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The KATRIN (Karlsruhe Tritium Neutrino) experiment will analyze the tritium β spectrum to determine
the mass of the neutrino with a sensitivity of 0.2 eV (90% C.L.). This approach to a measurement of the
absolute value of the neutrino mass relies only on the principle of energy conservation and can in some sense
be called model-independent as compared to cosmology and neutrinoless double β decay. However, by model
independent we only mean in case of the minimal extension of the standard model. One should therefore also
analyze the data for nonstandard couplings to, e.g., right-handed or sterile neutrinos. As an alternative to the
frequentist minimization methods used in the analysis of the earlier experiments in Mainz and Troitsk we
have been investigating Markov chain Monte Carlo (MCMC) methods which are very well suited for probing
multiparameter spaces. We found that implementing the KATRIN χ2 function in the COSMOMC package—an
MCMC code using Bayesian parameter inference—solved the task at hand very nicely.
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I. INTRODUCTION

The Karlsruhe Tritium Neutrino experiment, KATRIN
[1,2], is a β-decay experiment attempting to measure the elec-
tron neutrino mass with subelectronvolt precision. Presently
the experiment is commissioned to start data-taking in 2013-
2014 and has a projected sensitivity of 0.2 eV (90% C.L.) to
the neutrino mass.

KATRIN is the successor of the experiments in Mainz [3]
and Troitsk [4] and we will be using some of the same
techniques as those. For additional technical details about
KATRIN, see, e.g., [1,2,5].

Strictly speaking, when measuring the “electron” neutrino
mass with β-decay spectra, what we get is the so-called
kinematic neutrino mass. That is, the incoherent sum of
neutrino mass eigenvalues weighted by the appropriate entries
in the lepton mixing matrix:

m2
νe

=
n∑

i=0

∣∣Uei

∣∣2
m2

i . (1)

However, because the mass differences between the active
neutrino mass states are known to be smaller than KATRIN’s
sensitivity, the experiment can effectively only see one mass
state (the mass-squared differences are �m2

12 = 8 × 10−5 eV2

and �m2
23 = |2.6 × 10−3| eV2, respectively [6]). This mass

state is sometimes called the “electron” neutrino mass, but in
principle the tritium β spectrum could contain the signatures
of more than one mass state or of couplings to other particles
entirely. In order to be called truly model independent,
KATRIN’s final data should be analyzed also for alternative
scenarios beyond the minimal extension of the standard model.

Performing an analysis for nonstandard couplings to the
electron neutrino adds more parameter space to the χ2 function
of the experiment. One should therefore consider how an
extended analysis ought to be performed on the KATRIN
output in order to get reliable results.

We present here one approach which seems to give several
advantages over the standard frequentist analysis that has been
used so far. In Sec. II we describe our analysis methods before
presenting results for a number of cases in Sec. III. Finally, we
give some concluding remarks in the last section.

II. METHODS: FREQUENTIST AND BAYESIAN
ANALYSIS TOOLS

A. The principles of Mainz and KATRIN data analysis

Let us begin by summarizing the procedures for production
and analysis of KATRIN spectra as performed by a toy model
Monte Carlo and analysis code for KATRIN-like experiments
[2]. This code has previously been used to forecast the
experiment’s sensitivity to the neutrino mass [7].

Because KATRIN has an integrating spectrometer [a
consequence of the (magnetic adiabatic collimation with
electrostatic (MAC-E) filter technique], the β spectrum must
be written as an integral over the electron energy [see Eq.
(2)]. Here U is the retarding potential of the spectrometer, Ntot

is the total number of tritium nuclei in the source, tU is the
measurement time allotted for a given value of the retarding
potential, and fres is the experimental response function (which
in turn is a combination of the electron energy loss function
of the tritium source and the transmission function of the
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spectrometer). dNβ

dEe
is the theoretical β spectrum folded with

the electronic final state distribution of molecular tritium.
A retarding voltage-independent background rate of B0 is

now added to Eq. (2),

Ns

(
qU,E0,m

2
νe

) = NtottU

∫ E0

0

dNβ

dEe

(
E0,m

2
νe

)
× fres(Ee, qU )dEe. (2)

Nexp(qU ) = Ns

(
qU,E0,0,m

2
νe,0

) + Nb

+ Rnd[Gauss(σ,μ)]. (3)

Nfit
(
qU,A,B,E0,m

2
νe

) = A
Ns

(
qU,E0,m

2
νe

)
A0

+ B
Nb

B0
. (4)

χ2
(
A,B,E0,m

2
νe

)

=
∑

i

(
Nexp(qUi) − Nfit(qUi, A,B,E0,m

2
νe

)

σ (qUi)

)2

, (5)

giving us the following theoretical expression for a KATRIN-
like spectrum:

Nth

(
qU,E0,m

2
νe

) = Ns

(
qU,E0,m

2
νe

) + Nb, (6)

where Nb is the product of B0 and the measurement time tU .
Individual spectra (to resemble the real measurements) are

built using initial parameters m2
νe,0

and E0,0 for the neutrino
mass-squared and the endpoint energy. To the theoretical
expression is then added a random component from a Gaussian
distribution with σ (qU ) = √

Ns + Nb and μ(qU ) = Ns +
Nb. These “experimental” spectra are described by Eq. (3).

When we want to fit our randomized β spectra we have
to account for statistical fluctuations by allowing the overall
amplitude A of the signal as well as the background rate B to
vary against the theoretical amplitude A0 and background rate
B0. In addition, we allow the neutrino mass-squared m2

νe
as well

as the endpoint energy E0 to deviate from the initial parameters
of the simulation m2

νe,0
and E0,0. This is expressed in Eq. (4).

By combining Eqs. (3) and (4) we finally get KATRIN’s χ2

function [2] [see Eq. (5)].
The analysis of the simulated data can be performed

with MINUIT2, which is imbedded in the ROOT package. This
procedure performs a minimization of the χ2 function using
the combined minimizer package. The combined minimizer
in turn uses either an evaluation of the covariance matrix or a
simplex method to find the best minimum of the χ2 function in
the parameter space [8]. One can now do a standard frequentist
analysis to find the statistical uncertainty on, e.g., the neutrino
mass by producing a suitable amount of Monte Carlo spectra,
performing the minimization for each of them, and finally,
inspecting the resulting histograms. An example is shown in
Fig. 1 for 12 860 spectra produced with mνe

= 0.0 eV.
This minimization approach works just fine for the four

well-known free parameters used in a standard KATRIN
analysis (see Table I). However, as previously indicated the
minimization approach has a number of drawbacks. For one
thing it does not give any information on multiple minima, and
it is not well suited for finding shallow minima. Furthermore,
extracting detailed information on correlated parameters is
pretty laborious.

FIG. 1. (Color online) An example histogram depicting the
neutrino mass-squared values from minimizations of 12 860 β

spectra for a KATRIN-like parameter set and an assumed value
for the neutrino mass of mνe

= 0 measured with an optimized time
distribution over the last 25 eV of the β spectrum, e.g., compare to [7].
The histogram has been fitted with a Gauss function, and the results
of this analysis were m2

νe
= −9.184 × 10−5 and σ (m2

νe
) = 0.01591

with χ 2/ndf = 1.0033.

These problems can of course be addressed in a frequentist
context. For one thing, MINUIT2 offers several different
minimization tools and programs could easily be written to
produce two-dimensional (2D) likelihoods, etc., that could
be inspected in order to see parameter correlations and
multiple minima. However, as we add more parameters the
minimization procedure often becomes problematic and rather
slow. We have therefore investigated the Bayesian approach
described in the next section for the following reasons:

(i) We need not assume any shape of the parameter
distributions, and can, for instance, easily handle
non-Gaussian parameters.

(ii) COSMOMC is designed to do parameter estimation
in cosmology using many large datasets. The code
therefore routinely handles 12 or more parameter
dimensions, and we do not have to worry that the
analysis becomes unmanageably slow if we wish to
include nonstandard physics in the analysis.

(iii) By using COSMOMC [9], which is a free and pub-
licly available code, we can take advantage of the

TABLE I. KATRIN standard analysis parameters. Please note,
that we show and plot the deviation of the value of the endpoint of the
β spectrum from the theoretically expected value: E0 = 18575 eV.

Parameter Unit Typical input value

m2
νe,0 eV2 0.0 − 1.0

�E0,0 eV 0.0
B0 Hz 0.01
A0 Hz 477.5

045503-2



ANALYSIS OF SIMULATED DATA FOR THE KARLSRUHE . . . PHYSICAL REVIEW C 84, 045503 (2011)

FIG. 2. (Color online) A one-neutrino analysis with input mass mνe,0 = 0.0 eV. In the COSMOMC output the contours (dotted lines) mark
the likelihood function in the 2D (1D) posterior distributions. The shading (full lines) marks the number of times the MCMC procedure has
probed a specific area of the parameter space. The results have converged nicely and gives m2

ν = −0.41 × 10−5 ± 0.013 eV2.

automatically produced MATLAB files to inspect a
graphic representation of the 2D likelihood contours.
We even get the best-fit values and standard deviations
as output. Put differently, we do not need to write much
additional code in order to get the analysis advantages
we were looking for.

To be clear, there are no fundamental problems in doing a
frequentist analysis on KATRIN datasets, especially since the
number of free parameters is reasonably small in the standard
analysis. However, we believe the task can be done in a faster
and more elegant fashion using COSMOMC.

B. Bayesian parameter inference with COSMOMC

The key ingredient in COSMOMC is the Markov chain
Monte Carlo (MCMC) and Bayesian inference techniques. As
mentioned, the program is built with the intention of inferring

cosmological parameter values and comparing cosmological
models using large cosmological datasets (such as Cosmic
Microwave Background (CMB) data from Wilkinson Mi-
crowave Anisotropy Probe (WMAP) and supernova surveys).
But in principle COSMOMC can analyze whatever data set the
user provides—the cosmology can simply be “turned off” if it
is irrelevant. Note also that our purpose here is not model com-
parison but purely parameter inference. We can then compare
the best-fit value and statistical error from our method with the
results of a typical frequentist analysis without further con-
cerns that quantities such as goodness of fit (i.e., the absolute
best fit χ2) does not have a simple interpretation in Bayesian
analysis.

COSMOMC uses a Bayesian statistics approach to the analy-
sis. When doing so called Bayesian parameter inference one is
interested in knowing the posterior probability, P (θ |D,M)—
the probability of the parameters θ given the data D and the
model M . The inverse question is for the probability of the data,
D, given the parameters and the model, P (D|θ,M)—this is
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simply the likelihood function. With these two probabilities
and the well-known Bayes theorem,

P (A ∧ B) = P (A) · P (B|A) = P (B) · P (A|B), (7)

one can write an expression for the posterior probability:

P (θ |D,M) = L(D|θ,M) · π (θ |M)

ε(D|M)
. (8)

Here L is the likelihood, which can be easily derived from the
χ2 function.1 The posterior probability is thus proportional to
the likelihood.

Meanwhile π (θ |M) is the so-called prior probability,
sometimes referred to as the subjective input; it is what we
believe we know from theory before even taking the data into
account. Correspondingly, this probability has no dependence
on the data. Note that we have been using flat priors on all input
parameters in this paper. This is a quite typical way of stating
that we do not have any prior knowledge of the parameters
in question; however, in the case of the neutrino mass the
choice was intentional and built on the investigations by Høst
et al. [10]. This paper showed the best agreement between
frequentist and Bayesian methods, on the best-fit value for m2

νe

for mνe
∼ 0 eV, when a flat prior on the mass squared was used.

Note also that our prior on m2
νe

is uniform across mνe
= 0 eV

and into the negative parameter space. This is in agreement
with previous analysis conventions of the Troitsk, Mainz, and
KATRIN Collaborations. So in principle one could use a prior
with a physical cutoff at mνe

= 0 eV, but since the purpose of
this paper is to compare the methods used, we have kept the
flat symmetric prior in all our calculations.

Finally, ε(D|M), the evidence, is in effect only a parameter-
independent normalization constant2 [11].

When we want to know the best-fit values and confidence
levels of specific parameters, we can simply integrate over all
the remaining (nuisance) parameters. This is called marginal-
ization, and the output is called the marginalized probability
for the parameter of interest.

In addition to this rather convenient production of param-
eter probability distributions, from the Bayesian inference
approach, COSMOMC gives us another great advantage by using
the MCMC to probe the parameter space. This will provide a
very thorough and easy-to-inspect mapping of the parameter
space of interest.

The purpose of the MCMC is to probe the whole parameter
space in a randomized manner. To achieve this one implements
the Metropolis Hastings algorithm [12] consisting of three
main steps:

(i) First, an initial point θ0 is chosen.
(ii) Second, a step is proposed in some random direction,

after which the new point is evaluated: P (θi + θp).

1The likelihood function L is connected to the χ2 function in
the following way: L = exp(−χ 2/2). This implies that a Gaussian
sampling distribution is being used for the selection MCMC data
points, but crucially, the likelihood and posterior functions are not
themselves Gaussian.

2However, it can be important in some contexts, e.g., in comparing
two qualitatively different models.

Here θi means the iterative point, while θp is the
proposed addition taken from some proposal density.

(iii) Finally, the procedure decides whether or not to take
the step. The point θi + θp is accepted if the posterior
probability is improved, that is, if

P (θi + θp)

P (θi)
� 1. (9)

If the expression above is <1, the step is accepted with
some probability r (rejected with probability 1 − r).
In this manner we generate a set of points {θi}, also
called a Markov chain. For the number of points N

going to infinity, we thus have a representation of the
posterior probability.

The decision procedure of the Metropolis Hastings al-
gorithm allows the chain to wander away from any local
minimum and thus potentially discover other minima (to a
degree determined by the value of r3). On the other hand, it
also guarantees that the parameter space near the minimum is
very well probed. Furthermore, one can perform the analysis
on a combination of multiple chains—all started at random
positions—and get an even better picture of the behavior of
the different parameters in the allowed intervals. To get rid
of unphysical effects from the random starting points, one
normally allows for a burn-in, i.e., the first part of the Markov
Chain is removed. In our case the burn-in is 50% of the sample
size.

Before running the program one must carefully choose
step sizes and parameter ranges. Several settings in both the
COSMOMC program as such and in the parameter files can be
tweaked to fit one’s purpose.

Unfortunately, it is in principle impossible to determine
in any absolute terms whether or not a specific chain has
converged [12], but various convergence diagnostics have been
developed. For instance, when analyzing multiple chains a
convergence parameter R, defined as the variance of the chain
means divided by the mean of the chain variances, can be
evaluated. If 1 − R is less than some chosen small number
(in our case 0.03), this information is interpreted as good
convergence. When COSMOMC has generated the chains we
need, the data analysis is performed, giving us best-fit values
and standard deviations for all the parameters.

Additionally, COSMOMC produces a number of useful
MATLAB files which can be used to produce one-dimensional
(1D) and 2D plots of the marginalized distributions. Inspecting
this graphical output allows us to determine if the chains
have really converged, whether there are multiple minima,
and perhaps most importantly, it shows parameter correlations
right away.4

If we go through all of this for say a single Monte Carlo
generated β spectrum we get all the nice advantages mentioned

3In our case r is defined as e�χ2/2T , with temperature T = 1.
4In fact, COSMOMC–or rather GETDIST–produces a multitude of

diagnostics files in addition to the graphical output. More information
on these can be found on the COSMOMC homepage [9]. Besides, it is
fairly easy to edit the GETDIST program to produce output files that fit
one’s purpose.
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TABLE II. The statistical uncertainty on the neutrino mass squared for 11 different input values. The second row has been calculated using
the Bayesian approach in the COSMOMC analysis, while the third row has been calculated in the usual frequentist approach assuming a Gaussian
distribution function.

mνe
[eV] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

σstat,bay [10−2 eV2] 1.31 1.34 1.38 1.39 1.45 1.51 1.53 1.59 1.61 1.66 1.69
σstat,fre [10−2 eV2] 1.64 1.70 1.79 1.95 1.88 1.91 1.93 2.04 2.02 2.09 2.21

above. But the analysis of that one spectrum would take
many hours as compared to minutes or seconds with the
MINUIT2 procedure, and we would mostly just have achieved
a much slower evaluation of the best-fit values for that
particular spectrum. However, if we instead use the theoretical
β spectrum5 as our input data but with Monte Carlo–generated
error bars, our best-fit values and standard deviations from
COSMOMC should correspond to the results of the frequentist
approach of building histograms for a very large (going to
infinity) number of measurements.

To recap, we implemented our χ2 function for KATRIN-
like experiments in COSMOMC and simply turned off cosmol-
ogy. We have used the theoretical spectrum for any given model
as a data set, with the Monte Carlo–generated error bars of
the original code. The results are discussed in the following
section.

III. RESULTS

A. The minimal model

As a first test of our methods we have attempted to
reproduce the KATRIN sensitivity. We thus generated a tritium
β spectrum using as input so far only four parameters: the
electron neutrino mass-squared m2

νe,0
, the endpoint of the β

spectrum E0,0,6 the background count rate B0, and the signal
count rate near the β-spectrum endpoint A0 [see Eq. (6)].

The input signal count rate can be calculated as a combi-
nation of the column density of the source and the magnetic
fields and cross sections of the spectrometer and source. In
our case the count rate near the endpoint E0 is included in
the analysis code via an amplitude factor A0 as in Eq. (4). The
exact definition and full calculation of this factor A0 is included
in Appendix A of Ref. [14]. Given KATRIN’s experimental
settings, the amplitude has the value A0 = 477.5 Hz.

We would like to remark that the value of the endpoint
energy E0 needs to be treated as a free parameter to produce

5The theoretical input values should represent the average of
infinitely many measurements or Monte Carlo realizations (see also
[13]).

6To suppress the number of digits, we rather plot and write its
deviation from 18 575 eV, i.e., �E0.

realistic fits with respect to fitting of m2
νe

. Until now the 3He
- 3H mass difference is known from precision Penning trap
experiments with 1.2-eV precision [15], but already the fits
of the experiments at Mainz [3] and Troitsk [4] would have
needed a much more precise input value to justify keeping E0

fixed in the fit.
The values of our free parameters are listed in Table I.
The COSMOMC results for a theoretical spectrum with

mνe,0 = 0.0 eV are presented in Fig. 2. Clearly the chains
have converged nicely in this case and the parameters seem
well-constrained. The output values of our analysis are

m2
νe

= (−0.41 · 10−5 ± 0.013) eV2

�E0 = (0.87 · 10−5 ± 0.22 · 10−2) eV

B = (1.00 · 10−2 ± 0.15 · 10−4) Hz

A = (477.0 ± 0.16) Hz.

Here, the error bars represent a 1σ deviation from the best-fit
value and thus represent the interval containing the central
68% of the integral of the distribution function.

We note that our analysis gives a statistical error on
the neutrino mass squared of 0.013 eV2, but the statistical
uncertainty from the frequentist analysis shown in Fig. 1 is
0.016 eV2 and thus ≈23% larger than our Bayesian result.7

However, the procedure with which we find the standard
deviations of the parameters (through a marginalization over
nuisance parameters) is very different from a frequentist
approach and in general, one would not expect the two methods
to return the same uncertainties. A small comparison of the
statistical error bar for 11 different values of the neutrino mass
in a frequentist and a Bayesian analysis (see Table II) shows
us that in this case one gets a systematically higher value of
the statistical uncertainty when using frequentist methods for
the calculation. We checked that this is not caused by any
problems in the code, seeing as the two approaches agree on

7One can calculate KATRIN’s sensitivity to the electron neutrino
mass at 90% C.L. using the following equation (and assuming a
Gaussian distribution function): L =

√
1.64

√
σ 2

tot(m
2
νe

). Here
σ 2

tot(m
2
νe

) = σ 2
stat + σ 2

sys, and KATRIN’s systematic error on the neu-
trino mass squared is the 0.017 eV2 quoted in [2]. The Bayesian
analysis gives σ 2

stat = 0.013 eV2 and a sensitivity of 0.19 eV (90%
C.L.) on the electron neutrino mass.

TABLE III. Amplitudes investigated in the sensitivity plot presented in Fig. 4.

Amplitude [Hz] 2.0 4.0 8.0 16.0 32.0 64.0 125.0 250.0 500.0 1000.0
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TABLE IV. Energy resolutions investigated in the sensitivity plot
presented in Fig. 4.

Energy resolution [eV] 0.5 1.0 2.0 4.0

the χ2 value. By inspecting the likelihood contours of Fig. 2
we can also see that the smaller Bayesian statistical uncertainty
is not caused by any cutoff effects on the prior (the likelihoods
have all converged within the relevant parameter interval). So
even with almost normal distributions we must conclude that
we do not get the same uncertainties and that this is quite
simply due to using two different statistical approaches. (For
a thorough treatment of this issue, see also [16].)

We do, however, get the correct output values and the
right trend in the behavior of σstat(m2

νe
) as demonstrated in

Table II. In conclusion, the COSMOMC approach seems to
produce robust results.

B. Sensitivity plot

As a first application of our Bayesian analysis formalism
we have built a sensitivity plot for KATRIN-like experiments,
or rather, an illustration of the behavior of the statistical
uncertainty on the neutrino mass squared as a function of key
experimental settings. The sensitivity to the electron neutrino
mass of a KATRIN-like experiment depends on the signal
strength, the background count rate, and the energy resolution
of the experiment. Given the fairly well understood effect of
the background on the sensitivity, we investigate only the effect
of the signal strength and the energy resolution. The specific
values used are listed in Tables III and IV. Additionally, we
include an optimization of the measurement time distribution
for each of our KATRIN-like experiments (as specified by their
amplitude and energy resolution). This optimization has in fact
a great deal of influence on the reachable sensitivity of such an
experiment. Currently KATRIN is projected to have a runtime
of three years, but because of experimental stability issues the
measurements are performed as a relatively fast scan over the
electron energies of interest (or rather retarding voltages) of
total duration 966 s. The measurement time allotted to each
data point, the tU in Eq. (2), has been carefully optimized for
KATRIN’s experimental settings as described in [2].

The basic structure of the measurement time distribution
can be represented as three segments around the region of the
β-spectrum endpoint.

(i) First, one needs measurements up to about 10 eV above
the endpoint of the β spectrum to determine the correct
background.

(ii) Second, the “bulk” region of interest below the endpoint
of the β spectrum must be treated carefully. Effectively
this is the section we optimize.

(iii) Third, previous investigations by the KATRIN Collab-
oration have pointed out that there exists a region of

Energy [keV]

T
im

e 
[s

]

Measuring time distribution

18.55 18.56 18.57 18.58
0

50

100

150

200

FIG. 3. (Color online) The blue circles represent the standard
KATRIN measurement time distribution and the red circles show an
example of a simplified time distribution with measurement points
separated by 1 eV in the main block. This particular time distribution
contains only one point in the range: 0.02 Hz < Nth(qU, E0,m

2
νe

) <

0.04 Hz.

maximal sensitivity to the neutrino mass. This region
is centered around the electron energy for which the
signal count rate equals 2 times the background count
rate: Ns = 2Nb [17]. Above this narrow region the total
count rate is dominated by background noise. Below it
the sensitivity to the neutrino mass drops as one goes
away from the endpoint. Therefore extra measurement
time is devoted to measurements in this interval. Given
the projected KATRIN background count rate of 0.01
Hz, the total count rate of the critical point must be
0.03 Hz.

As a rule we construct the background block of our
distribution as ten points separated by 1 eV, each having
tU = 60 s. The main block contains a total of 30 points with
varied spacing (to be optimized) and tU = 40 s. Finally 60 s
are added to tU for 0.02 Hz � Nth(qU,E0,m

2
νe

) � 0.04 Hz.
We find that the 40-100-60 block structure does a good job
of simulating both the structure and total duration of the
measurement time distribution while still being simple enough
to manipulate. For the sake of comparison we show the fully
optimized KATRIN measurement time distribution and one of
our simplified distributions in Fig. 3.

To build the sensitivity plot we let a script evaluate σstat(m2
νe

)
for all energy resolutions given a specific amplitude. The
evaluation includes an optimization of the measurement time
distribution: For the first energy resolution we find the best
statistical uncertainty using all the available distributions [as
specified by their data point intervals in the main block (see
Table V)]. We then impose a time-saving condition stating
that the next energy resolution is allowed only to use the
previous best distribution and its closest neighbors, and so on

TABLE V. The allowed data-point intervals used in the main block of our measurement time distributions.

Data-point intervals [eV] 0.1 0.2 0.4 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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FIG. 4. (Color online) Our final sensitivity plot result showing the
statistical uncertainty on the neutrino mass squared as a function of
amplitude and energy resolution for a KATRIN-like experiment. It is
very clear from the figure that σstat(m2

νe
) is strongly dependent on the

signal count rate (as could be expected) and to a much lesser degree
on the energy resolution, δE. For comparison the figure also show
the corresponding statistical uncertainties of the Troitsk, Mainz, and
KATRIN experiments. (The KATRIN point was calculated with the
COSMOMC approach presented here.)

for the remaining energy resolutions. The reason for doing
this “spline” between energy resolutions and not between
amplitudes is the expectation that the largest sensitivity
fluctuations will take place in the amplitude direction.

We present the average of ten sensitivity plots as our result
in Fig. 4, including points corresponding to the statistical
uncertainty of the Mainz [3] and Troitsk [4] experiments.
The figure shows a clear log-log dependence of σstat(m2

νe
) on the

amplitude. The dependence on the energy resolution on the
other hand is very weak. Making a fit to the plane of
the sensitivity plot gives us

log10

[
σstat

(
m2

νe

)] = 0.058 log10(δE)

− 0.70 log10(Amp) + 0.0038. (10)

That is roughly a factor of 12 stronger dependency on the
amplitude than on the energy resolution in this fit (with
R2

fit = 0.9989). Note that these simulations are done without
considering the corresponding systematics, which would most
likely give a stronger dependence on the energy resolution
�E.

Furthermore, the statistical uncertainties from the Troitsk
and Mainz experiments (2.5 and 2.2 eV2, respectively, taken
from their final results) are somewhat above the plane. This
is as could be expected, given the fact that the plot was built
specifically from a KATRIN toy model. And as mentioned
above we get systematically lower statistical uncertainties us-
ing our Bayesian analysis algorithm than from corresponding
frequentist methods.

Finally, we noted a tendency in our procedure to choose
large data-point separations for the optimal measurement time
distribution. This effect, a lower statistical uncertainty caused
by analyzing a larger energy interval below the Q value, was
already demonstrated in Fig. 19 of [1]. For our purpose we have

FIG. 5. (Color online) This figure shows the σ detection potential
of the massive sterile neutrino for the standard KATRIN-like settings.
The x and y axis depicts the logarithm of the sterile mass squared and
the mixing weight and the red mesh illustrates the 3σ level. As one
would expect, the mass and the mixing weight must be rather high in
order to get a good detection of the sterile component.

kept the systematic uncertainty at 0.017 eV2, as projected for
the KATRIN experiment [2], and our sensitivity (so to speak)
depends only on the statistical uncertainty.

C. Sterile neutrinos

After these initial tests of our COSMOMC extension we have
tried adding further parameters in our routine.

FIG. 6. (Color online) Shown here is the statistical uncertainty
(in eV2) on the massless neutrino component. Again the x and y

axis depicts the logarithm of the sterile mass squared and the mixing
weight, but this time the red mesh depicts the standard one-neutrino
statistical uncertainty of around 0.013 eV2 (for this analysis method).
The features visible in this and the previous figure are explained in
much greater detail in Ref. [14].
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FIG. 7. (Color online) A typical COSMOMC output for a model with b0 = −0.13 and mνe,0 = 0.4 eV. One clearly sees the correlations
between mνe

, b, and �E0. Despite quite large input parameter ranges for m2
νe

and b, neither is well constrained.

As previously mentioned it is obvious that KATRIN cannot
resolve the mass-squared differences between the known
active states of �m2

12 = 8 × 10−5 eV2 and �m2
23 = |2.6 ×

10−3| eV2, respectively. However, sterile neutrinos with mass
states in the electronvolt range could in principle mix with ν̄e.
Such neutrinos would provide a much better target for direct
detection in β-decay experiments than the active neutrinos
which are expected to have subelectronvolt masses. Their
relatively high mass would allow for an easy separation from
the primary decay signal in experiments such as KATRIN.

Recently the MiniBooNE Collaboration confirmed their
findings from 2007 [18] and more indications of a fourth
mass state can be found in the so-called reactor anomaly
[19,20]. Even cosmology suggests an effective number of
neutrino species slightly larger than three [16,21–23]. We
have therefore performed a more thorough investigation of the
possible detection potential for sterile neutrinos by KATRIN-
like experiments. For the total results see [14] and references
therein.

Here we present only our main results for effectively a 1+1
(active + sterile) neutrino scenario. We can justify having only
one active neutrino by the known mass-squared differences.
We kept the active neutrino massless and performed the
analysis for a broad range of sterile neutrino masses. For
KATRIN’s standard settings (see Table I) we get the results
presented in Figs. 5 and 6.

We found that KATRIN should be able to perform a 3σ

detection of any of the heavy mass states we used as long
as |Ues |2 � 0.055. Likewise, a 1σ detection is achievable for
|Ues |2 � 0.018.

D. Right-handed currents

As a final application we take a look at right-handed
currents. We use the notation of Stephenson et al. in [24] and
let b parametrize the strength of the right-handed interaction.
We define b = ρR cos θR/ cos θ , where cos θ is the mixing
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TABLE VI. Input neutrino masses and right-handed coupling strengths used to produce figures.

mνe
[eV] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b −0.19 −0.16 −0.13 −0.10 −0.07 0.0 0.07 0.10 0.13 0.16 0.19

angle from the mass eigenstate to the left-handed current
weak eigenstate and cos θR is the mixing angle from the mass
eigenstate to the corresponding right-handed current weak
eigenstate. Again we assume for simplicity that the mass
of the electron neutrino can be described by one effective
mass eigenstate. ρR is the ratio of the effective strength of
interactions mediated by right-handed currents to the strength
of interactions mediated by the well-known left-handed weak
current. Then the differential β spectrum is modified in the
following way in the presence of right-handed currents [24]8:

dNβ

dEe

= Eν

√(
E2

ν − m2
ν

)(
1 + 2

b

1 + b2

mν

Eν

)
. (11)

From many data of weak precision experiments reviewed
in Ref. [25], Bonn et al. derive an upper limit on | 2b

1+b2 |
of 0.31 (99.7% C.L.) [26], translating to |b| � 0.16 in our
parametrization.9 It is clear from Eq. (11) that the mass and
the coupling parameter b are strongly correlated. Combined
with the well-known correlation between the neutrino mass

8Note that the last term is equivalent to 2 times the similar expression
in [26] in the limit of small b. We wish, however, to use Eq. (11)
retaining the physical meaning of b, rather than treating the coupling
as an effective parameter.

9However, it is clear that if | 2b

1+b2 | < 0.31 can also give the limit
|b| � 6.3, obviously the effect of b ∼ 0 and |b| � 1 would give
very similar spectra using Eq. (11). However b > 1 has no physical
meaning, cf. our definition.

squared m2
νe

and the endpoint energy �E0 [5], this will
propagate to an additional b–�E0 correlation. Figure 7
shows a COSMOMC output for all the parameters in a model
with input values b0 = −0.13 and mνe,0 = 0.4. The input
parameter ranges were m2

νe,0
± 1.5 eV2 and −2.5 < b0 < 2.5,

respectively. We see that even within these rather large
conservative intervals, neither mνe

or b can be determined
well.

As another example Fig. 8 shows the behavior of the mνe
–b

correlation for a range of masses and b0 = ±0.13. Oddly
enough, for small input masses this allows for a better σstat(m2

νe
)

than in the purely left-handed case, if the right-handed coupling
constant b is known. We believe this is caused by the large
available phase-space in the b direction. This means the
likelihood can be made very narrow around the input value
while still providing many valid solutions; in other words,
it is a numerical effect. However, we also notice that when
KATRIN’s sensitivity is reached the uncertainty on the mass
will be determined again by the experimental limitations and
not by numerical solutions. Therefore the correlation between
m2

νe
and b reappears.

Given these disconcerting initial results we investigated
how large an influence the presence of right-handed currents
might have on the output neutrino mass. We have performed the
full COSMOMC analysis for the parameters given in Table VI.
For b = 0 the analysis was the standard analysis, i.e., without
a b dimension. Our main results are presented as a relative bias
compared to the b = 0 case (with the exclusion of mνe

= 0 in
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FIG. 8. (Color online) The left figure shows marginalized COSMOMC 2D likelihood contours and MCMC data for models with b0 = −0.13
and mνe,0 ranging from 0.1 eV to 0.9 eV (going from the upper left corner to the lower right corner). The right figure has b0 = 0.13 and the same
range of input masses. The correlation between mνe

and b only establishes itself when the neutrino mass is larger than KATRIN’s sensitivity of
0.2 eV. This allows for smaller σstat(m2

νe
) than in the case of b0 = 0, because the MCMC routine lets the uncertainty on the mass fill the extra

parameter dimension (b).
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FIG. 9. (Color online) The left figure shows the bias on mνe
as compared to the case without right-handed couplings and the right figure

shows the bias on σstat(m2
νe

). This analysis includes the right-handed coupling strength as a free parameter. The bias on the mass is as large as
80%, while the values of σstat(m2

νe
) is up to five times as large as for the standard case (barring the parameter range below KATRIN’s sensitivity

where the uncertainty on the mass parameter migrates into the b dimension in the MCMC).

the mass bias, to avoid infinities). The results are shown in
Figs. 9 and 10. Note that we included b = |0.19| to create a
better overview of the behavior of m2

νe
.

The results shows us first that the output mass values
fluctuate rather wildly and in some cases deviate by as much
as ≈80% from the input values as shown in the left panel of
Fig. 9. And secondly, the statistical uncertainty is up to 5 times
larger than in the standard case, except in regions where mνe

<

0.2 eV, as expected from the discussion above. Turning to the
output values of the right-handed coupling strength in Fig. 10
we get appallingly bad results, especially in the mνe

= 0.2 eV
region. From the left-hand picture of Fig. 10 one might get the
impression that the output value of b is returned rather nicely
for the larger masses. However, as shown in the right panel of
Fig. 10 the relative error is still up to ≈60% in some regions.

In conclusion, we see from these numerical results that it
is extremely difficult to get a good determination of both the
mass and the coupling strength, at least when using fairly large
parameter intervals. Given stronger limits the situation would
no doubt change, but judging from our COSMOMC contours the
values in some cases will be pressed to the largest allowed
parameter values, even when the intervals are as broad as here.
In other words, tighter parameter values in this case merely
amounts to a manual setting of the allowed size of the statistical
uncertainties.

Next we perform the analysis on the same spectra without
including the right-handed coupling strength to get an idea
of the bias imposed on the neutrino mass in the presence of
unaccounted-for right-handed currents. We present our results
in Fig. 11.

FIG. 10. (Color online) The left figure shows the bias on b for the full parameter range of Table VI and the right figure is an enlarged
version of this plot for mνe

> 0.5 eV. In the left figure we see that we get the output values wrong by more than a factor 10! This is exacerbated
at mass values just above the KATRIN’s sensitivity, once again demonstrating how the uncertainty on the two ill-determined parameters, mνe

and b, is redistributed in the parameter space of the Markov chain. The right figure shows us that when we look beyond the much larger error
bars around mνe

= 0.2 eV, the output values still fluctuate with errors of order ≈60%.

045503-10



ANALYSIS OF SIMULATED DATA FOR THE KARLSRUHE . . . PHYSICAL REVIEW C 84, 045503 (2011)

FIG. 11. (Color online) This figure shows the same biases as Fig. 9, but here the analysis has been performed (on the same spectra) without
the inclusion of the right-handed coupling strength. Clearly the errors on mνe

are much better, and for realistic b values, certainly within
acceptable ±10% ranges. However, we note that σstat,m2

νe
is ≈60% better in the high-b, high-m corners of the right-side plot. This coincides

with a turnover of the bias on the mass in the left-side plot. Figure 12 shows that this behavior takes place because the �E0 parameter is being
pushed to the maximally allowed values, which should be avoided. That is the uncertainty on the mass due to the presence of b is migrating
into the third correlated parameter—the endpoint of the tritium β spectrum.

As it turns out we get much better results when we remove
the b dimension from our COSMOMC setup; this time the
bias on the mass is no larger than around 12%. We notice,
however, that the statistical error drops steeply for high masses
and coupling strengths. By inspecting the original COSMOMC

likelihood contours we see that this is because �E0 has been
pushed to the edge of the input interval as shown in Fig.
12. This also explains why the bias on the mass flips in
the same parameter range instead of becoming monotonically
larger for maximal coupling strengths. The propagation of the

uncertainty on mνe
into the �E0 dimension is straightforward

from the previously discussed correlations between the b,m2
νe

,
and �E0 parameters. Hopefully the upcoming much more
precise 3H–3He mass measurements [27] will be helpful in
resolving this issue for the KATRIN experiment.

The bias induced on the neutrino mass is now within
acceptable bounds and agrees well with the results found by
Bonn et al. [26]. Finally, it should be noted that an experiment
such as KATRIN clearly cannot be used to put bounds on
the size of the right-handed coupling strength at this point.
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FIG. 12. (Color online) The figure shows the 2D likelihood contours of �E0 vs m2
νe

for the mass range 0.1 to 0.9 eV (again going from
the upper-left corner to the lower-right corner) when the analysis is performed without the inclusion of b. The figure on the left used spectra
that was produced with b0 = −0.19, while the figure on the right is for b0 = 0.19. The expected output for �E0 is zero, but it is clear to see
that in this case the b,m2

νe
,�E0 correlation pushes the uncertainty induced in the mass parameter by the physical presence of b into the �E0

parameter instead.
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A precise knowledge of the neutrino mass and the tritium
β-spectrum endpoint E0 would be have to be presupposed
before measurements of the tritium β spectrum could be used
to determine b.

IV. CONCLUSIONS

Our attempt at an analysis of simulated KATRIN data with
various additional parameters has shown the following: For
the standard case of analysis with regard to one neutrino
mass, the MCMC approach is certainly well suited and gives
robust results. The method is very practical when performing
analysis for nonstandard cases because the COSMOMC output
lets us inspect the behavior of the parameters and their relation
to one another in a straightforward manner. We have used
the method to build a sensitivity plot for a KATRIN-like
experiment, clearly demonstrating the dominating dependence
of the sensitivity on the signal count rate.

Further, we have learned that for a suitable mass-squared
difference an experiment such as KATRIN should be able
to detect the existence of other neutrino mass states. And
finally, we have re-evaluated the influence of couplings to
right-handed currents in the tritium β decay and found that
ignoring this would maximally induce an error on the neutrino
mass of order 10%.

In conclusion, we find that our Bayesian approach to the
analysis of the KATRIN experiment is certainly competitive to
a frequentist approach and that it has several advantages when
using an already well-developed framework such as COSMOMC.
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