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Nuclear structure in strong magnetic fields: Nuclei in the crust of a magnetar
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Covariant density functional theory is used to study the effect of strong magnetic fields, up to the limit predicted
for neutron stars (for magnetars B ≈ 1018 G), on nuclear structure. All new terms in the equation of motion
resulting from time-reversal symmetry breaking by the magnetic field and the induced currents, as well as axial
deformation, are taken into account in a self-consistent fashion. For nuclei in the iron region of the nuclear chart
it is found that fields on the order of magnitude of 1017 G significantly affect bulk properties such as masses and
radii.
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I. INTRODUCTION

Several studies (e.g., Refs. [1,2]) have determined the
presence of intense magnetic fields, up to 1016 G, on the
surface of neutron stars. Theoretical models suggest that these
magnetic fields might reach up to B ≈ 1018 G and even larger
values if one considers the limit imposed by the virial theorem
(B ≈ 2 × 1018 G [3]). The influence of the magnetic fields
on the equation of state (EOS) has been thoroughly studied
and reported in recent years (e.g., Refs. [3–6]). It should be
noted that magnetic fields of the order of 1018 G can strongly
influence the low-density regions of a neutron star.

The outer crust is fundamentally composed of well-
separated nuclides, and its structure determined by the energies
of isolated nuclei, the kinetic energy of electrons, and the
lattice energy. Thus, its composition depends very much on
the binding energy of stable and unstable nuclei. At the lowest
densities it is thought that the most abundant component is 56Fe
because of its high binding energy, a fact actually observed in
emission spectra (e.g., Ref. [7]).

The magnetic field strength required to directly influence
the EOS can be estimated by considering its effects on
charged particles. Charge-neutral, β-equilibrated neutron star
matter contains both negatively charged leptons (electrons
and muons) and protons. Magnetic fields quantize the orbital
motion (Landau quantization) of these charged particles.
When the Fermi energy of the proton becomes significantly
affected by the magnetic field, the composition of matter in β

equilibrium is modified. This is reflected in a change of the
pressure of matter. It has been found in Ref. [3] that this occurs
for fields of approximately 1018 G, and that in general leads to
a stiffening of the EOS.

However, there are very few studies [8,9] of the changes
that these very intense magnetic fields may eventually bring to
the composition of the crust. The structure and composition of
the crust is important in the thermal and rotational evolution
of neutron stars, in particular in the theory behind glitches [1].
Some other studies [10,11] point to a magnetically driven crust
activity as the source of soft γ repeaters (SGRs).

So far, the impact of intense magnetic fields in nuclei
found in the outer crust has been studied on a qualitative
way using a simple non-self-consistent method by Kondratyev

and collaborators [8,9]. It was found that fields as low as
1016 G may modify the nuclear shell structure, well within
the range of theoretically possible magnetic strengths. There
are, however, still some questions that need to be addressed:
(i) What is the minimum field that is able to significantly
alter the nuclear structure? (ii) Is this field low enough to be
found in a significant proportion of neutron stars or magnetars?
(iii) Is this effect big enough to influence astrophysically
relevant situations and processes, for example, neutron star
outer crust composition or final element abundances in
nucleosynthesis scenarios?

The objective of the present work is to try to find answers to
these questions, in a quantitative way if possible, using a fully
microscopic description of the nuclear system within covariant
density functional theory. The formalism used is introduced in
Sec. II. A general discussion of the effects of the external
magnetic field on nuclei is given in Sec. III and particularized
to an example nucleus. A discussion of the possible influence
of the magnetic fields on neutron star outer crust nuclei can be
found in Sec. IV. Finally, Sec. V is devoted to the conclusions.

II. FORMALISM

Covariant density functional theory starts from an effective
Lagrangian that includes the nucleon and as many meson
fields as needed to reproduce basic nuclear properties such as
saturation (a detailed discussion can be found in Refs. [12,13]):

L = LN + Lm + Lint + LBO + LBM. (1)

LN refers to the Lagrangian of the free nucleon

LN = ψ̄(iγ μ∂μ − m)ψ, (2)

where m is the bare nucleon mass and ψ denotes the Dirac
spinor. Lm is the Lagrangian of the free meson fields and the
electromagnetic field generated by the protons

Lm = 1
2∂μσ∂μσ − 1

2m2
σ σ 2 − 1

4�μν�
μν + 1

2m2
ωωμωμ

− 1
4

�Rμν
�Rμν + 1

2m2
ρ �ρμ �ρμ − 1

4FμνF
μν + U (σ ), (3)

where mσ , mω, and mρ are the meson masses, and U (σ ) =
(g2/3)σ 3 + (g3/4)σ 4 is the standard form for the nonlinear
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coupling of the σ meson field. The interaction Lagrangian Lint

is given by minimal coupling terms

Lint = −gσ ψ̄σψ − gωψ̄γ μωμψ

− gρψ̄γ μ�τ �ρμψ − eψ̄γ μAμψ, (4)

where gσ , gω, gρ , and e are the respective coupling constants
for the σ , ω, �ρ, and photon fields and, of course, e vanishes
for neutrons. In the previous and subsequent formulas, bold
symbols denote vectors in ordinary space, and arrows denote
vectors in isospin space. These three terms, LN , Lm, and
Lint, compose the standard RMF Lagrangian. Throughout this
work the parameter set NL3 [14] is used for the masses and
coupling constants of the model. This parameter set has been
thoroughly used and has led to very successful description of
many nuclear properties. In addition, there are two new terms
corresponding to the interaction of the nuclear system with an
external magnetic field: (i) the coupling of the proton orbital
motion with the external magnetic field,

LBO = −eψ̄γ μA(e)
μ ψ, (5)

and (ii) the coupling of both proton and neutron intrinsic dipole
magnetic moments with the external magnetic field [15]

LBM = −ψ̄χ (e)
τ3

ψ, (6)

where

χ (e)
τ3

= κτ3μN
1
2σμνF

(e)μν. (7)

Here σμν = i
2 [γμ, γν] and μN = eh̄/2m is the nuclear magne-

ton and κn = gn/2, κp = gp/2 − 1, with gn = −3.8263 and
gp = 5.5856, are the intrinsic magnetic moments of protons
and neutrons. Interactions with the external magnetic field
are marked the superscript (e). This field is considered to be
externally generated, and therefore there is no associated field
equation and thus no other bosonic terms in the Lagrangian.
Both terms LBO (5) and LBM (6) have to be taken into account
because at the magnetic field strengths of interest (B ≈ 1017 G)
they are of the same order of magnitude.

The Hamiltonian density can be derived from the La-
grangian density of Eq. (1) as the (0,0) component of the
energy-momentum tensor, leading the to the energy functional
EB[ρ̂, φ] (see in Ref. [13] for details):

EB[ρ̂, φ] = Tr
{[

α(−i∇ − eA(e)) + β
(
m + χ (e)

τ3

)]
ρ̂
}

+
∑
m

Tr [(β �mφm) ρ̂]

±
∑
m

∫
d3r

[
1

2
(∂μφm)2 + 1

2
m2

mφ2
m

]
, (8)

where the upper sign holds for scalar and the lower sign for
vector mesons;

ρ̂(r) =
∑

i

|ψi(r)〉〈ψi(r)| (9)

is the relativistic single-particle density matrix and the traces
run over the Dirac indices and over the integral in r pace and,
according to the no-sea approximation, the index i runs over all
the occupied levels in the Fermi sea. The index m = σ, ω, ρ, e

runs over the various meson and electromagnetic fields and
the vertices �m read

�σ = gσ , �μ
ω = gωγ μ,

��μ
ρ = gρ �τγ μ, �μ

e = eγ μ, (10)

and 1
2m2

mφ2
m has to be replaced by 1

2m2
σ σ 2 + U (σ ) in the case

of the σ meson. It is customary at this point to introduce
an additional term into the energy functional to account
for pairing correlations [16], at least in its simplest BCS
approximation. In the present study, however, pairing effects
are completely neglected. It is a well-known fact [17] that
static magnetic fields lead to a reduction in pair correlations in
superconductors and to the appearance of a critical field where
all such correlations vanish.

The functional (8) follows the spirit of magnetic-field-and-
density functional theory (BDFT) [18], in which the vector
potential is introduced as an explicit dependence in the energy
functional. Considering that astrophysical magnetic fields can
be taken as constant on a nuclear scale (i.e., their functional
form is fixed), it would be of little advantage to use the more
general current-and-density functional theory (CDFT) [19],
which generalizes density functional theory (DFT) with the
inclusion of an external vector potential in a universal fashion.
Because there is no practical value in considering the external
magnetic field B as an independent variable, it is regarded in
the density functional as a parametric variable. Minimization
with respect to the density ρ̂ in the Hartree approximation
[13] and considering only static configurations leads to the
stationary Dirac equation for the nucleons and to the Klein-
Gordon equations for the mesons

ĥDψi = εiψi, (11)[−� + m2
m

]
φm = ∓

∑
i

ψ̄i�mψi, (12)

where m2
m has to be replaced by m2

σ + g2σ + g3σ
2 in the case

of the σ meson and where the Dirac Hamiltonian has the form

ĥD = δEB[ρ̂, φ]

δρ̂

= α (−i∇ − V) + V0 + β(m + S) + βχ (e)
τ3

, (13)

with the scalar and vector potentials S and Vμ defined as

S = −gσσ, (14)

Vμ = gωωμ + gρτ3ρμ,3 + eAμ + eA(e)
μ . (15)

At this point it may be useful to fix the functional form of
the magnetic field. Of course, it is not constant throughout the
neutron star. However, the scale of changes is much larger than
the microscopic nuclear scale [3]. Thus, the magnetic field B
within each individual nucleus might be considered constant.
If one chooses the intrinsic z axis in the direction of this
constant external magnetic field B = (0, 0, B) and cylindrical
coordinates (z, r, ϕ) the contribution of this external field to
the vector potential V can be written, in the symmetric gauge,
as

A(e) = − rB

2
eϕ, (16)
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where eϕ is the unit vector associated with the azimuth angle
ϕ and r is the distance from the symmetry axis. As discussed
in Eq. (B3) of the Appendix B the contribution of the intrinsic
magnetic moments is given by

χ (e)
τ3

= −κτ3μN�3B. (17)

It is clear that the presence of the magnetic field breaks
spherical symmetry for the Dirac and Klein-Gordon equations.
Only axial symmetry is preserved for fields of the form (16).
As discussed in Ref. [12] the spinor solutions in Eq. (11) can
be written, in axial symmetry, as

|ψi(r)〉 = 1√
2π

⎛
⎜⎜⎝

f +
i (r, z)ei(�i−1/2)ϕ

f −
i (r, z)ei(�i+1/2)ϕ

ig+
i (r, z)ei(�i−1/2)ϕ

ig−
i (r, z)ei(�i+1/2)ϕ

⎞
⎟⎟⎠ χti (t). (18)

They are characterized by the angular momentum projection
�, the parity π , and the isospin projection t . For even-even
nuclei and in the absence of an external magnetic field,
according to Kramers rule, for each solution ψi with positive
�i there exists a time-reversed one with the same energy,
denoted by a bar, ı̄ := {εi, −�i, πi}. However, time-reversal
symmetry is broken by the magnetic field, so the twofold
degeneracy is not present and one needs to consider both
solutions separately. This breaking of time-reversal symmetry
in the intrinsic frame leads to the appearance of time-odd
mean fields and nonvanishing currents which induce spacelike
components of the vector mesons ω and ρ, usually referred
to as nuclear magnetism [20–22]. It is a great advantage in
relativistic nuclear density functionals that these time-odd
mean fields are determined by the same coupling constants
gω and gρ as the well-determined time-even fields.

In nonrelativistic nuclear density functionals such as
Skyrme [23,24] or Gogny [25] there are, in principle, also
relations connecting time-even and time-odd parts through
Galilean and gauge invariance [24]. However, these relations
do not connect spin and spatial degrees of freedom as
consistently as Lorentz invariance and, in addition, there is
ambiguity, because many of these very successful functionals,
still in use, are adjusted without taking them into account.

As shown in Ref. [20] for fields of the form (16) all induced
currents and magnetic potentials are parallel to eϕ and axial
symmetry is preserved as a self-consistent symmetry [26].
One can write out explicitly the Klein-Gordon equations for
the time- and spacelike meson fields as

(−� + m2
σ

)
σ = −gσ

(
ρp

s + ρn
s

) − g2σ
2 − g3σ

3,(−� + m2
ω

)
ω0 = gω

(
ρp

v + ρn
v

)
,(−� + m2

ω

)
ω = gω( jp + jn),(−� + m2

ρ

)
ρ0 = gρ

(
ρp

v − ρn
v

)
, (19)(−� + m2

ρ

)
ρ = gρ( jp − jn),

−�A0 = eρp
v ,

−�A = e jp,

where the source scalar and vector densities read

ρn,p
s =

N,Z∑
i=1

ψ
†
i βψi,

(20)

ρn,p
v =

N,Z∑
i=1

ψ
†
i ψi,

and the source currents

jn,p =
N,Z∑
i=1

ψ
†
i αψi, (21)

where n and p refer to neutrons and protons, respectively.
Equations (11) and (12) provide a closed set. Their solution
has to be found iteratively, starting from a reasonable estimate
of the meson fields, the Dirac equation (11) is solved yielding
the single-particle spinors. From the spinors, using Eqs. (20)
and (21), one obtains the densities and currents, which act
as sources for the solution of the Klein-Gordon equations (19)
that provide a new set of meson fields. Repeating the procedure
until convergence results in the self-consistent solution of this
set of equations (see Ref. [12] for details). From this solution
one can calculate physical quantities such as the total energy,
radii, and deformations.

The actual numerical solution of these coupled set of
equations is obtained using an oscillator expansion in N = 20
major shells, for which further technical details can be found
in Ref. [12]. Details pertaining the new terms involved in the
inclusion of the coupling to an external magnetic field can be
found in Appendixes A and B.

III. EFFECTS OF THE MAGNETIC FIELD ON THE
NUCLEAR STRUCTURE

The effects that the coupling of protons and neutrons to an
external magnetic field has on the nucleus can be classified as
follows.

Neutron paramagnetism. Also known as Pauli-type mag-
netism, this is caused by the interaction of the magnetic field
with the neutron magnetic dipole moment. It induces a relative
shift of levels with neutron spins directed along the magnetic
field. Because the gyromagnetic factor for neutrons is negative
(gn = −3.8263), configurations with the spin antiparallel to
the magnetic field are energetically favored.

Proton paramagnetism. As in the case of neutrons, this
comes from the interaction of the magnetic field with the
proton magnetic dipole moment. However, the gyromagnetic
factor for protons is positive (gp = 5.5856), which favors
configurations where the proton spin is parallel to the magnetic
field.

Proton orbital magnetism. Also known as Landau-type
magnetic response, this couples the orbital motion of protons
with the magnetic field. It favors configurations where the
proton angular momentum projection is oriented along the
direction of the external magnetic field.

From the single-particle level point of view, there are two
different effects. The orbital magnetism associated with proton
ballistic dynamics removes Kramer’s degeneracy in angular
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FIG. 1. (Color online) Binding energy per article, radius, and
β deformation dependence on the magnetic field strength for 16O.
The binding energy per particle also shows the differences between
using a self-consistent approach and adding the magnetic field in a
frozen-field configuration on top of the bare self-consistent ground
state (see text for details).

momentum projection � of proton levels and brings those
aligned with the magnetic field down in energy. However,
the paramagnetic response (Pauli magnetism) removes the
angular momentum projection degeneracy for both protons
and neutrons. It is thus expected that the magnetic field effect
on the single-particle structure is more pronounced for protons
than for neutrons.

As a first step, it is enlightening to study the effects of
magnetic fields on the nuclear structure in a simple and
well-known nucleus such as 16O. Figure 1 shows the evolution
of the bulk properties of 16O with increasing magnetic field. At
first the influence of the external magnetic field is counteracted
by the currents generated by the breaking of time-reversal
symmetry, including the classical ∝B2 contribution coming
from the orbital coupling. The radius of the nucleus and
spherical shape show high resilience to the increase in the
external magnetic field. For field strengths around 5 × 1017 G,
there is an abrupt decrease in binding energy, associated
with increased radius and the sudden appearance of oblate
deformation for the ground state. Such discontinuities are an
indication that the underlying shell structure has changed in a
fundamental way. These jumps in bulk nuclear properties can
be traced to the single-particle behavior, as can be observed
in Figs. 2 and 3 ; they occur when the last occupied level
crosses the first empty level. At that point, for even-even
nuclei, a reoccupation occurs. A particle is removed from a
level going upward with increasing B field and brought to a
level going downward with increasing spin. Because these two
levels have opposite angular momentum along the symmetry
axis, the nucleus becomes spin-polarized. Another effect on the
structure of nuclei which are superfluid for vanishing external
magnetic field is the gradual disappearance of the neutron and
proton pairing gaps with increasing external field. The original
shell structure is washed out owing to the complicated pattern
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FIG. 2. (Color online) Left, neutrons; right, protons. Evolution
of the single-particle levels in 16O with increasing external magnetic
field, with frozen nuclear potentials at their values for vanishing B.
Landau coupling for the protons and the coupling of the anomalous
magnetic moments is included. Blue lines refer to levels with positive
angular momentum projection �, while red lines refer to levels with
negative �. Solid lines indicate positive parity, while dashed lines
indicate negative parity. The green dots mark the last occupied level.

of level crossings, and, as the magnetic field increases, new
magic numbers may appear.

In the top panel of Fig. 1 we show two types of calculations.
The full curve corresponds to self-consistent calculations,
where the nuclear potentials change with increasing external
fields owing to polarization of the densities and owing to the
polarization currents (nuclear magnetism). The dashed curve
(frozen potentials) correspond to a calculation where, in a
first step, the nuclear potentials S(r) and V0(r) = gωω0(r) +
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FIG. 3. (Color online) Same as Fig. 2, but with a fully self-
consistent solution of the equations of motion (see text for details).
The magenta circle on the proton graph highlights the first level
crossing at the Fermi energy.
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gρτ3ρ0,3(r) + eA0(r) are calculated without external magnetic
field and subsequently these potentials are kept frozen while
the external magnetic field is switched on. Therefore, in this
case we have no nuclear magnetism. For small external fields;
that is, up to the first level crossing at B ≈ 5.2 × 1017 G
there is practically no difference. Levels with ±� are equally
occupied and the corresponding single particle wave functions
are very similar; their contributions to the currents nearly
cancel each other and there is practically no polarization and
no nuclear magnetism. The situation changes, however, after
the first level crossing. Now the nucleus is spin polarized in
the self-consistent solutions (full curve), we have polarization
currents and nuclear magnetism, effects neglected in the
calculations with frozen fields. Thus, we observe differences
in the binding energies and also in the location of the next level
crossings.

To understand the results of Fig. 1 in more detail we
consider in Figs. 2 and 3 the effects on the single-particle
structure outlined at the beginning of this section for frozen
fields and for self-consistent fields. Proton and neutron level
degeneracy is broken in reversed directions owing to the
different sign in their paramagnetic behavior interacting with
the external magnetic field. This degeneracy breaking is more
acute in the case of protons, where the orbital magnetism
plays an important role. Therefore the first level crossing
occurs for the protons at B ≈ 5 × 1017 G. For frozen fields
(Fig. 2) this first level crossing for protons has no influence
on the other proton levels nor on the neutron levels. This is no
longer the case for the self-consistent solution in Fig. 3, where
the changes in the nuclear fields caused by polarization are
clearly seen also in the other proton levels and, owing to the
proton-neutron interaction, also in the neutron levels.

Polarization effects induced by the ω and ρ currents owing
to breaking of time-reversal symmetry are important, and the
frozen fields approximation breaks down for higher magnetic
fields. In the first level crossing one proton is removed from
the 1p1/2 shell and brought to the downward sloping orbit
of the 1d5/2 shell, that is, to a level with � = +5/2. In the
second and third panels of Fig. 1 we see that the reoccupation
corresponds to an increase of the proton radius and transition
from a spherical shape to an oblate deformation.

Light stable nuclei, such as 16O in Fig. 1, are very stiff in
their response to the external magnetic field. In this particular
case the change in binding energy is less than 100 keV per
particle for field strengths less than 5 × 1017 G. The induced
currents tend to counteract the effects of the magnetic field.
The point at which the first level crossing occurs may be
arbitrarily defined as the minimum field strength for which
the nuclear structure is significantly altered. Thus, for 16O
that would be 5 × 1017 G, with a jump in binding energy
per particle of around 400 keV. For less stable and/or heavier
nuclei, as is studied in the next section, it is expected that
this minimum field is reduced, owing to, mainly, two effects:
(i) increase in the level density around the Fermi energy, and
(ii) the increase in the proton orbital magnetic response owing
to the occupation of single-particle orbitals with higher angular
momenta. In particular, this implies that the validity of a
frozen-field treatment of the coupling to an external magnetic
is highly dependent on the nucleus under consideration. In

the next section the response of heavier nuclei to the external
magnetic field is investigated.

IV. POSSIBLE INFLUENCE ON THE OUTER CRUST
COMPOSITION

The outer crust of neutron stars, below the neutron drip
density, is believed to be composed by well-separated nuclei
positioned on a body-centered cubic (bcc) lattice in complete
thermodynamical equilibrium. Assuming that matter in such
conditions condenses to a perfect crystal lattice with a single
nuclear species at each site, the energy density is [27,28]

ε = nNWN (A,Z) + ε′
e(ne) + εL(Z, ne), (22)

where WN is the mass energy of the nuclear species, ε′
e is the

free energy of the electrons, εL is the bcc Coulomb lattice
energy, and nN and ne are the number densities of nuclei and
electrons. At a given pressure, minimization of the Gibbs free
energy per nucleon with respect to the nuclear species (A,Z)
determines the nuclear composition of the lattice vertices.

So far all previous studies (see, for example, Refs. [3,
27–31]) on the influence of strong magnetic fields in the
composition of the crust have concentrated on the electron
part and assumed that the nuclear binding energy WN is
not affected. This is certainly true for weak magnetic fields
below 1015 G, because such fields do not alter the nuclear
structure. However, previous studies [8,9], where the influence
of the magnetic field on the shell correction energy has
been investigated in a simple model, found that fields with a
strength above that threshold might change the nuclear binding
energy and thus modify the equilibrium nuclear species on
the lattice. In fact, changes of a few keV per nucleon might
significantly alter the composition, making more neutron-rich
nuclei dominate over the most likely to be found nuclei around
the 56Fe region [32].

One important question is the location of this magnetic
field strength threshold, in particular for nuclei in the vicinity
of 56Fe. Assuming an electron fraction close to Ye = 0.5 [33],
it can be argued that the most probable nuclei are those with
the same number of protons and neutrons. Figure 4 shows
the dependence of the nuclear binding energy per nucleon
on the magnetic field strength for N = Z nuclei for fully self-
consistent solutions of the RME equations in Eqs. (11) and (12)

56Fe
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8Cr

5 Fe
56Ni
6

Zn

−9.5

−9

−8.5

E
/A

(M
eV

)

0 2 4 6 8 10

B (1017 G)

FIG. 4. (Color online) Energy per particle for N = Z nuclei
around 56Fe.
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FIG. 5. (Color online) Left, neutrons; right, protons. Evolution of
the single-particle levels in 56Fe with the magnetic field, including
the proton orbital coupling and the anomalous magnetic moments
coupling. Solid (blue) lines refer to levels with positive �, while
dashed (red) lines refer to levels with negative �. Solid lines indicate
positive parity, while dashed lines indicate negative parity. The
(green) dots mark the last occupied level.

in the region close to 56Fe. For field strengths of 0.5 × 1017 G
there are changes of a few tenths of a keV in the binding energy
per nucleon of some species. At higher magnetic fields, around
2 × 1017 G, the hierarchy in binding energy of the most bound
nuclei is altered and thus it is expected that the composition of
the outer crust is substantially altered.

As in the example with 16O, the origin of these discontinu-
ities in the binding energy per particle can be traced back to
the single-particle structure. Figure 5 shows the single-particle
level spectra with respect to the external field for 56Fe. The
diagram is very similar to that of 16O, only the larger level
density around the Fermi energy and smaller single particle
gap reduce the minimum field for which the magnetic field
produces structural changes. Similar diagrams are found for
all of the other nuclei presented in Fig. 5 and in those in the
vicinity of 56Fe. Of course, details pertaining the minimum
field that induces a different single-particle level occupation
scheme depend very much on each particular nucleus.

Concerning the possible changes in the hierarchy of binding
energy per particle with increasing magnetic field, it has been
found in this work that several nuclei (e.g., 57Fe and 55Fe)
overbind 56Fe for extended ranges of external magnetic field
strengths. In that regard, the frozen field solutions show a
different behavior than the self-consistent ones. The field
ranges for which this hierarchy changes occur are different
and the magnitude is typically off by a couple hundred keV
as compared with the fully self-consistent solutions. This
ordering according to binding energy is one of the factors that
influences the final composition of the outer crust in neutron
stars, and quantitative predictions should be done using the
full self-consistent formulation.

It is also interesting to study the minimum field (defined as
the field at which the first level crossing occurs) for isotopic
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FIG. 6. (Color online) Minimum magnetic field for which the
first level crossing at the Fermi energy occurs for isotopic chains
around 56Fe.

chains in the iron region because it provides an indication of
the possible effects on the neutron star composition. Figure 6
shows the magnetic field at which the first level crossing
occurs for different isotopic chains close to iron. It provides
an intuitive idea of how intense the magnetic fields have to
be, on average, to affect the nuclear structure significantly.
For isotopes close to 56Fe this value is approximately between
0.5 × 1017 and 3 × 1017 G. For heavier as well as neutron-rich
nuclei, which exist at higher densities in the crust, a sharp
decrease of this minimum field is expected, as mentioned
previously. Thus, for fields around 1017 G it is reasonable to
expect changes in the crust composition. However, because
of the strong dependence of this minimum field on the
nuclear species, it is not possible to predict the effect on the
composition without actually performing the minimization of
Eq. (22). This calculation is, however, computationally very
demanding and would also require refinements in the model
such as the inclusion of pairing (even though it is reasonable
to expect that magnetic fields damp and eventually cancel it)
or the proper inclusion of one-pion exchange terms in the
effective Lagrangian. Therefore, it is well outside of the scope
of the present work.

V. CONCLUSIONS

The influence of strong magnetic fields on nuclear structure
has been studied using a fully self-consistent covariant density
functional. It has been found that a field strength of at
least 1017 G is needed to appreciably modify the nuclear
ground state. For sufficiently high fields these effects cannot
be studied using a frozen-field approach because there are
level rearrangements, causing spin-polarization and induced
currents, and thus a self-consistent model is required. It is
the advantage of covariant theories that the these currents can
be taken into account without any additional parameters. The
minimum magnetic field that changes the nature of the nuclear
ground state is very much dependent on the nucleus, and its
effects on the nuclear binding energy per nucleon range from a
few tenths of a keV for B ≈ 0.5 × 1017 G to a few hundreds of
keV for the maximum field theoretically possible B ≈ 1018 G.

No neutron star has yet been observed with such intense
magnetic fields B > 1016 G, even though theoretical models
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hint that such objects exist [10,11]. In such a case, the
composition of its outer crust might be radically different
from that of normal neutron stars. The relevance of this
change in composition depends on the abundance of normal
neutron stars compared with that of magnetars. Until now,
observations suggest that magnetars are not so common in the
universe and thus it is unlikely that the magnetic field effects on
nuclear structure play an important role in global astrophysical
observables such as element abundances. However, changes in
the composition of magnetars might be relevant in the study
of different phenomena in these particular kinds of neutron
stars, for example, elastic properties of the crust [34], pulsar
glitches [35], or cooling [36]. With the inclusion of a proper
pairing interaction, the covariant DFT model presented in
this work can be used to perform a quantitative exploration
of all these questions. A systematic study of changes in the
composition of the outer crust will be presented in a upcoming
presentation.
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APPENDIX A: OSCILLATOR MATRIX ELEMENTS FOR
THE PROTON ORBITAL COUPLING

1. Dirac equation

The Dirac equation (11) together with the meson field
equations (12) are easily solved in a harmonic oscillator basis.
The procedure is described in great detail in Ref. [12]. The
only new term coming in the solution of the Dirac equation is
α · V , where V is given in Eq. (15). Using the set of α matrices
in the spherical tensor basis, (α+, α−, α3) with

α+ =
(

0 σ+
σ+ 0

)
, α− =

(
0 σ−
σ− 0

)
, (A1)

makes it possible to write

α · V = α+V − + α−V + + α3V
3, (A2)

with

A(e) = i

(
− rB

2
e−iϕ,

rB

2
eiϕ, 0

)
, (A3)

and the internal self-consistent magnetic potential V given by
the solution of the Klein-Gordon equations. Using an oscillator
expansion for the spinors,

ψi =
( ∑

n f i
n |n〉

i
∑

n′ g
i
n′ |n′〉

)
, (A4)

where |n〉 are the axially symmetric harmonic oscillator
wave functions, determined by the quantum numbers n ≡

(nz, nr ,ml,ms):

|n〉 ≡ |nznrmlms〉 = φnz
(z)φ|ml |

nr
(r)

eimlϕ

√
2π

χms
(s), (A5)

with � = ml + ms . The term α · V in the Dirac equation is
then in matrix form(

0 Bnn′

Bn′n 0

) (
fn

ign′

)
, (A6)

with

Bnn′ = −〈n|V −σ+|n′〉 − 〈n|V +σ−|n′〉. (A7)

The oscillator matrix elements can be written as

〈n|V −σ+|n′〉 = +δm′
l ,ml+1〈nznrml|V −|n′

zn
′
rm

′
l〉, (A8)

〈n|V +σ−|n′〉 = −δm′
l ,ml−1〈nznrml|V +|n′

zn
′
rm

′
l〉. (A9)

2. Currents in coordinate space

To solve the Klein-Gordon equations, the source terms
have to be transformed from oscillator to coordinate space.
Expressions for the scalar and vector densities are given in
Ref. [12]. The currents are defined as

j (r) =
∑

i

ψ
†
i (r)αψi(r). (A10)

Because of axial symmetry the third component vanishes, and
we have to consider only two of the components:

j+(r) =
∑

i

ψ
†
i α+ψi, j−(r) =

∑
i

ψ
†
i α−ψi. (A11)

Because α+ = (α−)† we have j− = j ∗
+, so only one of them

needs to be calculated explicitly. With the Dirac spinors in
Eq. (18) we find

j+(r) = +ie−iϕj (r, z), (A12)

j−(r) = −ie+iϕj (r, z), (A13)

with

j (r, z) =
∑

i

∑
nn′

f i
ngi

n′�n(r, z)�n′(r, z)δm′
l ,ml+1

−
∑

i

∑
nn′

f i
ngi

n′�n(r, z)�n′(r, z)δm′
l ,ml−1, (A14)

where the �n(r, z) are the oscillator wave functions without
spin dependence; that is, �n(r, z) = φnz

(z)φ|ml |
nr

(r).

3. Klein-Gordon equation oscillator matrix elements
for the vector terms

In the spherical tensor basis, the Klein-Gordon (K-G)
equations read

(−� + m2)wi = gj i, i = +,−, 3, (A15)

for the massive mesons. The functional form of the currents,
j±(r, θ, z) = ±i j (r, z)e∓iθ , suggest the following ansatz
for the potentials: w±(r, θ, z) = ±i w(r, z)e∓iθ . Inserting
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both in the K-G equations and eliminating the angular
dependence in θ ,(

−∂2
r − 1

r
∂r − ∂2

z + 1

r2
+ m2

)
w(r, z) = j (r, z). (A16)

The oscillator matrix elements for the Laplacian can be found
in Ref. [12]. It is only a matter of including the oscillator
matrix elements for the 1/r2 term, which can be accomplished
trivially in coordinate space.

APPENDIX B: OSCILLATOR MATRIX ELEMENTS FOR
THE COUPLING WITH INTRINSIC MAGNETIC

MOMENTS

The coupling of the magnetic field with the anomalous
magnetic moments of protons and neutrons introduces a new

term in the single-particle Dirac equation (11) with

χ (e)
τ3

= κτ3μN
1
2σμνF

(e)μν. (B1)

For a constant magnetic field B of the form (16) it is easy to
show that

1

2
σμνF

(e)μν = −
(

σ 0
0 σ

)
· B = −� · B, (B2)

and for B = (0.0, B) we have

χ (e)
τ3

= −κτ3μN�3B, (B3)

Finally, the oscillator matrix elements can be written as

〈n|iχ (e)
τ3

|n′〉 = ±δnzn′
z
δnrn′

r
δmlm

′
l
δmsm′

s
κτ3μNB (B4)

for ms = ± 1
2 .
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