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High-spin yrast states in the γ -soft nuclei 135Pr and 134Ce
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High-spin states have been studied in 135
59 Pr, populated through the 116Cd(23Na,4n) reaction at 115 MeV, using

the Gammasphere γ -ray spectrometer. The negative-parity yrast band has been significantly extended to spin
∼45h̄ and excitation energy 21.5 MeV, showing evidence for several rotational alignments. The positive-parity
yrast band of 134

58 Ce, populated through the p4n channel of this reaction, was also populated to spin ∼38h̄ and
excitation energy 18 MeV. Cranking calculations indicate that these nuclei are soft with respect to the triaxiality
parameter γ and that several competing nuclear shapes occur at high spin.
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Nonaxial nuclear shapes, described by the triaxiality pa-
rameter γ in the polar representation of rotating quadrupole
shapes [1], are thought to become important for the 57La, 58Ce,
59Pr, and 60Nd isotopes beyond A = 130 that approach the
N = 82 shell closure [2–4]. This nonaxial nuclear deformation
is induced through core polarization by valence particles in
anisotropic orbitals [5,6]. High-j particles from the bottom of
a subshell prefer prolate nuclear shapes, while particles from
the top of a subshell prefer an oblate shape [7]. The delicate
interplay of such valence particles can therefore influence
the overall shape of the nucleus, inducing triaxiality. Such
is the case for these nuclei where valence protons occupy
low-� orbitals from the bottom of the πh11/2 subshell, while
valence neutrons occupy high-� orbitals from the top of
the νh11/2 subshell. Hence, this mass region provides an
ideal environment for studying the shape-driving effects of
specific valence particles. In addition, neutrons intruding from
above the N = 82 shell gap can induce larger quadrupole
deformation, ε2.

The ideal triaxial shape is realized for γ = ±30◦ or −90◦.
In the Lund convention [1], such shapes are equivalent with
distinct “long,” “short,” and “intermediate” principal axes; it is
only the axis about which the nucleus rotates that is different.
For γ = 30◦, the nucleus rotates about the short axis; for γ =
−30◦, the nucleus rotates about the intermediate axis; and for
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γ = −90◦, it rotates about the long axis. The largest moment of
inertia is achieved for γ = 30◦ and hence, classically, a triaxial
body minimizes its energy for such motion. For the nucleus,
however, which is a finite quantum system, strong coupling
between collective and single-particle angular momenta can
influence the way in which a triaxial nucleus rotates, or indeed
precesses (wobbles) [8].

This Brief Report presents new high-spin results for odd-Z
135Pr, where the yrast band has been significantly extended
to 45h̄; previous work on this nucleus can be found in
Refs. [9–11]. In addition, the yrast band of 134Ce [12,13] has
also been extended to spin approaching 40 h̄.

Experimental Details. High-spin states in 135Pr were popu-
lated with the 116Cd(23Na,4nγ ) fusion-evaporation reaction.
The experiment was performed at the Lawrence Berkeley
National Laboratory, using a 115-MeV 23Na beam supplied
by the 88-inch cyclotron. This beam energy was chosen to
primarily study the 134Pr nucleus (5n) [14]. Two experiments
were performed with different types of targets. A single,
thin, self-supporting cadmium target of nominal thickness
1.2 mg/cm2 was used to study high-spin states, while a
1.0-mg/cm2 cadmium target on a thick lead backing of
15 mg/cm2 was used to allow lifetime measurements through
the Doppler-shift attenuation method (DSAM) [15]. The
Gammasphere γ -ray spectrometer [16,17], containing 99
HPGe detectors, was used to record Compton-suppressed
γ -ray coincidence events. Approximately 6 × 108 such events,
of average γ -ray fold 4.5, were collected with the thin target,
while 1.5 × 109 were collected with the backed target.

In order to provide channel selection, the bismuth ger-
manate (BGO) anti-Compton shield elements of Gammas-
phere were used as a γ -ray fold and sum-energy selection
device [18]. By removing the Hevimet collimators from the
front of the HPGe detectors, the front of the BGO suppression
shields were exposed, allowing γ rays to strike the shield
elements directly. The number of BGO elements firing and
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their total summed energy were recorded for each event
and added to the HPGe information off-line to provide fold
k and sum-energy H information. High k − H values, that
retained ∼60% (3.7 × 108 events) of the original data, were
subsequently used in the off-line analysis to enhance the
four-particle 135Pr channel relative to competing five-particle
(134Pr, 134Ce) and six-particle (133Pr) channels. After this
selection, the ratio of 135Pr to 134Pr was approximately doubled
to 40% in the retained data.

Experimental Results. The thin-target data set was further
unfolded into constituent triple (γ 3) coincidence events and re-
played into a RADWARE-format [19] cube containing 1.8 × 109

events. In order to establish the multipolarity of the transitions,
angular-intensity ratios were measured. The negative-parity
yrast band of 135Pr, obtained from this work, is shown in
Fig. 1, while a double-gated γ -ray spectrum is presented in
Fig. 2(a). The Iπ = 11/2− state of 135Pr is isomeric, with a
half-life of 105 μs [20], and lies 317 keV above the Iπ = 3/2+
ground state [21]. The negative-parity yrast band of 135Pr has
been established firmly up to Iπ = 67/2− and also extended
to Iπ = (91/2−). The work of Ref. [9] is confirmed up to
Iπ = 47/2−, with eleven new transitions placed above this
state. In addition, positive-parity sidebands [9] were confirmed
up to Iπ = 39/2+ and 41/2+, but could not be significantly
extended.

The yrast band of 134Ce has also been extended by two
transitions, to a tentative spin and parity Iπ = (38+), from
the present data; the level scheme is included in Fig. 1 and a
double-gated spectrum is included in Fig. 2(b), where it can be
seen that the topmost transitions have energies just above the
previously known 1323 keV (34+ → 32+) transition [12,13].
In addition, a weakly populated “superdeformed” band [22]
has been confirmed in 134Ce.

Discussion. Experimental data for negative-parity yrast
bands in odd-Pr isotopes are presented in Fig. 3 in terms of total
aligned angular momentum Ix and alignment ix [23], plotted as
a function of rotational frequency, ω ≈ Eγ /2 h̄. The yrast band
of 134Ce is also included in Fig. 3(a). In Fig. 3(b), a rotational
reference, based on a configuration with a variable moment
of inertia, Jref = J0 + ω2J1, has been subtracted in each
case, with Harris parameters [24] J0 = 17.0 h̄2 MeV−1 and
J1 = 25.8 h̄4 MeV−3 obtained from the S band of 130Ce [25].
The data include 125Pr [26], 127Pr [27], 129Pr [28], 131Pr [29],
133Pr [30], and 137Pr [31], in addition to the new results for
135Pr.

The yrast band of 135Pr contains an odd-h11/2 proton and
hence the lowest-frequency alignment of h11/2 quasiprotons
is blocked. The large increase in ix of 15 h̄ around ω =
0.45 MeV/h̄ in 135Pr, as shown in Fig. 3(b), then suggests
the rotational alignment of both the second and third h11/2

quasiprotons and the first pair of h11/2 quasineutrons. The
simultaneous alignment of πh11/2 and νh11/2 quasiparticles
has also been observed in 139Pm [32]. In 134Ce, the first pair
of h11/2 quasiprotons (blocked in 135Pr) align at the lower
frequency of ω ∼ 0.35 MeV/h̄, with a sharp backbend, while
the first pair of h11/2 quasineutrons align at ω ∼ 0.48 MeV/h̄;
see Fig. 3(a). An increase in ix around ω = 0.65 MeV/h̄

suggests further structural changes in both 135Pr and
134Ce.
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FIG. 1. (Color online) Partial level schemes deduced for 135Pr and
134Ce from the present experiment. Transition energies are given in
keV and are accurate to ±0.3 keV, except those quoted as integers,
which are accurate to ±1 keV. The transitions above Iπ = 47/2− in
135Pr and 34+ in 134Ce, labeled in red, are new.

Theoretical calculations for 135Pr have been performed
in the framework of the configuration-dependent cranked
Nilsson-Strutinsky (CNS) formalism without pairing [33,34].
Results have been previously discussed for the mass 130 region
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FIG. 2. (Color online) Coincident γ -ray spectra for (a) the
(π, α) = (−,−1/2) yrast band in 135Pr, and (b) the (+, 0) yrast band
in 134Ce. Band members are labeled by their energies in keV, with
new transitions denoted by diamonds. Contaminants from 135Pr are
labeled by “C” in (b).

in Ref. [35]. In the present calculations, we have used the
updated formalism presented in Ref. [36] with A = 150 κ

and μ parameters [37] defining the l·s and l2 strengths of the
modified oscillator potential. Theoretical configurations are
labeled, in relation to the 132Sn core, using the shorthand
notation [p1, n1(n2n3)]. Here p1 represents the number of
πh11/2 particles, relative to Z = 50, and n1 represents the
number of νh11/2 holes, relative to N = 82. The numbers in
parentheses are only labeled if nonzero, with n2 and n3 being,
respectively, the number of neutrons in the νh9/2/f7/2 and
νi13/2 intruder orbitals from above the spherical N = 82 gap.
The generalized configurations for structures in 135Pr may be
written in full as

π (d5/2/g7/2)9−p1 (h11/2)p1

⊗ν(d3/2/s1/2)−(6+n2+n3−n1)(h11/2)−n1

⊗ν(h9/2/f7/2)n2 (i13/2)n3 .

Note also that with many neutron holes in the Nosc = 4 orbitals,
some of them might be placed in orbitals of d5/2/g7/2 character.

Potential-energy surfaces for configurations with parity
and signature (π, α) = (−,−1/2), fixed according to the
observed high-spin band in 135Pr, are presented for spin
values I = 75/2 and I = 91/2 in Fig. 4. At the lower-spin
value [see Fig. 4(a)], the energy minimum is found at a
small deformation, ε2 ≈ 0.12, γ ≈ −35◦, corresponding to
the valence-space configuration [3,4] with a maximum spin
value, Imax = 43.5. Doppler-broadened line-shape analysis for
the 1149-keV (63/2− → 59/2−) and 1227-keV (67/2− →
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FIG. 3. (Color online) (a) Total aligned angular momentum Ix

as a function of rotational frequency ω for the yrast bands in 135Pr
and 134Ce. (b) Experimental alignment ix as a function of rotational
frequency ω for the negative-parity yrast bands in odd-A Pr isotopes.

63/2−) transitions in 135Pr (see Fig. 1) yields Qt ≈ 3.3 eb
[11], compatible with this predicted triaxial shape. Around
0.5-MeV higher in energy, however, is a secondary minimum at
ε2 ≈ 0.27, γ ≈ 15◦, where configurations of the type [3,4(21)]
and [3,4(22)] are calculated low in energy.
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FIG. 4. (Color online) Calculated potential-energy surfaces for
negative-parity configurations at spin values I = 75/2 and 91/2
(signature, α = −1/2). The contour line separation is 0.25 MeV.
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At I = 91/2 [see Fig. 4(b)], corresponding to the highest
spin value in the observed band, the larger-deformation
minimum is calculated lowest in energy. Even though there is a
close-to-spherical minimum, which comes only approximately
0.5-MeV higher in energy, it appears impossible that config-
urations corresponding to this shape could be assigned to the
observed band, considering, for example, the Imax value of the
[3,4] configuration. Indeed, the high-spin range of the observed
band is well described by the core-excited configurations
specified above with three or four neutrons excited across
the N = 82 gap. Similar configurations with one i13/2 neutron
have been assigned to triaxial bands in nearby 60Nd isotopes;
see Refs. [38,39]. An axial prolate minimum, with ε2 ≈ 0.4,

γ ≈ 0◦, also becomes competitive at the highest spins; see
Fig. 4(b). This corresponds to the superdeformed shape (3:2
axes ratio) seen in 132Ce and, indeed, 134Ce [22].

In summary, the yrast band of 135Pr has been significantly
extended to over 40 h̄, and that of 134Ce to 38 h̄. Cranking
calculations suggest that these nuclei are γ soft and that
configurations involving high-j orbitals intruding from above
N = 82 are favored at the highest spins.
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