
=

[
2j + 3

6

]
, (4)

where [x] represents the integer part of x (largest integer not
exceeding x). Similarly, for I = j + 1, one has

1

3

(
2j − 1

2
− 2

∑
even J

(2J + 1)

{
j j J

j j + 1 J

})
=

[
j

3

]
.

(5)

Such sum rules are required in order to determine the
number of independent interactions in a given j shell that
conserve seniority [9]. More general sum rules are given by
Zhao and Arima in the Appendix of Ref. [2]. The relations (4)
and (5) are, for a half-integer j , particular cases of the identity:

∑
even J

(2J + 1)

{
j j J

j I J

}

=
{

3
2

[
2I+3

6

] − I
2 − 1

4 if I � j

3
2

[ 3j−3−I

6

] + 3
2δI,j − 1

2

[ 3j+1−I

2

]
if I � j,

(6)

where

δI,j =
{

0 if (3j − 3 − I ) mod 6 = 1
1 otherwise. (7)

The same summation over odd values of J leads to∑
odd J

(2J + 1)

{
j j J

j I J

}
= I

2
+ 1

4
− 3

2

[
2j + 3

6

]

=
⎧⎨
⎩

−1 if 2j = 3k

0 if 2j = 3k + 1
1 if 2j = 3k + 2.

(8)
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All the sum rules given in Ref. [2], including Eqs. (6) and
(8), involve the weighting factor (2J + 1). We would like to
mention that Eqs. (6) and (8) can be combined to obtain the
following sum rule with the weighting factor (−1)J (2J + 1):∑

J

(−1)J (2J + 1)

{
j j J

j I J

}
=1 − (I −r)+3

[
I −r

3

]
,

(9)

with t = [1 + (−1)2j ]/2 and r = 3(1 − t)/2. Such a relation
was also derived by Vanagas and Batarunas in their paper on
the characters of the symmetric group SO(3) [10,11].

(iii) Nine-j coefficients. In Ref. [1], Zhao et al. showed that
an attractive J -pairing interaction favors pairs with angular
momentum J in low-lying states and discovered that a large
array of eigenvalues of four nucleons in a single-j shell are
asymptotic integers when J ≈ Jmax = 2j − 1 and the total
angular momentum I is not very close to Imax = 4j − 6. This
phenomenon originates from the validity of the pair-truncation
scheme and special features of particular nine-j coefficients,
which are of the kind:⎧⎨

⎩
j j J

j j J

J J I

⎫⎬
⎭ , (10)

the value of j being either integer or half integer. Such
coefficients play a role in the calculation of matrix elements,
and in the numbering and classification of states of given spin
in the presence of an angular-momentum J -pairing interaction.
It is easy to see that the nine-j coefficient of Eq. (10) is equal
to zero if I is odd, because a phase factor (−1)4j+4J+I =
(−1)I appears if one exchanges the first and second
rows.

The particular nine-j coefficient used in Appendix
A of Ref. [1] and corresponding to J = 2j − 1 is
equal to ⎧⎨

⎩
j j 2j − 1
j j 2j − 1

2j − 1 2j − 1 I

⎫⎬
⎭ . (11)

Zhao et al. provide the expression of this coefficient for
a few particular cases (I = 0, 2, 4, and 6) in Appendix
A of Ref. [1], but mention that they were unable to get
a universal formula. The latter nine-j coefficient is also
studied in Appendix A of Ref. [3], and formulas are given
for particular cases I = 0, 2, 4, . . . , 12. The authors explain
that they obtained their expressions using the expansion
of the nine-j coefficients of Eq. (10) in terms of six-j
coefficients:

⎧⎨
⎩

j j J

j j J

J J I

⎫⎬
⎭ =

j+I∑
k=|j−I |

(−1)2k(2k + 1)

{
j j J

J I k

}2 {
j j J

j k J

}
, (12)

together with analytical expressions for the six-j coefficients in the cases where J = 2j − 1 and 2j for different fixed values
of I . We found empirically that the particular nine-j coefficient of Eq. (11) is equal to

⎧⎨
⎩

j j 2j − 1
j j 2j − 1

2j − 1 2j − 1 I

⎫⎬
⎭ = (−1)2j+I/2

2

(I − 1)!!(4j − I − 3)!!

(4j + 1)!!

(2j + I/2 − 1)!(2j − 1)!

(I/2)!(4j − 1)!

(
8j 2 − 6j − I (I + 1)

2

)
, (13)

where I is an even integer. Equation (13) is conjectured partly based on Refs. [1,3], and has been checked numerically by using
a FORTRAN code for various j and I up to very large values (j = 100, I = 156).

The second nine-j coefficient described in Appendix A of Ref. [3], corresponding to J = 2j , has the following expression:

⎧⎨
⎩

j j 2j

j j 2j

2j 2j I

⎫⎬
⎭ . (14)

The authors give the expression of this nine-j coefficient for particular cases I = 0, 2, 4, . . . , 24. Using the representation of
the nine-j coefficient by the triple sum formula of Ališauskas and Jucys [12–16], Bandzaitis et al. [17,18] found the general
formula:

⎧⎨
⎩

a1 a2 a12

a3 a4 a34

a1 + a3 a2 + a4 b

⎫⎬
⎭ = (−1)a1−a2−a3+a4+b

[
(2a1)!(2a2)!(2a3)!(2a4)!

(2a1 + 2a3 + 1)!(2a2 + 2a4 + 1)!(a1 + a2 + a12 + 1)!(a1 + a2 − a12)!

]1/2

×
[

(a1 + a2 + a3 + a4 + b + 1)!(a1 + a2 + a3 + a4 − b)!

(a3 + a4 + a34 + 1)!(a3 + a4 − a34)!

]1/2

×
(

a12 a34 b

a1 − a2 a3 − a4 −a1 + a2 − a3 + a4

)
, (15)
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where the nine-j symbol is expressed with a three-jm coefficient. In our case, we have a1 = a2 = a3 = a4 = j , a12 = a34 = 2j ,
and b = I , which leads to⎧⎨

⎩
j j 2j

j j 2j

2j 2j I

⎫⎬
⎭ = (−1)I

(2j )!2

(4j + 1)!2

√
(4j + I + 1)!(4j − I )!

(
2j 2j I

0 0 0

)
, (16)

where the three-jm coefficient is [19](
2j 2j I

0 0 0

)
= (−1)2j+I/2 I ! (2j + I/2)!

[(I/2)!]2 (2j − I/2)!

√
(4j − I )!

(4j + I + 1)!
. (17)

Therefore, the particular nine-j coefficient of Eq. (14) is equal to⎧⎨
⎩

j j 2j

j j 2j

2j 2j I

⎫⎬
⎭ = (−1)2j+I/2

(
(2j )!

(4j + 1)!

)2
I !(4j − I )! (2j + I/2)!

[(I/2)!]2 (2j − I/2)!

= (−1)2j+I/2 (2j )!2

(4j )!(4j + 1)2

(
2j

I/2

)(
2j + I/2

I/2

)
(

4j

I

) , (18)

where I is an even integer and (np) represents the binomial coefficient.

(iv) Conclusion. In this Brief Report, we have presented a
few formulas of special six-j and nine-j symbols for a single-j
shell. Some of these results were given for fixed values of the
angular momentum in previous studies [1–5]; in the present
work, we proposed unified formulas.

The results for six-j coefficients are proved by a formula
given in Ref. [6]. They have the particularity that, on one
row, one of the arguments is the summation of the two

others minus one. They are also readily obtained by using the
MATHEMATICA R© six-j calculator. One of the nine-j results
is proved by using a relation given in Refs. [17,18] and
involving a three-jm coefficient; the other is confirmed by
computer codes, but a mathematical proof is warranted in the
future.
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