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Low-energy theory for superfluid and solid matter and its application to the neutron star crust
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We formulate a low-energy effective theory describing phases of matter that are both solid and superfluid. These
systems simultaneously break translational symmetry and the phase symmetry associated with particle number.
The symmetries restrict the combinations of terms that can appear in the effective action and the lowest order
terms featuring equal number of derivatives and Goldstone fields are completely specified by the thermodynamic
free energy or, equivalently, by the long-wavelength limit of static correlation functions in the ground state. We
show that the underlying interaction between particles that constitute the lattice and the superfluid gives rise to
entrainment, and mixing between the Goldstone modes. As a concrete example we discuss the low-energy theory
for the inner crust of a neutron star, where a lattice of ionized nuclei coexists with a neutron superfluid.
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I. INTRODUCTION

The low-energy dynamics of strongly interacting solids
and superfluids can be systematically studied through an
effective theory formulation in terms of weakly interacting
phonons—the collective degrees of freedom in these systems.
In the familiar case of solids, one longitudinal phonon and
two transverse phonons arise as Goldstone modes due to the
breaking of translational symmetry. In the case of a superfluid,
one mode called the superfluid phonon arises due to the
breaking of the global U(1) symmetry associated with phase
rotations of a field operator.1 In special cases the ground state
of the system can spontaneously break both these symmetries.
A particularly simple but nontrivial realization is a solid
immersed in a superfluid with strong interactions between the
particles that form the solid and the superfluid, respectively. It
is likely that a substantial region in the crust of a neutron star
is occupied by such a phase [1] and its presence may affect
neutron star phenomenology. From general considerations we
can argue that the inner crust of neutron stars features a lattice
of neutron-rich nuclei in a bath of unbound superfluid neutrons.
The lattice sites can be viewed as clusters of protons, with a
fraction of neutrons “entrained” on the clusters [2,3]. Other
intrinsically more complex phases where a single component
exhibits both superfluid and solid characteristics have also been
proposed. They include the supersolid phase of 4He [4] and
the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phases [5,6] in
polarized fermion superfluids. Although these systems can
in principle be realized terrestrially, they have proven to
be challenging to explore in experiments [7]. Nonetheless,
in all these cases the low-energy dynamics is described by
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1The U(1) symmetry is related to particle number conservation and

we will refer to this as a phase symmetry. Its breaking simply refers
to the choice of a ground state: total number is conserved and the
continuity equation remains valid.

an effective theory of four Goldstone modes [8]. The fields
for the lattice phonons are ξa=1..3(r, t) and are related to
space-time-dependent deformations of the lattice. Similarly,
the field associated with the superfluid mode φ(r, t) is related
to the space-time-dependent phase of the condensate. Because
of interactions, such as those between the neutrons and the
protons in the neutron star crust, one can not in general treat
the two sectors separately and a unified treatment is required.
It is the aim of this paper to provide such a framework.

The low-energy effective field theory (EFT) is described
in terms of the fields φ and ξa . The symmetries associated
with translation and number conservation require that the
low-energy theory be invariant under the transformation
ξa=1..3(r, t) → ξa=1..3(r, t) + aa=1..3 and φ(r, t) → φ(r, t) +
θ , where aa=1..3 and θ are constant shifts. This naturally implies
that the low-energy Lagrangian can contain only spatial and
temporal gradients of these fields. Further, by requiring cubic
symmetry for the crystalline state, the quadratic part of the
effective Lagrangian is given by

L = f 2
φ

2
(∂0φ)2 − v2

φf 2
φ

2
(∂iφ)2 + ρ

2
∂0ξ

a∂0ξ
a − 1

4
μ(ξabξab)

− K

2
(∂aξ

a)(∂bξ
b) − α

2

∑
a=1..3

(∂aξ
a∂aξ

a)

+ gmixfφ

√
ρ∂0φ∂aξ

a + · · · , (1)

where higher order terms involve higher powers of the
gradients of these fields, and ξab = (∂aξ

b + ∂bξ
a) − 2

3∂cξ
cδab.

In the uncoupled case, the low-energy coefficients (LECs)
appearing above, such as ρ, μ, and K, are related to the mass
density, the shear modulus, and the compressibility of the solid,
respectively. They determine the velocities of the phonons in
the solid phase. Similarly, the velocity of the phonon in the
pure superfluid case is given by vφ . In the presence of strong
coupling between the solid and superfluid these coefficients
are modified. For example, the coefficient ρ in Eq. (1) differs
from the usual mass density of the pure lattice component
due to interactions that entrain the superfluid, and the mixing
coefficient gmix couples superfluid and lattice dynamics. As we
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will show, Galilean invariance relates gmix to the modifications
of ρ and vφ due to entrainment [9]. An analysis of these
modifications in the context of the neutron star crust due
to the underlying interaction between neutrons and protons
was the original motivation for this study. In this case, the
mixing coefficient gmix is relevant for heat transport properties
in the inner crust [10], and the eigenmodes of the coupled
superfluid-solid system could play a role in explaining the
observed quasiperiodic oscillations in magnetar flares [11].

We will present a general proof that the functional form
of the lowest order Lagrangian is completely specified by the
thermodynamic pressure in the presence of constant external
fields that couple to the conserved densities and currents
in the system. The derivatives of the pressure with respect
to these external fields determine the low-energy constants.
Nonperturbative techniques such as quantum Monte Carlo or
Hartree-Fock techniques may be suited to calculate these ther-
modynamic functions. For example, the energy as a function of
the density for a nonrelativistic uniform Fermi gas at unitarity
was calculated using quantum Monte Carlo techniques in [12].
(For a recent example of the calculation of the LECs in
relativistic superfluids, see [13].) Since these derivatives of the
thermodynamic functions are related to the long-wavelength
limit of static correlation functions of currents and densities,
their direct calculation using nonperturbative methods also
provide the needed LECs.

The outline of the paper is as follows. In Sec. II we outline
the formalism and define notation. In Sec. III we revisit the
effective theory of a neutron superfluid in the absence of
any lattice, derived earlier in Refs. [14,15]. This serves as
a pedagogic warm-up before describing the more complicated
system including the lattice. Here, we prove that the lowest
order Lagrangian is determined by the thermodynamic pres-
sure. In Sec. IV we derive results for the relevant case of the
combined neutron and proton sectors. In Sec. V we focus on
the applications of our formalism to the neutron star crust and
use simple estimates for the mixing coefficient in the neutron
star inner crust to determine the resulting eigenmodes of the
longitudinal lattice and the superfluid phonons. Here we also
comment on the connection with previous work on the elastic
properties of LOFF phases [16]. We present our conclusions
in Sec. VI.

II. SYMMETRIES OF THE UNDERLYING HAMILTONIAN

The prototypical system we consider here is composed of
two conserved species of particles. In neutron stars, this would
be the strongly coupled many-body system of nonrelativistic
neutrons and protons. In what follows we will continue to
refer to these two components as neutrons and protons but
it should be understood that our considerations apply more
generally. We represent the action for the system abstractly as
S[	n,	p], where 	n and 	p are the neutron and proton fields.
Even though the particles may be nonrelativistic, we will work
in a Lorentz covariant form and take the nonrelativistic limit
at the end of the calculation. We will denote the spatial indices
by Latin characters (a, b, c, i, j , k) running from 1 to 3 and

the full space-time indices by Greek characters (μ, ν, σ , λ)
running from 0 to 3.

The theory describing the neutrons and protons is invariant
with respect to global phase rotations of the neutron field,
	n(x) → exp(−iθn)	n(x). The conservation law associated
with the symmetry is the conservation of neutron number.
Similarly, independent phase rotations of the protons gives rise
to the conservation of proton number. We note that protons
and neutrons are separately conserved on time scales that
are small compared to the weak interaction time τweak �
1/(G2

F nBT 2), where nB and T are the baryon density and
temperature of the system. For typical conditions the time scale
for low-energy dynamics is τEFT � 1/T and correspondingly
the ratio τEFT/τweak � G2

F nBT � 1. We shall refer to the
corresponding conserved currents as j

μ
n and j

μ
p , respectively.

The action S is also invariant under space-time translations
and spatial rotations and the conserved current associated with
translations is the stress energy tensor T μν .

To analyze the constraints provided by these symmetries
on the low-energy effective action, it is useful to introduce
external fields that couple to the conserved currents (see,
e.g., discussion in Ref. [17]). For the internal symmetries
we add to the action S[	n,	p] source terms of the form∫

d4x j
μ
n (x)An

μ(x) and
∫

d4x j
μ
p (x)Ap

μ(x). If the external
fields are allowed to transform appropriately under local
U(1) transformations, this procedure promotes the global
symmetries to local symmetries.

A similar extension of space-time symmetries is slightly
more subtle. It requires extending space-time from a flat
space-time to a curved space-time, and writing the action
in a form that is general coordinate invariant. Indeed, the
nonrelativistic theory of neutrons and protons may be seen
as the nonrelativistic, flat-space limit of a fully relativistic,
general-coordinate-invariant action. The external field that
couples to the stress-energy tensor is a deformation of the
metric, δgμν .

Therefore, we start with an action of the form
S[	n,	p,An

μ,A
p
μ, gμν], which is invariant under general

coordinate transformations

xμ → x
′μ = xμ + aμ(x),

gμν(x) → g
′μν(x ′) = gρσ (x)

∂x
′μ

∂xρ

∂x
′ν

∂xσ
, (2)

Aμ(x) → A
′μ(x ′) = Aσ (x)

∂x
′μ

∂xσ
,

where these transformations include both rotations and boosts
as special cases of local space and time translations. The action
is also invariant under local phase rotations of neutrons,

	n(x) → 	 ′
n(x) = exp(−iθn(x))	n(x),

(3)
An

μ(x) → A
′n
μ (x) = An

μ(x) − ∂μθn(x),

and local phase rotations of protons,

	p(x) → 	 ′
p(x) = exp(−iθp(x))	p(x),

(4)
Ap

μ(x) → A
′p
μ (x) = Ap

μ(x) − ∂μθp(x).

The reason for extending the global symmetries to local
symmetries is that correlation functions of the conserved
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currents can be analyzed very simply by taking ap-
propriate functional derivatives of the generating func-
tional W [An

μ,A
p
μ, gμν] with respect to the external fields

An
μ(x), Ap

μ(x) and gμν(x). The generating functional is defined
in the standard path integral representation as

eiW [An
μ,A

p
μ,gμν ] =

∫
[d	n][d	p]eiS[	n,	p,An

μ,A
p
μ,gμν ]

= Z
[
An

μ,Ap
ν , gμν

]
, (5)

where Z[An
μ,A

p
ν , gμν] is thermodynamic partition function.

For example, the derivative with respect to the zeroth com-
ponent of the external field Aμ defines the number density as
given by

〈�|n̂n(x)|�〉An
μ,A

p
μ,gμν

= δW
[
An

μ,A
p
μ, gμν

]
δAn

0(x)

= 1

iZ

δZ
[
An

μ,A
p
μ, gμν

]
δAn

0(x)
. (6)

In order to evaluate correlation functions in an equilibrium
state with specified number density, the functional deriva-
tives with respect to Aμ(x) are evaluated at specific values
corresponding to appropriate chemical potentials as required
by Eq. (6). For neutrons An

μ(x) = Ān
μ = (μn + mn, 0), where

μn is the usual nonrelativistic chemical potential, and simi-
larly for protons A

p
μ(x) = Ā

p
μ = (μp + mp, 0) and μp is the

corresponding nonrelativistic chemical potential. Moreover,
functional derivatives with respect to gμν(x) are evaluated
at the space-time metric gμν(x) = ḡμν . For the pure neutron
sector (Sec. III), it suffices to set the equilibrium metric
to be the Minkowski metric, ḡμν = ημν . In the case of a
coupled system, since the spatial components of a space-time-
independent metric specifies the lattice structure, we will allow
ḡμν to be more general in Sec. IV. In the following we discuss
specific cases in which the ground state |�〉 spontaneously
breaks number and translation symmetries of the underlying
Hamiltonian. First, in Sec. III we discuss the simple case
of a superfluid which breaks the U(1) symmetry associated
with number conservation, and subsequently in Sec. IV we
discuss the system of interest where both the global U(1) and
space-time translation symmetries are simultaneously broken.

III. ONE-COMPONENT SUPERFLUID

A. Fields and the effective Lagrangian

To illustrate the main ideas we first consider a single-
component superfluid such as degenerate neutron matter where
attractive interactions lead to the formation of Cooper pairs and
a transition to a superfluid state. Here, the two-neutron operator
has a nonzero expectation value and in equilibrium

〈�|	n(x)	T
n (x)|�〉 = Cγ 5�(x) = Cγ 5|�|. (7)

Since the phase of the condensate changes on making a global
phase rotation on 	n, the condensate spontaneously breaks
U(1)n to Z2. The corresponding Goldstone boson field φ(x) is
given by the phase fluctuations of the order parameter.

The field φ(x) transforms nonlinearly under U(1)n trans-
formations with parameter θn:

φ → φ + θn. (8)

The effective Lagrangian for φ can be in principle obtained
by integrating out the heavy modes corresponding to the
gapped fermionic excitations from the system in a Wilsonian
approach.

The partition function in the presence of external gauge
fields admits the following low-energy representation:

Zn

[
An

μ, gμν

] =
∫

[d	n]eiS[	n,A
n
μ,gμν ]

−→
∫

[dφ]eiSeff [∂μφ,An
μ,gμν ]. (9)

The symmetries of the underlying fundamental theory impose
stringent constraints on the form of the effective Lagrangian
defined by Seff = ∫

d4x
√−gLeff . Global U(1)n symmetry

implies that the Goldstone boson can occur only through the
derivative ∂μφ, and local U(1)n symmetry [Eq. (3)] implies
that An

μ and φ can appear in Leff only in the combination

Dμφ(x) = ∂μφ(x) + An
μ(x). (10)

Since we are working in a covariant theory, Leff should
transform as a scalar density under general coordinate trans-
formations. Therefore, the effective Lagrangian can only be
constructed from building blocks like Dμφ, ∇νDμφ, etc., with
all indices contracted. Note that since Dμφ is gauge invariant,
the covariant derivative ∇ν does not involve Aν . In particular
in flat space ∇ν is just ∂ν .

In this work we use the power-counting scheme proposed
by Son and Wingate [15] to organize terms in Leff . We define
the power of an operator as the difference between the number
of ∂’s and the power of φ. That is, all terms of order (∂)m(φ)n

(m � n) with the same value of m − n are considered to have
the same order, m − n. An

μ has the same order as ∂μφ, i.e.,
order 0, and gμν also has order 0. Therefore,

Leff[Dμφ, gμν]=L0[DμφDμφ] +L2[(∇νDμφ)2, . . . ]+· · ·
(11)

and the leading order Lagrangian L0 is an arbitrary function of
the building block X = gμνDμφDνφ. We will see in the next
section that the lowest order term L0 is related to the pressure
of the system in equilibrium, and the higher order termsL2, . . .

do not affect the pressure. Therefore, their exact form is not
required.

B. Thermodynamic matching

We now relate the functional dependence of L0(X) on X

to the functional dependence of the thermodynamic pressure
P (μn) on the chemical potential μn. We refer to this result as
“thermodynamic matching”. Although this result is not new
[14,15], here we provide a derivation that can be generalized
to other, more complex patterns of symmetry breaking. In fact,
we will use the generalization of this result in Sec. IV when
we consider the simultaneous breaking of translational and
particle-number symmetry.
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We recall that the thermodynamic interpretation of the
functionals Z[An

μ, gμν] and W [An
μ, gμν] at constant external

fields [An
μ(x) = Ān

μ and gμν(x) = ḡμν = ημν] is given by the
relation

Zn

[
Ān

μ,ημν

]=eiWn[Ān
μ,ημν ] =e−iV T �n =

∫
[dφ]eiSeff [D̄μφ,ημν ],

(12)

where �n = 〈�|Ĥ − Ān
μj

μ
n |�〉 is the free energy density, V

is the volume, and T is the extent in the time direction. Here
|�〉 is the ground state of the Hamiltonian modified by the
presence of the external source Ān

μ (with Ĥ the Hamiltonian

density). For the specific choice Ān
μ = (mn + μn, 
0) and at

zero temperature, |�〉 is the many-body ground state at
chemical potential μn and �n = 〈�|Ĥ − (μn + mn)ĵ 0

n |�〉 =
−P (μn), where P (μn) is the usual thermodynamic pressure
of the system.

The low-energy effective action Seff[D̄μφ, ημν] is a func-
tion of the external fields and the Goldstone fields. It contains
all the quantum dynamics of the high-energy Fermionic modes
encoded as low-energy coefficients. In order to evaluate the
partition function Z[An

μ, gμν] we expand the effective action
about its saddle point φ0 which satisfies

δSeff[D̄μφ(x), ημν]

δφ(x)
|φ0 = −∂μ

dLeff(D̄μφ(x), ημν)
d∂μφ(x)

|φ0 = 0,

(13)

minimizes the Euclidean action, and is well behaved at infinity.
For general external fields An

μ(x), the solution to Eq. (13) is
a functional of the external field, φ0[An

μ]. However, for our
homogeneous and static system with constant external fields
the well-behaved solution is φ0 = 0. Expanding about this
point we can write

Seff[D̄μφ, ημν]

= Seff|φ0=0 + 1

2

∫
d4xd4x ′ϕ(x)ϕ(x ′)

δ2Seff

δφ(x)δφ(x ′)
|φ0 + · · · ,

(14)

where ϕ = φ − φ0, and thus Eq. (12) can be evaluated as a
loop expansion

eiW [Ān
μ,ημν ] = eiSeff |φ0=0+W1−loop+··· (15)

eiW1−loop =
∫

[dϕ]ei[ 1
2

∫
d4xd4x ′ϕ(x)ϕ(x ′) δ2Seff

δφ(x)δφ(x′ ) |φ0 +··· ]
, (16)

where we have explicitly displayed only the quadratic (Gaus-
sian) part of the functional integral in [dϕ] which corresponds
to the one-loop approximation. Let us now discuss this loop
expansion in light of the EFT power counting. The key
observation, which is a generic feature of low-energy effective
theories [18], is the following: within the momentum (gradient)
expansion of the EFT, loop diagrams generated by L0 are
higher order than tree-level diagrams with vertices from L0.
In our case, one-loop contributions to phonon amplitudes are
suppressed by four powers of momenta compared to the tree
graphs generated by L0 as shown by Son and Wingate [15].

Using the above considerations we can write

W
[
An

μ

] =
∫

d4xLeff
((

Dμφ0[An
μ]

)
, ημν

)

+W1−loop
(
An

μ

) + · · ·

=
∫

d4x
[
L0(X0) + L2

[
An

μ

] + L4
[
An

μ

] · · · ]
+W1−loop

(
An

μ

) + · · · , (17)

where X0 = Dμφ0D
μφ0. L0

(
X0

)
in Eq. (17) is the leading

term [O(p0)], the second term is of O(p2), the third and
fourth are O(p4). The contribution of O(p0) involves either
no derivatives on the external fields or two derivatives
compensated by a Goldstone propagator of O(p−2). L2(An

μ),
L4(An

μ), . . . feature at least one derivative acting on each
An

μ. Therefore, higher order contributions necessarily involve
derivatives acting on the external field An

μ(x). So we arrive at a
very important result: for a very long wavelength external field
[An

μ(x) → constant], only the first term in Eq. (17) survives,
i.e.,

W
[
Ān

μ

] =
∫

d4x L0
(
Ān

μĀμ n
) = V T L0

(
Ān

μĀμ n
)
. (18)

Now recall that ĀμĀμ = (mn + μn)2 so that μn =
√

ĀμĀμ −
mn. Moreover, L0 depends on Dμφ only through X. At the
classical solution, for a constant external field, one has X →
X0 = ĀμĀμ. So we have from Eqs. (18) and (12)

L0(X0) = P (
√

ĀμĀμ − mn) = P (
√

X0 − mn = μn).

(19)

The above relation fixes the functional dependence of L0 on
the variable X once the functional dependence of P on μn is
known. So in general we have

L0(X) = P (Y ≡
√

X − mn). (20)

Finally, we note that in the nonrelativistic limit
the relevant building block takes the form Y =√

(mn + μn + ∂0φ)2 − (∂iφ)2 − mn � μn + ∂0φ − (∂iφ)2

2mn
[14,

15,19].

C. Identifying the low-energy constants

Equation (20) gives us the complete expression of the su-
perfluid Lagrangian to the lowest order in (m − n). Expanding
the function L0(φ) in powers of the Goldstone fields, one can
read off the phonon kinetic term and self-interaction vertices:

Leff[φ] = L0[(μn + mn)2] + dP

dY
(∂0φ) + 1

2!

d2P

dY 2
(∂0φ)2

− 1

2!(μn + mn)

∂P

∂Y
(∂iφ)(∂iφ) + 1

3!

d3P

dY 3
(∂0φ)3

+ 1

2!

[
− 1

(μn + mn)

d2P

dY 2
+ 1

(μn + mn)2

dP

dY

]
× (∂0φ)(∂iφ)(∂iφ) + · · · , (21)
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where all derivatives are evaluated at Y = μn. The above
expansion makes it clear that the low-energy constants of the
theory are then given by the derivatives of the pressure with
respect to the chemical potential. Equation (21) also serves
as a starting point for a fluid dynamical study of the system
once one realizes that −∂iφ/(mn + μn) is the velocity of the
superfluid. (See Ref. [20] and references therein.)

Alternatively, one can show that the thermodynamic deriva-
tives are related to the static correlation functions involving the
neutron charge and current operators. For example,

∂Wn

∂Ān
μ

= 〈
Jμ

n (0)
〉 = dP

dY
|eqη

μ0. (22)

Similarly,

∂2Wn

∂Ān
ν∂Ān

μ

|eq = i

∫
d4x

〈
T

{
J ν

n (x)Jμ
n (0)

}〉
connected

=
[

1

(μn + mn)

dP

dY
|eqη

μν +
(

− 1

μn + mn

dP

dY

+ d2P

dY 2

)
|eqη

μ0ην0

]
. (23)

A more careful analysis taking Ā to be a long wavelength
field but not quite a constant field shows that the current-
current correlation function thus obtained is the momentum-
independent part of the transverse-current–transverse-current
correlation function.

Finally, in the nonrelativistic limit, separating the space and
time components we obtain the well-known results

∂2Wn

∂Ān
0∂Ān

0

∣∣∣∣
eq

= d2P

dY 2
,

∂2Wn

∂Ān
i ∂Ān

j

∣∣∣∣
eq

= 1

mn

dP

dY
ηij . (24)

IV. THE SUPERFLUID AND LATTICE PHONON
LAGRANGIAN

A. Fields and the effective Lagrangian

A crystalline ground state of the system spontaneously
breaks translations and rotations. The proton number den-
sity acts as the relevant order parameter. Since space-time-
dependent translations include rotations as special cases, it
will suffice to consider the breaking of the Abelian group
G of spatial translations to the subgroup H = {T
b} containing
discrete translations by multiples of lattice basis vectors, 
b. The
generators of G are the components of the three-momentum
P a given by space integrals of the energy-momentum tensor
components T 0a(x), and momentum conservation takes the
local form

∂μ T μa(x) = 0. (25)

The Goldstone effective fields can be chosen as space-time-
dependent coordinates ξa(x) (a = 1, 2, 3) of the coset space
G/H :

γ (x) = eiξa (x) P a

, γ ∈ G/H. (26)

The nonlinear action of the translations group on the Goldstone
fields is specified by

xb → x ′
b = xb + ab, ξb(x) → ξ ′

b(x ′) = ξb(x) + ab,

(27)

as can be verified by left multiplication of γ ∈ G/H with
g = eiabP b ∈ G.

Promoting the global symmetry to local symmetry, a gen-
erally covariant formulation [14,21] of the phonon dynamics
in the background metric gμν can be readily achieved by
introducing a set of fields that transform as scalar fields under
the general coordinate transformations of Eqs. (2):

za(x) = xa − ξa(x), a = 1, 2, 3. (28)

The fields za(xμ) can be thought of as one particular choice
of body-fixed coordinates2 of a material point located at
xμ = (t, 
x). With this choice the body-fixed coordinates
coincide with the “laboratory” coordinates (xa, gab) when the
displacement field ξa vanishes.

As in the pure neutron case, the partition function in
the presence of generic external fields An

μ(x), A
p
μ(x), and

gμν(x) admits a low-energy representation in terms of the four
Goldstone modes φ and ξa:

Z
[
An

μ,Ap
μ, gμν

] =
∫

[d	n][d	p]eiS[	n,	I ,A
n
μ,A

p
μ,gμν ]

→
∫

[dφ][dξa]eiSeff [φ,ξa,An
μ,A

p
μ,gμν ]. (29)

At the end, we will evaluate the partition function for space-
time-independent external fields Ān

μ, Ā
p
μ, and ḡμν , specifying

a particular density and lattice shape for the system.
Seff represents the effective action of ξa (or equivalently za)

and φ in the presence of external fields. We can organize the
terms in Seff according to the same power counting introduced
earlier in our discussion of the superfluid, i.e., in increasing
difference between the number of derivative operators and the
Goldstone fields,

Seff
[
φ, ξa, An

μ,Ap
μ, gμν

]
=

∫
d4x

√−g
[
L0

(
∂μφ, ∂μza, An

μ,Ap
μ, gμν

)
+L1(∇ν∂μφ,∇νAμ,∇ν∂μza, . . .) + · · · ]. (30)

Symmetries impose powerful constraints on the form of
Leff . Since the za transform as scalars, ∂μza transforms as a
contravariant vector. The building blocks of the scalar function
Leff are scalar combinations of An

μ(x), A
p
μ(x), gμν(x), ∂μφ,

∂μza , and their covariant derivatives. Symmetry under phase
rotations of the neutrons, Eq. (3), implies that An

μ(x) should
appear in a combination such that the transformation An

μ(x) →
An

μ(x) + ∂μθn(x) leaves the effective action invariant. The
same is required for the protons. In the pure neutron case
we found that gauge symmetries implied that ∂μφ and An

μ(x)
could appear only in the combination Dμφ. To lowest order

2These are the coordinates in a frame frozen in the body of the
solid. If one follows a material point in the solid, its coordinates in
this frame remain constant.
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in the power counting, the scalar combinations that can be
constructed from the gauge-invariant combinations are

X = gμνDμφDνφ, (31)

Wa = gμν Dμφ∂νz
a, (32)

Hab = gμν ∂μza∂νz
b. (33)

In addition to these building blocks, other possibilities arise
in the mixed case that were not present in the case of a pure
neutron superfluid. The following terms only change by a total
derivative on making gauge transformations defined in Eqs. (3)
and (4):3 ∫

d4x
1

3!
εμνσλεabc

(
C1 Ap

μ(x) + C2 ∂μφ(x)
)

× [∂νz
a(x)∂σ zb(x)∂λz

c(x)]. (37)

Hence, the most general form of L0 is

L0
(
∂μφ, ∂μza, An

μ,Ap
μ, gμν

)
= f (X,Wa,Hab) + 1

3!
√−g

εμνσλεabc
(
C1 Ap

μ + C2 ∂μφ
)

× (∂νz
a∂σ zb∂λz

c). (38)

The term proportional to C2 is a total derivative, which
becomes relevant only in the presence of nontrivial topological
configurations (vortices) for the field φ [8]. This would be
relevant for calculations of vortex-phonon interactions but for
now on we disregard this term and restrict our discussion to
vortex-free configurations.

B. Thermodynamic matching

Extending the analogy with the neutron superfluid case
further we can relate L0 to the free energy of the neutron-
proton system. The free energy �[An

μ,A
p
μ, gμν] is proportional

to the log of the partition function. Following the discussion
in the pure neutron case, one can show that for space-time-
independent external fields gμν(x) = ḡμν , A

p
μ(x) = Ā

p
μ, and

An
μ(x) = Ān

μ, � is also equal to L0 evaluated at the classical

3The term∫
d4x

C3

3!
εμνσλεabc(An

μ(x))[∂νz
a(x)∂σ zb(x)∂λz

c(x)] (34)

can be rewritten as∫
d4x

C3

3!
[3!

√
g det(IH) − εμνσλεabc(∂μφ(x))

×[∂νz
a(x)∂σ zb(x)∂λz

c(x)]], (35)

where

IH =
[

X WaT

Wa Hab

]
. (36)

This shows that any term proportional to C3 can be reabsorbed by a
redefinition of the function f and the coefficient C2.

solution φ|0 = 0, ξa|0 = 0. Hence,

Z
[
Ān

μ, Āp
μ, ḡμν

] = eiW [Ān
μ,Ā

p
μ,ḡμν ] = e−iV T �[μn,μp,ḡμν ]

= eiV TL0(0,δa
μ,Ān

μ,Ā
p
μ,ḡμν ), (39)

where V T = ∫
d4x

√−ḡ. For this choice of the many-body
ground state, X0 = Ān

μĀμ n, Wa
0 = 0, and Hab = ḡab. There-

fore,

− �[μn,μp, ḡμν] = f (X = X0,W
a = 0,Hab = ḡab)

+ 1√−ḡ
C1 (μp + mp). (40)

The constant C1 can be determined from the requirement
that ∂�

∂μp
= C1√−ḡ p

. Thus, we see that C1 is the density of

protons for a configuration whose metric has determinant −1.
Symbolically, C1 = n

η
p, where ημν is a particularly convenient

choice (also see Footnote 5) for a metric with determinant −1.
When we consider the functional form of f , we encounter

a feature different from the previous case where we considered
the pure neutron superfluid. There, we were able to determine
the complete dependence of the function f on its arguments
from the free energy function � [L0(X) = P (Y ) = −�n(Y )],
i.e., from a calculation of the partition function with the specific
form Ān

μ = (mn + μn, 
0) for the external field. In the mixed

case, however, since Dμφ∂μza|eq = 0 for Ān
μ = (mn + μn, 
0),

it is not possible to calculate the dependence of f on Wa

from the free energy calculation in this external field.4 To
determine the dependence of f on Wa one needs to evaluate
the partition function Z for a space-time-independent external
gauge field An

μ(x) that has nonzero spatial components, Ãn
μ =

(μn + mn, Ai). This gives D̃μφ0 = Ãn
μ, X̃0 = Ãn

μÃμ n, and
W̃ a

0 = ḡaνÃn
ν = Ãa n. Then,

−�
[
Ãn

μ, Āp
μ, ḡμν

] = L0
(
0, δa

μ, Ãn
μ, Āp

μ, ḡμν

)
= f (X = X̃0,W

a = W̃ a,Hab = ḡab)

+ 1√−ḡ
nη

p(μp + mp). (41)

By calculating the free energy for various Ãn
μ and ḡab we can

map out the functional dependence of f on X, Wa , and Hab.
Finally, noting that � = 〈�|Ĥ − Ãn

μj
μ
n − np(μp + mp)|�〉

(where Ĥ is the Hamiltonian density), the term proportional
to np cancels out from both sides and the function f is given
by

f (X̃0, W̃
a
0 , ḡab) = 〈�|Ãn

μjμ
n − Ĥ |�〉. (42)

4This fact is intuitively understandable. In the nonrelativistic limit
[14] we have Wa ∼ mn(− 1

mn
∂aφ − ∂0ξ

a + 1
mn

∂iφ∂iξ
a) = mn(va

n −
∂0ξ

a − vn.∇ξa), which is the relative velocity between the neutron
superfluid and the proton clusters. The dependence on Wa therefore
represents the interaction between the superfluid neutrons and the
lattice when they are moving relative to each other and cannot be
calculated by a ground-state evaluation of the free energy.

045809-6



LOW-ENERGY THEORY FOR SUPERFLUID AND SOLID . . . PHYSICAL REVIEW C 84, 045809 (2011)

The generalization of Eq. (39) with the full Ãn is simply

Z
[
Ãn

μ, Āp
μ, ḡμν

] = eiW [Ãn
μ,Ā

p
μ,ḡμν ] = e−iV T �[Ãn

μ,μp,ḡμν ]

= eiV TL0(0,δa
μ,Ãn

μ,Ā
p
μ,ḡμν ). (43)

C. Identifying the low-energy constants

Expanding the function L0 in powers of the Gold-
stone fields φ and ξa , one can read off the phonon ki-
netic term (including kinetic mixing among the ξ and
φ) and self-interaction vertices. The expansion in the φ

field can be done as in Sec. III. The expansion in ξa

is performed about the undeformed equilibrium configu-
ration with ḡμν = ημν and ξa = 0. Deviations from the
equilibrium shape are then signified by ξa �= 0, which
gives Hab = ηab + �Hab with �Hab = −(∂aξb + ∂bξa) +
∂μξa∂νξ

bημν . At equilibrium, X = X0 and Wa = Wa
0 =

0, and deviations from equilibrium are given by X −
X0 = �X = 2(μn + mn)∂0φ + ∂μφ∂νφημν and Wa − Wa

0 =
�Wa = −(μn + mn)∂0ξ

a + ηab∂bφ − ∂μφ∂νξ
aημν .

To second order in the fields, the expansion of f is

f (X,Wa,Hab)

= f (X0, 0, ηab) + ∂f

∂X

∣∣∣∣
eq

[2(μn + mn)∂0φ + ∂μφ∂μφ]

+ 1

2!

∂2f

∂X2

∣∣∣∣
eq

[2(μn + mn)∂0φ]2 + 1

2

∂2f

∂Wa∂Wb

∣∣∣
eq

× [−(μn + mn)∂0ξa + ∂aφ][−(μn + mn)∂0ξb + ∂bφ]

+ ∂f

∂Hab

∣∣∣∣
eq

�Hab + 1

2

∂2f

∂Hab∂Hcd
�Hab�Hcd

+ ∂2f

∂Hab∂X

∣∣∣∣
eq

�Hab[2(μn + mn)∂0φ]. (44)

We have simplified the expansion above by taking ∂f

∂Wa |eq =
0, ∂2f

∂X∂Wa |eq = 0, and ∂2f

∂Hab∂Wc |eq = 0. This would be the case
for any crystal with reflection symmetry, for example, a cubic
crystal. For a cubic crystal, one can further simplify the
expressions by using symmetry under rotation by π

2 along

the axes. This gives ∂2f

∂Wa∂Wb = 1
3

∂2f

∂Wc∂Wc δ
ab, ∂f

∂Hab = 1
3

∂f

∂Hcc δ
ab,

and ∂2f

∂X∂Hab = 1
3

∂2f

∂Hcc∂X
δab, where ∂

∂Hcc = ∂
∂H 11 + ∂

∂H 22 + ∂
∂H 33.

Finally, we drop the total derivatives.

With all these simplifications,

f (X,Wa,Hab) = f (X0, 0, ηab) + 1

2

∂2f

∂Y 2
(∂0ϕ)2 + 1

2
∂iϕ∂jϕηij

[
1

mn + μn

∂f

∂Y
− ∂2f

3∂Wc∂Wc

]

+ 1

2

[
2

3

∂f

∂Hcc
+ (mn + μn)2 ∂2f

3∂Wc∂Wc

]
∂0ξ

a∂0ξ
a + (∂0ϕ∂aξ

a)

[
2

3

∂2f

∂Hee∂Y
+ (mn + μn)

∂2f

3∂Wc∂Wc

]

+ 1

3

∂f

∂Hcc
(∂iξ

a∂iξ a) + 1

2

∂2f

∂Hab∂Hcd
(∂aξ

b + ∂bξ
a)(∂cξ

d + ∂dξ
c) + · · · . (45)

One key consequence of Eq. (45) is that the low-energy
constants are related to derivatives of the function f with
respect to X, Wa , and Hab evaluated at the “equilibrium”
point X = X0, Wa = Wa

0 , Hab = ηab. In turn, due to the
thermodynamic matching relation, Eq. (43), the low-energy
constants can be expressed in terms of derivatives of the gener-
ating functional W [Ãn

μ, Ā
p
μ, ḡμν]. The analysis proceeds along

parallel lines to the pure neutron case, but it contains a number
of novel features, which we discuss in some detail below.

1. Thermodynamic derivatives

The first-order derivatives of the functional
W [Ãn

μ, Ā
p
μ, ḡμν] specify the number density of particles

in, and the stress energy tensor of, the system:
1

V T

∂W

∂An
0

∣∣∣∣
eq

= 〈nn〉 = ∂f

∂Y
,

−2

V T

∂W

∂g00

∣∣∣∣
eq

= 〈T 00〉 = (mn + μn)
∂f

∂Y
− f, (46)

−2

V T

∂W

∂gab

∣∣∣∣
eq

= 〈T ab〉 =
[
−2

1

3

∂f

∂Hcc
− f

]
ηab.

In particular, 2 1
3

∂f

∂Hcc = − 1
3 〈T a

a 〉 − f . The second-order
derivatives of W have the following form:

1

V T

∂2W

∂An
0∂An

0

∣∣∣∣
eq

= ∂2f

∂Y 2
≡ −FA0A0 ,

1

V T

∂2W

∂An
a∂An

b

∣∣∣∣
eq

=
[

1

mn + μn

∂f

∂Y
− 1

3

∂2f

∂Wc∂Wc

]
ηab ≡ −FAaAb

,

1

V T

∂2W

∂An
0∂g00

∣∣∣∣
eq

= (mn + μn)
∂2f

∂Y 2
≡ −FA0g00 ,

−2

V T

∂2W

∂An
0∂gab

∣∣∣∣
eq

=
[
− ∂f

∂Y
− 2

1

3

∂2f

∂Hcc∂Y

]
ηab ≡ −FA0gab

,

−2

V T

∂2W

∂An
a∂gb0

∣∣∣∣
eq

=
[

∂f

∂Y
− (mn + μn)

∂2f

3∂Wc∂Wc

]
ηab ≡ − FAagb0 ,
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4

V T

∂2W

∂g00∂g00

∣∣∣∣
eq

= −f + (mn + μn)
∂f

∂Y
+ (mn + μn)2 d2f

dY 2
≡ −Fg00g00 ,

4

V T

∂2W

∂g00∂gab

∣∣∣∣
eq

=
[
−f − (mn + μn)

∂f

∂Y
+ 2

1

3

∂f

∂Hcc
− 2

1

3
(mn + μn)

∂2f

∂Y∂Hcc

]
ηab ≡ −Fg00gab

,

4

V T

∂2W

∂ga0∂gb0

∣∣∣∣
eq

=
[
−f + (mn + μn)

∂f

∂Y
− 2

1

3

∂f

∂Hcc
− (mn + μn)2 ∂2f

3∂Wc∂Wc

]
ηab ≡ −Fga0gb0 ,

4

V T

∂2W

∂gab∂gcd

∣∣∣∣
eq

= −
(

f + 4

3

∂f

∂Hee

)
(ηacηbd + ηadηbc − ηabηcd ) + 4

∂2f

∂Hab∂Hcd
≡ −Fgabgcd

, (47)

where all derivatives of f are evaluated at equilibrium. The
second-order correlations are proportional to the momentum-
independent part of appropriate time-ordered correlation func-
tions of the neutron current and the total stress-energy tensor.
Since they can be found simply from Eq. (47) by noting
that jμ and T μν are obtained as the partial derivatives of W

with respect to Aμ and gμν , respectively, we do not explicitly
include them here. The expressions in Eqs. (44) and (47) look
complicated but have simple physical interpretations, as we
discuss below. Keeping our eyes on the applications to the
neutron star crust, we will take the nonrelativistic limit and
replace μn + mn by mn below.

2. The entrainment coefficient

Here we note that the current-current correlation function
for neutrons, ∂2W

∂An
a∂An

b

|eq, is not simply proportional to the total

neutron density but is instead proportional to df

dY
− mn

3
∂2f

∂Wc∂Wc .

We conjecture that nb ≡ mn

3
∂2f

∂Wc∂Wc > 0 and this represents
the number density of neutrons “bound” or “entrained” on the
nuclei. ∂f

∂Y
− mn

1
3

∂2f

∂Wc∂Wc is then interpreted as the number of
“unbound” neutrons in the system. Indeed, from the coefficient
of (∂iφ)2 in Eq. (45) we see that the current of the superfluid
mode is proportional to nf = (nn − nb), where nf is the
neutron density that can participate in superfluid transport.

It is also reassuring that in Eq. (45) the effective mass
density of the “proton” clusters involved in lattice vibrations
is correspondingly increased by mnnb. This is easily seen
by noting that the coefficient of the kinetic term is given
by 1

2 [ 2
3

∂f

∂Hcc + m2
n

1
3

∂2f

∂Wc∂Wc ] = 1
2 [ 2

3
∂f

∂Hcc + mnnb]. The picture
of the inner crust as periodic clusters of ions and neutrons
“entrained” on the clusters has been discussed previously [2,3].
Our formalism confirms this intuition and provides a field
theoretic derivation of the entrained neutron density in terms
of generalized thermodynamic derivatives.

3. Relating the LECs to the stress and elastic tensors

From Eq. (44) and the last relation in Eq. (47) one sees that
the part of the effective Lagrangian quadratic in gradients of ξa

can be expressed in terms of ∂2W
∂gab∂gcd

|eq. This result establishes a
nontrivial relation between the LECs appearing in the phonon
quadratic Lagrangian and the stress tensor correlator that can
be calculated in the underlying theory using nonperturbative

methods. We can go one step further and relate the LECs to
first- and second-order thermodynamic derivatives of the free
energy with respect to the strain tensor (i.e., the stress and
elastic tensors). This step relies on the relationship between
the external metric gμν and the strain of the crystal structure,
i.e., its shape. We will find that since the strain has pieces both
linear and quadratic in the displacement fields [see Eq. (49)
below] the elastic constants are linear combinations of first-
and second-order derivatives of the free energy with respect to
the strain.

Let us first recall a few basic definitions from the theory
of elasticity. The elastic constants can be defined through
thermodynamic derivatives of the free energy (or internal
energy) per unit mass5 with respect to the strain tensor sab

associated with deformations around some reference point:

F = F0 − tabsab + 1
2 Xabcd sabscd + · · · . (48)

In the above relation tab is the stress tensor associated with
the reference configuration, which we will take to be the
equilibrium configuration. Xabcd is known as the elastic tensor.
For an equilibrium configuration in the absence of external
forces, tab = 0 and the components of Xabcd are simply the
elastic constants. For an equilibrium configuration in the
presence of external forces (tab �= 0), for example, a solid
under pressure, the elastic constants are linear combinations
of tab and Xabcd .

The strain tensor is defined in terms of the displacement
fields ζ a(x) as follows:

sab = 1

2

(
∂ζ a

∂xb
+ ∂ζ b

∂xa
+ ∂ζ i

∂xa

∂ζ i

∂xb

)
. (49)

The strain tensor has a simple geometric interpretation.
Imagine choosing the body-fixed coordinates xa so that they
coincide with the Euclidean (flat) laboratory coordinates when
the body is in equilibrium. After a deformation specified
by the displacement fields ζ a(x), the body-fixed coordinate
system will have a nontrivial three-dimensional metric, whose
deviation from the flat metric is specified by sab:

ηab ≡ −δab → gab = ηab − 2 sab. (50)

5Equivalently, one defines the thermodynamic quantities per
unit volume of the undeformed [22] system. The free energy
per unit flat-space volume element is given by F = √−ḡ� =
−

√−ḡ

V T
W [Ãn

μ, Āp
μ, ḡμν].
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We now state the results that ensure the connection with the
elastic constants, relegating their proof to the Appendix. The
main point is that the energy density �[Ãn, Āp, ḡ] calculated
using the path integral [Eqs. (29) and (39)] in the presence of
a space-time-independent metric of block form

ḡμν =
[

1 0

0 ḡab

]
(51)

is equal to the flat-space energy density in the lowest
energy state |�g〉 subject to the “deformation condition”
〈�g|ξ̂ a(x)|�g〉 = ζ a

g (
x), with ζ a
g (x) related to ḡab by

ḡab = ηab − 2 sab(ζg), (52)

with sab(ζ ) given in Eq. (49). This result establishes a
correspondence between the ground state in the presence
of ḡab �= ηab and a deformed configuration around the “true
ground state” in the absence of an external gravitational field,
ḡab = ηab. Therefore, by varying the external metric ḡab we
probe different deformed configurations of the system, with
strain tensor related to ḡab by Eq. (52).

Identifying the free energy F [s] per unit volume in flat
space with F = √−ḡ� = −

√−ḡ

V T
W [Ãn

μ, Ā
p
μ, ḡμν] we have

tXabcd ≡ δ2F

δsabδscd

∣∣∣∣
s=0

= δ2√−g�

δsabδscd

∣∣∣∣
s=0

= − 4

V T

δ2W

δḡabδḡcd

∣∣∣∣
ḡ=η

. (53)

For a cubic crystal

Xabcd =
(

K̄ − 2

3
μ̄

)
δabδcd + μ̄(δacδbd + δadδbc)

+ α δabcd , (54)

where the term proportional to α is nonzero only if a = b =
c = d and represents the anisotropy in the elastic coefficients.
Now we have all the pieces to write the LECs in terms of
thermodynamic derivatives. For convenience, we define P =
− 1

3 〈T a
a 〉 and E = 〈T 00〉.

4. The quadratic phonon Lagrangian

Making the identifications discussed above, we can write
the quadratic Lagrangian in a rather compact form. Neglecting
constant terms and total derivatives, and using integration by
parts to simplify some terms, we find

L0 = 1

2
[−FA0A0 ](∂0φ)2 − 1

2

[
−1

3
(FAaAb

)ηab

]
(∂iφ)2

+ 1

2

[
P + E + m2

n

3
(FAaAb

)ηab

]
ξ̇ a ξ̇ a

+
[

1

3
(FA0gab

+ mnFAaAb
)ηab

]
(∂cξ

c)(∂0φ)

− 1

4
[μ] ξab ξab − 1

2
[K] (∂cξ

c)2 − 1

2
α

∑
a

(∂aξ
a∂aξ

a).

(55)

This form allows us to express the low-energy constants
appearing in Eq. (1) in terms of thermodynamic functions
and derivatives as follows:

ρ = P + E + m2
n

3
(FAaAb

)ηab, K = K̄ + 1

3
P,

μ = μ̄ − P, f 2
φ = −FA0A0 , v2

φf 2
φ = −1

3
FAaAb

ηab,

gmix = 1√
ρfφ

[
1

3
(FA0gab

+ mnFAaAb
)ηab

]
, (56)

where

K̄ =
(−5

18
δabcd + 1

6
δabδcd + 1

9
δacδbd

)
Xabcd, (57)

μ̄ =
(

−1

6
δabcd + 1

6
δacδbd

)
Xabcd, (58)

α =
(

5

6
δabcd − 1

6
δabδcd − 1

3
δacδbd

)
Xabcd , (59)

with Xabcd given in Eqs. (53) and (54).
The pressure term in the definition of the bulk modulus

(K) and shear modulus (μ) in Eq. (56) should not be cause for
concern. Its origin can be traced back to the term linear in sab in
Eq. (48), which is present in a system at finite pressure [23,24].

This dependence of the elastic constants on the linear term
in the Taylor expansion of the free energy with respect to
the strain tensor sab appears to be counterintuitive. However,
the key point here is that the strain tensor associated with a
deformation ξa has parts both linear and quadratic in ∂bξ

a

[Eq. (49)]. Using this, one can show that the elastic constants
are entirely determined by the quadratic terms in the expansion
of the free energy with respect to the displacement field ξa

(which appears in the combinations ξab and ∂aξ
a).

V. APPLICATIONS

A. Neutron star inner crust

Here we apply the formalism to the inner crust of neutron
stars and illustrate the importance of entrainment and kinetic
mixing induced by the neutron-proton interactions. We revise
the calculation of the mixing constant gmix [Eq. (1)] in Ref. [10]
by including the effects due to entrainment. In this earlier work,
a somewhat arbitrary distinction was made between neutrons
bound in the nuclei and the neutrons “outside.” The interaction
between the nuclei and unbound neutrons was modeled by a
short-range potential V (r) = −2πanI δ

3(r)/mn, where anI was
the effective neutron-nucleus scattering length. Here, using the
results of the previous section we show that neither of these ad
hoc assumptions is necessary as the LECs of the effective
theory are simply related to generalized thermodynamic
derivatives evaluated in the nonperturbative ground state.
A first-principles calculation of the LECs would require a
numerical nonperturbative calculation. Such a calculation is
beyond the scope of this study. In what follows we will use
simple estimates based on earlier calculations to draw some
qualitative conclusions about the role of interactions between
the solid and the superfluid in the neutron star crust.
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From the preceding discussions the lowest order effective
Lagrangian for longitudinal modes with canonically normal-
ized fields φ̃ = fφφ and ξ̃i = √

ρξi in the inner crust can be
written as

L = 1
2 (∂0φ̃)2 − 1

2v2
φ(∂iφ̃)2 + 1

2 (∂0ξ̃i)
2 − 1

2v2
l (∂i ξ̃i)

2

+ gmix∂0φ̃∂i ξ̃i , (60)

where the LECs defined in Eq. (56) can be written as

v2
φ = nf

mnf
2
φ

, v2
l = K + (4/3)μ

ρ
, and

gmix = 1

3

(FA0gab
+ mnFAaAb

)ηab√−FA0A0ρ
. (61)

Here we note that (−FAaAb
ηab/3)f /mn = (nn − nb)/mn,

where nf is the density of “free” neutrons that participate
in superfluid motion, nb is the number density of neutrons
entrained by the lattice, and nn is the total neutron number
density. Furthermore, since neutrons and ions remain nonrel-
ativistic in the neutron star crust, the LECs simplify to

ρ = E + P + m2
n

3
(FAaAb

)ηab
Nonrel−→ (np + nb)mn,

gmix = 1

3

(FA0gab
+mnFAaAb

)ηab

fφ
√

ρ

Nonrel−→ 1

fφ
√

ρ

[
nb−np

∂2f

∂np∂μn

]

= 1

fφ
√

ρ

[
nb − np

∂nn

∂np

]
, (62)

where the hybrid free energy function is

f (μn, np) = (μn + mn)nn(μn) − E(μn, np) . (63)

Here np is the proton density, K and μ are, respectively, the
bulk and shear moduli of the combined system, and we have
ignored the small contribution due to the LEC α that encodes
the anisotropic contribution. In [10] a simple estimate of gmix

was derived but the contribution due to entrainment effects
was not included. We have verified that the result in Ref. [10]
can be recovered by setting nb = 0 in Eq. (62).

In Ref. [10], by assuming that the effective interaction
between the unbound neutrons and ions is weak, it was
found that f 2

φ = mnkF /π and v2
φ = nf /(mnf

2
φ ), where kF

and nf = k3
F /3π2 are the Fermi momentum and number

density of unbound neutrons, respectively. The speed of
longitudinal lattice vibrations was approximated as the Bohm-
Staver sound speed. The longitudinal sound speed is given by
vl = √

KI/ρ, where KI = ρ(∂(PIe)/∂ρ) is the bulk modulus
of the electron-ion system. To calculate the longitudinal speed
in the Bohm-Staver approximation, the total pressure of the
electron-ion system is (well) approximated by the electron
pressure Pe, and the mass density of the lattice is taken to be
ρ = mnA, where A is the number of bound nucleons in the
ion. Interactions between nucleons will modify these simple
estimates quantitatively.6 Qualitatively, the effect of strong
neutron-proton interactions is the induced mixing between

6Very large coupling between the unbound neutrons and the
ions could [25] in principle make v2

l < 0 and violate our central
assumption that the stable ground state breaks translational symmetry.

longitudinal lattice phonons and the superfluid modes. This
interaction is characterized by the dimensionless LEC, gmix,
which in turn depends on two contributions, one proportional
to np(∂nn/∂np) and the other proportional to the entrainment
parameter nb.

In the neutron star context, both of these quantities can be
calculated using phenomenological models. The ground-state
structure which specifies the profiles of nucleons is obtained
by solving the single-particle equations in the Wigner-Seitz
(WS) approximation [1] or more realistic boundary conditions
that reflect the cubic lattice structure [26,27]. For a given
volume of the WS unit cell, VWS, these calculations determine
the numbers of bound neutrons (Nb) and protons (Z) and
the total number of neutrons in the cell (NWS). They also
determine how μn and μp vary with neutron and proton
densities. The first contribution to gmix is found by noting
that np(∂nn/∂np) = npf 2

φ Vnp, where Vnp = (∂μn/∂np) is the
effective interaction between neutrons and protons. The other
contribution is related to the density of bound neutrons and
a naive estimate would suggest that nb = Nb/VWS. However,
as discussed earlier in Sec. IV C2 and in Ref. [9], the number
density of neutrons that effectively move with the nucleus
is defined through the static limit of the current-current
correlation function κ = −FAaAb

ηab/3 = (nn − nb)/m. This
correlation function has been computed earlier for neutrons
in the background of a static periodic potential designed
to mimic the neutron star crust in Refs. [2,26,28]. In these
calculations κ = (nn − n∗)/m∗ is defined in terms of an ad
hoc but convenient quantity called the effective mass m∗ of
unbound neutrons, and the average number density of neutrons
with energy less than zero is denoted by n∗. Thus the LEC

nb = nn − mn

m∗
n

(nn − n∗), (64)

where nn = NWS/VWS is the average neutron density in the
cell.

We now turn to a simple illustration of how mixing
affects the propagation of longitudinal modes in the crust.
For this purpose it would be ideal to compute the three
LECs (vφ, vl, and gmix) from a self-consistent underlying
microscopic model using Eq. (61). However, such a calculation
is beyond the scope of this work and we adopt a less
rigorous approach where we use the results of Ref. [10]
for the velocities of the superfluid and lattice modes in the
uncoupled system, and we assume that nb � np(∂nn/∂np)
and m∗/m � 1. Simple estimates support our expectation that
the dominant contribution to gmix is due to nb. In this case,

gmix � vφ

nb√
(nb + np)nf

. (65)

Our second assumption m∗/m � 1 is likely to be invalid in
some regions of the crust [28]. Nonetheless, to simply illustrate
the role of mixing we have set m∗ = m and plan to return to a
fully self-consistent calculation in future work.

The stability of periodic ground states in model calculations [26,27]
suggests that this is not the case.
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FIG. 1. (Color online) The velocities of the two eigenmodes. The
dotted lines are vl and vφ with mixing ignored.

In terms of the canonically normalized fields the kinetic
terms in Fourier space have the form

S = 1

2

∑
k

[ϕ̃(−k) k̂.ξ̃ (−k)]

(
k2

0 − v2
φk2 gmixk0|k|

gmixk0|k| k2
0 − v2

l k2

)

×
(

ϕ̃(k)
k̂.ξ̃ (k)

)
. (66)

The velocities of the two eigenmodes can be obtained by
diagonalizing the matrix in Eq. (66). The results are shown
in Fig. 1, where the solid curves incorporate mixing effects
due to a finite gmix given by Eq. (65) and the dotted curves
show the uncoupled case with gmix = 0.

In contrast, the speed of the transverse lattice modes are
unaffected by mixing and is given by

vt =
√

μ

ρ
=

√
μ

(np + nb)mn

. (67)

Here, only entrainment effects play a role in the propagation
of transverse lattice phonons, as was previously pointed out in
Ref. [9].

B. Crystalline superfluids or LOFF-like phases

Other systems of phenomenological interest where this
low-energy theory applies are the LOFF phases [5,6]. Here,
attractive interactions between two species of fermions leads
to pairing at the Fermi surface but with a pair condensate
〈ψ1ψ2〉 which is spatially inhomogeneous in the ground state.
A mismatch in the Fermi momenta of the two interacting
species in the absence of pairing disfavors the formation of
zero-momentum Cooper pairs and instead pairs with finite
total momentum are favored. These pairs condense to form
a ground state that breaks translational symmetry and can be
written as a sum over plane waves,

〈ψ1(x)ψ2(x)〉 ∼ �(r) = �
∑
{qa}

e2iqa ·r, (68)

where � is the gap parameter. The magnitude of the mo-
mentum is |qa| � δkF , where δkF is the splitting between the
Fermi momenta of the interacting species. The magnitudes

of the momenta and their spatial orientation are determined
by minimizing the total free energy and this set of momenta
specifies a crystalline ground state. The LOFF phases can in
principle be realized in ultracold Fermi gases [29–34] where
a splitting between Fermi levels can be achieved through a
population imbalance and in dense quark matter where a Fermi
level splitting arises naturally [35,36].

In dense quark matter, pairing between different flavors
of quarks can play a role in determining the ground-state
structure. The relatively large strange quark mass and charge
neutrality induce a splitting between the Fermi energies
of up, down, and strange quarks. The expected splitting
between the Fermi energies is δμ � m2

s /(8μq), where ms

is the strange quark mass and μq is the quark chemical
potential. At moderate densities, such as those realized in
the neutron star core where μq � 400 MeV, this splitting
between Fermi energies can favor LOFF phases in quark matter
with spatially varying diquark condensates with a crystalline
structure when δμ ∼ �0/

√
2 [37–39], where �0 is the gap

in the absence of Fermi surface splitting. As this ground state
breaks the same symmetries as those discussed in Sec. II, these
phases are amenable to the same low-energy effective theory
formulation.

Several aspects of the low-energy theory of crystalline
phases in quark matter have already been described in
Ref. [40].7 In Ref. [16], the coefficients of the “lattice
only” [φ = 0 in Eq. (1)] effective theory were computed
microscopically in a Ginzburg-Landau expansion [39]. This
work was primarily focused on the shear modes and showed
that both the kinetic coefficient ρ and the elastic constants
μ, etc., were of the order μ2

q�
2, where � is the pairing

gap parameter. The mixing between the longitudinal lattice
phonon mode and the superfluid mode was mentioned but the
relevant mixing coefficient was not calculated. Using the same
techniques, we have estimated the mixing coefficient and we
find that in the regime where LOFF-like phases are favored

gLOFF
mix ∼ �

δμ
. (69)

Similarly, the coefficients for the “superfluid-only” (ξa = 0)
sector can also be computed (e.g., some were calculated
in [42]). For � � μq we expect the coefficient f 2

φ ∼ μ2
q ,

corresponding to the density of states near the Fermi surface
for a relativistic system. Our simple estimates here show that
strong mixing between the superfluid and the longitudinal
mode can be realized, with important implications for hydro-
dynamic oscillations in the context of both dense quark matter
and trapped imbalanced Fermi gases, where LOFF phases
may also be potentially realized. Definitive results require a
rigorous derivation of the low-energy constants. A promising
technique for the calculation of the low-energy constants in
the LOFF phase beyond the presently used Ginzburg-Landau

7The low-energy theory for a one-dimensional LOFF phase in
ultracold Fermi gases was discussed in Ref. [41]. These authors
focused on the potential energy and did not consider the terms
involving time derivatives. Therefore the mixing of the modes was
not considered.
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approximation is the use of density functional theories (DFTs)
[32]. The parameters of the DFTs are constrained by ab initio
calculations, and they can be used to calculate the free energies
of various states in an efficient manner.

VI. CONCLUSIONS

We have studied a low-energy effective theory describing
phases of matter that simultaneously break translational
symmetry and number conservation symmetry. U(1) phase in-
variance and general coordinate invariance restrict the combi-
nations of terms that can appear in the effective Lagrangian. We
have shown that the lowest order Lagrangian (featuring equal
numbers of derivatives and Goldstone fields) is determined by
the derivatives of the thermodynamic pressure with respect to
the external fields such as the chemical potential. While this
was known in the case of one superfluid system [14,15], here
we have provided a different proof for superfluids and we have
generalized it to the mixed system. The two main results of
this paper, Eqs. (47) and (55), provide a useful framework for
computing the low-energy dynamics.

Our thermodynamic matching relates the LECs to thermo-
dynamic derivatives of the free energy with respect to external
fields (chemical potential, vector potential, and background
metric). We have also pointed out the relation between LECs
and correlators of the U(1) current and the stress tensor at
small momenta. Both approaches might be pursued in future
nonperturbative calculations using many-body techniques
such as Skyrme Hatree-Fock and quantum Monte Carlo. For
LOFF phases in trapped ultracold Fermi gases, the LECs may
be calculated using DFT techniques.

As a concrete example of phenomenological interest, we
have considered matter in the inner crust of a neutron star,
updating a previous estimate of the parameter characterizing
the kinetic mixing of superfluid and lattice phonons. We also
discussed briefly how this formulation would apply to the
crystalline superfluids or LOFF-like phases and highlighted
the role of mixing between the modes in these systems. These
systems may be realized in terrestrial experiments done on
trapped ultracold Fermi gases, and mixing in these systems
could affect the hydrodynamic modes in these atomic traps.

Finally, we note that the formalism that we have set up
here can be applied to study the low-energy dynamics of
other physical systems with several spontaneously broken
symmetries, such as a system composed of two superfluid
species.
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APPENDIX A: �[ Ān, Āp, ḡ] AND THE ENERGY DENSITY
OF DEFORMED STATES

In this Appendix we show that the energy density
�[Ān, Āp, ḡ] = −W [Ān, Āp, ḡ]/(V T ) calculated using the
path integral [Eqs. (29) and (39)] admits a simple physical
interpretation. It is the expectation value per unit volume,
E[ζg] = 〈�g|ĤĀn,Āg,ḡ=η|�g〉/V , of the flat-space Hamiltonian
in the state |�g〉 that minimizes E[ζg] subject to the con-
straint 〈�g|ξa(x)|�g〉 = ζ a

g (x), with ζ a
g (x) satisfying ḡab =

ηab − 2sab(ζ ) [see Eq. (49)]. In other words �[Ān, Āp, ḡ]
is the energy density in the lowest energy state subject to
the “deformation condition” 〈�g|ξa(x)|�g〉 = ζ a

g (x). It is
precisely in this sense that one should think of the metric ḡab

as determining the shape of the system. To avoid notational
clutter, we will focus here on the case of a pure solid system
and neglect the dependence on the external fields Ān and Āp.
The derivation involves several steps, which we summarize
below.

(i) First, let us evaluate the partition function in the pres-
ence of a space-time independent background metric
ḡμν of the form of Eq. (51) by the saddle-point method.
The classical solution that minimizes the Euclidean
action and is well behaved at |x| → ∞ is given by
ξa = 0. So we have

Z[ḡ] = eiW [ḡ] = exp{iV T L0(Hab(g = ḡ, ξ = 0))}.
(A1)

(ii) Since we are working with a diffeomorphism-invariant
theory, we can obtain the same result for the free energy
in a different coordinate system. Let us use this freedom
to switch from coordinates (xa, ḡab) to the “flat”
coordinates (x̃a, ηab).8 The appropriate variable trans-
formation can be found by noting that Hab is a scalar
density. This results in xa(x̃) = x̃a − ξa

g (x̃), with the
field ξg determined by the condition Hab(g = ḡ, ξ =
0) = Hab(g = η, ξ = ξg), which explicitly reads

ḡab = ηab −
(

∂ξb
g

∂x̃a

+ ∂ξa
g

∂x̃b

− ηij
∂ξa

g

∂x̃i

∂ξb
g

∂x̃j

)
. (A2)

Equation (A2) defines ξa
g up to rigid rotations and

translations. For constant ḡab the solution has the
form ξa

g (x̃) = Ka
b x̃b + ca , where the elements of Ka

b

and ca are constant.9 Equivalently, the inverse change
of variables reads x̃a(x) = xa + ζ a

g (x), with ζ a
g (x) =

8The flat coordinates (x̃a, ηab) play a somewhat special role: the
configuration ξ̃ a = 0 corresponds to the equilibrium configuration in
the absence of external fields. In this state the body-fixed coordinates
za = x̃a − ξ̃ a are flat (coinciding with the laboratory coordinates).
Deformations from equilibrium ξ̃ �= 0 induce a non-Euclidean metric
in the body-fixed coordinates.

9Note, however, that one needs to avoid “large diffeomorphisms,”
which are not well behaved at |x| → ∞. Proper behavior at infinity
can be ensured by multiplying the transformation by appropriate
convergence factors that decay to zero at |x| → ∞ faster than any
polynomial.
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ξa
g (x̃) + O(ξ 2

g ), and one has ḡab = ηab − 2sab(ζ ), with
the strain sab(ζ ) given in Eq. (49).
In summary, as a consequence of general coordinate
invariance one has

Z[ḡ] = eiW [ḡ] = exp{iV T L0[Hab(g = η, ξ = ζg)]},
(A3)

with a time-independent field configuration ζg(
x) de-
termined by Eq. (49) or, alternatively, (A2).

(iii) Next we note that the exponent on the right-hand
side of Eq. (A3) is the flat-space action evaluated
at the field ξ = ζg . Moreover, to leading order in
the loop expansion (and low-energy expansion) the
action coincides with the quantum effective action
�[ζg] = Seff[ζg]. But the quantum effective action

�[ζg] admits an energy interpretation [43–45]: for
time-independent field configurations ζg(
x), one has
that �[ζg]/T = −〈�g|ĤĀn,Āg,ḡ=η|�g〉, where |�g〉 is
the state that minimizes the expectation value of the
Hamiltonian under the constraint 〈�g|ξ̂ a(x)|�g〉 =
ζ a
g (
x). In equations, the above chain of reasoning reads

W [ḡ] ≡ −V T �[ḡ], (A4)

W [ḡ] = Seff[ζg] = �[ζg] = −T 〈�g|ĤĀn,Āg,ḡ=η|�g〉
(A5)

≡ −V T E[ζg], (A6)

thus proving that �[ḡ] = E[ζg], with ζg related to ḡab

by ḡab = ηab − 2sab(ζg).
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