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Influence of Coulomb distortion on polarization observables in elastic electromagnetic
hadron-lepton scattering at low energies
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Polarization observables in elastic electromagnetic hadron-lepton scattering at low energies are studied, with
special emphasis on the influence of Coulomb distortion. The spin-dependent contributions to the scattering
matrix, i.e., the hyperfine and spin-orbit interactions of leptons and hadrons, are calculated in a distorted-wave
Born approximation based on nonrelativistic Coulomb wave functions. For like charges the Coulomb repulsion
greatly reduces the size of polarization observables compared to the plane-wave Born approximation, whereas for
opposite charges the Coulomb attraction leads to a substantial increase in these observables for hadron laboratory
kinetic energies below about 20 keV.
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I. INTRODUCTION

Recently, Coulomb effects on polarization transfer from
polarized electrons or positrons to initially unpolarized protons
or antiprotons in elastic electromagnetic scattering have been
studied in a distorted-wave (DW) approximation at low
energies [1]. These studies were motivated by the idea of
polarizing hadrons by their scattering on polarized electrons
or positrons in a storage ring [2]. However, in view of this
design, it turned out that the considered observable, i.e., the
total cross section for the scattering of initially unpolarized
hadrons off polarized leptons to polarized final hadrons,
the polarization transfer Pz00z cannot contribute to a net
polarization of the hadrons in the storage ring. The reason
for that is that this polarization observable does not contain a
genuine hadronic spin-flip process [3,4], which is necessary for
a net polarization change. Moreover, our previous numerical
results were criticized by Milstein et al. [4], who had taken
a partial-wave expansion of the Coulomb scattering wave
function instead of the integral representation used in Ref. [1].
Indeed, it turned out that, besides a minor error, the main reason
for the gross overestimation of the polarization transfer cross
section was an accuracy problem in the numerical evaluation,
namely, the relevant quantity was calculated as a difference of
two almost-equal numbers multiplied by a huge factor [5,6].
Besides correcting this problem, I have extended the previous
study to the formal consideration of all possible polarization
observables in this scattering reaction including such spin-flip
transitions using the DW Born approximation. In addition to
the previously considered hyperfine interaction, I also include
the spin-orbit interactions of lepton and hadron in the present
work.

As a starting point, the most general scattering cross
section, allowing for the polarization of all initial and final
particles described by corresponding spin density matrices, is
introduced in the next section, defining the various polarization
observables in terms of bilinear Hermitean forms of the T

matrix elements. The nonrelativistic T matrix with the lowest
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order relativistic contributions from spin-orbit and hyperfine
interactions is presented. Then I specialize to the case where
only the polarization of the final lepton is not measured, the
so-called triple polarization cross section.

The structure functions are evaluated in plane-wave (PWA)
and DW Born approximation (DWA) using nonrelativistic
Coulomb scattering wave functions. For numerical evaluation
in the DWA two methods were applied: (i) a partial-wave
expansion as in Ref. [4] and (ii) an integral representation
of the Coulomb wave function according to Ref. [7]. Results
for the structure functions and spin-flip triple cross sections
are presented for the case where the initial lepton and the
initial and final hadrons are polarized along the incoming
hadron momentum in Sec. III and a summary is given in
Sec. IV. Some details are presented in the appendixes: in
Appendix A, the general scattering cross section in terms of
the various contributions to the T matrix and, in Appendix
B, the two methods for numerical evaluation of hyperfine and
spin-orbit interactions. A more detailed account is presented in
Ref. [8].

II. FORMAL DEVELOPMENTS

Reviews on polarization phenomena may be found for
lepton hadron scattering in Ref. [9], for nuclear physics in
Ref. [10], and for nucleon-nucleon scattering in Ref. [11]. I
consider hadron-lepton scattering in the c.m. system, where
hadron stands for a proton or antiproton and lepton for an
electron or a positron,

h( �p ) + l(− �p ) −→ h( �p ′) + l(− �p ′), (1)

allowing for initial and final hadron and lepton polarization.
The hadron initial and final three momenta are denoted �p and
�p ′, respectively. All possible observables of this reaction can
be obtained from the “quadruple-polarization” cross section,
for which the spin states of all initial and final particles are
described by the corresponding general spin density matrices
ρl/h( �P i/f

l/h ), where the initial density matrices characterize the
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spin properties of the and beam and the final ones those of the
detected particles. This cross section is given by the general
trace

dσ
quadruple
�P f

h , �P i
h, �P f

l , �P i
l

(θ, φ)

d�

= O
( �P f

h , �P f

l , �P i
h

�P i
l ; θ, φ

)
= M2

l M2
h

π2W 2
(
1 + ∣∣ �P f

l

∣∣)(1 + ∣∣ �P f

h

∣∣)
× Trace

[
T̂ †ρ̂ h

( �P f

h

)
ρ̂ l

( �P f

l

)
T̂ ρ̂ h

( �P i
h

)
ρ̂ l

( �P i
l

)]
, (2)

where T̂ = T̂ (θ, φ) denotes the T matrix of the scattering
process, with (θ, φ) the scattering angles, ρ( �P ) the spin
density matrix for a spin-1/2 particle, and �P characterizing
the polarization of the corresponding particle in the initial
and final states, respectively. The trace refers to the hadron
and lepton spin degrees of freedom. The factor in front takes
into account the final phase space, the incoming flux, and a
normalization factor for the case of partially polarized final
states. The invariant energy of the hadron-lepton system is
denoted W = Eh + El , and the masses of hadron and lepton
Mh and Ml , respectively. In the c.m. frame I use as the reference
system the z axis along the incoming hadron momentum �p.
The x and y axes are chosen to form a right-handed orthogonal
system.

In view of the fact that in this work I am interested in the
low-energy regime, a nonrelativistic framework is adopted.
The nonrelativistic density matrices for possible polarization
of initial and final states of a spin-1/2 particle have the standard
form,

ρ̂ ( �P ) = 1
2 (1 + �P · �σ ), (3)

with the vector �P describing the polarization of the particle.

One should note that, in general, | �P i/f

h/l | � 1.
As already mentioned, all possible polarization observables

can be obtained from Eq. (2). In detail they are as follows.

(i) The unpolarized differential cross section:

dσ0(θ, φ)

d�
= O(�0, �0, �0, �0; θ, φ) = S0(θ, φ). (4)

(ii) Beam, target, and beam-target asymmetries of the
differential cross section for unpolarized final states
in the notation of Bystricky et al. [11],

dσ �P i
h, �P i

l
(θ, φ)

d�
= O

(�0, �0, �P i
h,

�P i
l ; θ, φ

)
= dσ0(θ, φ)

d�

(
1 +

∑
j

P i
h,jA00j0(θ, φ)

+
∑

k

P i
l,kA000k(θ, φ)

+
∑
j,k

P i
h,jP

i
l,kA00jk(θ, φ)

)
, (5)

with beam and target asymmetries, respectively,

A00j0(θ, φ) = 1

S0

∂

∂P i
h,j

O
(�0, �0, �P i

h/l,
�0; θ, φ

)
,

(6)

A000k(θ, φ) = 1

S0

∂

∂P i
l,k

O
(�0, �0, �P i

h/l,
�0; θ, φ

)
and the beam-target asymmetry tensor

A00jk(θ, φ) = 1

S0

∂2

∂P i
h,j ∂P i

l,k

O
(�0, �0, �P i

h,
�P i
l ; θ, φ

)
. (7)

(iii) Polarization of the final lepton or hadron for unpolar-
ized beam and target (again, notation of Ref. [11]):

P0j00(θ, φ) = 1

S0

∂

∂P
f

l,j

O
(�0, �P f

l , �0, �0; θ, φ
)
,

Pj000(θ, φ) = 1

S0

∂

∂P
f

h,j

O
( �P f

h , �0, �0, �0; θ, φ
)
. (8)

(iv) Various correlations between the polarization of one
outgoing particle and the beam and/or target po-
larizations. For example, in the case of outgoing
hadron polarization for initial lepton polarization but
an unpolarized incoming hadron, the lepton-hadron
polarization transfer is given by

Pj00k(θ, φ) = 1

S0

∂2

∂P
f

h,j ∂P i
l,k

O
( �P f

h , �0, �0, �P i
l ; θ, φ

)
. (9)

(v) Another interesting example is the hadron spin flip of
a hadron initially polarized by the scattering on an
initially polarized lepton. This is the special case of
the so-called “triple polarization” cross section, with
all particles polarized except for the final lepton,

dσ
triple
�P f

h , �P i
h, �P i

l

(θ, φ)

d�
= O

( �P f

h , �0, �P i
h

�P i
l ; θ, φ

)
, (10)

for the case �P f

h = − �P i
h. This is the relevant quantity for

the method of polarizing hadrons by electromagnetic
scattering on polarized leptons in a storage ring.

A. The nonrelativistic T matrix

For explicit evaluation of the trace in Eq. (2), one needs to
know the spin dependence of the T matrix. In a nonrelativistic
approach but including contributions of the order M−2,
the T matrix contains the Coulomb, the lepton and hadron
spin-orbit, and the lepton-hadron hyperfine interactions.
Separating the various contributions, the T matrix is given in
obvious notation by

T̂ = T̂C + T̂LSl
+ T̂LSh

+ T̂SS, (11)

where the Coulomb interaction T̂C , the spin-orbit interactions
of the lepton and hadron, T̂LSl/h

, respectively, and the hyperfine
interaction T̂SS are given by

T̂C = 4παaC, T̂LSl/h
= 4πα�bl/h · �σ l/h,

T̂SS = 4πα�σh· ↔
d ·�σ l. (12)
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Here α denotes the Sommerfeld fine structure constant, bl/h a

vector, and
↔
d a symmetric rank 2 tensor. The tensor

↔
d can be

decomposed into a scalar and a spherical tensor of rank 2, i.e.,
a symmetric Cartesian tensor with vanishing trace (notation
of Ref. [12]),

↔
d = d [0] + d [2], with d

[0]
ij = d0δij ,

d0 = 1
3 Trace(

↔
d ) and d

[2]
ij = dij − d0δij . (13)

Furthermore, the parameters aC , �bl/h, and
↔
d depend on what

kind of approximation is used. These are as follows.

(i) The plane-wave approximation, corresponding to a
pure one-photon exchange. The nonrelativistic re-
duction of the T matrix including the lowest order
relativistic contribution reads

T̂ PW = 4πα

q2

{
ZlZh

(
1 +

�P 2

4MlMh

)
− 1

8

(
Zh

2μl − 1

M2
l

+ Zl

2μh − 1

8M2
h

)
q2

− Zh

8Ml

(
2μl − 1

Ml

+ 2μl

Mh

)
i(�σl × �q ) · �P

− Zl

8Mh

(
2μh − 1

Mh

+ 2μh

Ml

)
i(�σh × �q ) · �P

+ μlμh

4MlMh

(�σl · �q �σh · �q − q2 �σl · �σh )

}
, (14)

with the three-momentum transfer �q = �p ′ − �p, �P =
�p + �p ′, Zl and Zh as the lepton and hadron charges,
and μl and μh as their magnetic moments, respectively.
From this expression, one reads off the parameters,
keeping in the spin-independent term the lowest order
only,

aPW
C = ZlZh

q2
, �bPW

l/h = icLS
l/h

�p ′ × �p
q2

,

(15)
dPW

ij = cSS (̂qi q̂j − δij ),

where q̂ denotes the unit vector along the three-
momentum transfer �q and q = |�q |. The separation into
a scalar and a traceless tensor according to Eq. (13)
reads

dPW
0 = − 2

3cSS, d
[2]PW
ij = cSS

(
q̂i q̂j − 1

3δij

)
. (16)

Furthermore, the strength parameters are

cLS
l = Zh

4Ml

(
2μl − 1

Ml

+ 2
μl

Mh

)
,

cLS
h = Zl

4Mh

(
2μh − 1

Mh

+ 2
μh

Ml

)
, cSS = μlμh

4MlMh

.

(17)

One should note that the strength parameter of the
hadronic spin-orbit interaction is about 3 orders of
magnitude smaller than the parameter of the leptonic
one, because their ratio is approximately cLS

h /cLS
l ≈

2μh Ml/Mh ≈ 3 × 10−3.

(ii) The DWA using nonrelativistic Coulomb scattering
wave functions ψ

C(±)
�p . The relevant quantity for

Coulomb effects is the Sommerfeld Coulomb parame-
ter ηC = αZlZh/v, with v denoting the relative hadron-
lepton velocity. Within this approach one finds

aDW
C = eiφC aPW

C , with φC(θ ) = −ηC ln[sin2(θ/2)],

(18)

�bDW
l/h = i

cLS
l/h

4π

∫
d3r

r3
ψ

C(−)
�p ′ (�r )∗ (�r × �∇) ψ

C(+)
�p (�r),

(19)

dDW
ij = −cSS

4π

∫
d3rψ

C(−)
�p ′ (�r)∗

×
[

1

r3
(3r̂i r̂j − δij ) + 8π

3
δij δ(�r )

]
ψ

C(+)
�p (�r ).

(20)

Again separating the hyperfine contribution into a scalar
and a traceless tensor, one obtains

dDW
0 = −2

3
cSSN (ηC)2,

d
[2]DW
ij = cSS

4π

∫
d3r

r3
ψ

C(−)
�p ′ (�r )∗ (3r̂i r̂j − δij ) ψ

C(+)
�p (�r),

(21)

with N (ηC) given in Appendix B. One should note that
the tensor dDW

ij is symmetric as well as d
[2]DW
ij . The two

methods for the evaluation are outlined in Appendix B.

B. The triple-polarization cross section

The evaluation of the general trace in Eq. (2) is presented
in Appendix A, where also the case is considered that the
final lepton polarization is not analyzed but all other particles
may be polarized, the so-called triple polarization cross.
Here I consider this triple-polarization cross section given in
Eq. (A17) of Appendix A for the special case where the initial
and final hadrons and the initial lepton are polarized along
the incoming hadron direction. Then with �P i/f

h = λ
i/f

h ẑ, �Qh =
λ+

h ẑ, �P i
l = λi

l ẑ, and λ±
h = λi

h ± λ
f

h , the cross section simplifies
considerably (for more details see Ref. [8]), and one finds
that the remaining structure functions become φ independent,
which is easy to understand, as all polarizations are assumed
to be along the z axis, ruling out any φ dependence. Thus the
cross section becomes

dσ
triple

λ
f

h ,λi
h,λ

i
l

(θ )

d�
= (

1 + λi
hλ

f

h

)[
SC(θ ) + S0(θ ) + Ll

0(θ )
]

+ (
1−λi

hλ
f

h

)
Lh

0(θ )+λi
l

[
λ−

h

(
S−

2 (θ, φ)+Lh
2(θ )

)
+ λ+

h

(
S+

2 (θ ) + Ll
2(θ )

)] + λi
hλ

f

h S2(θ ), (22)

where the structure functions are given by

L
l/h

0 (θ ) = V
∣∣bl/h

0 (θ )
∣∣2

, (23)

L
l/h

2 (θ ) = 2V Re
[
d

[2],0
13 (θ )bl/h

0 (θ )∗
]
, (24)
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S0(θ ) = V

(
3|d0|2 +

3∑
j=1

∣∣d [2],0
jj (θ )

∣∣2 + 2
∣∣d [2],0

13 (θ )
∣∣2

)
, (25)

S+
2 (θ ) = 2V Re

[
a∗

C

(
d0 + d

[2],0
33 (θ )

)]
, (26)

S−
2 (θ ) = 2V

[
Re

(
d∗

0 d
[2],0
33 (θ ) − d

[2],0
11 (θ )∗d [2],0

22 (θ )
) − |d0|2

]
,

(27)

S2(θ ) = 2V
[
2Re

(
d∗

0 d
[2],0
33 (θ )

) − 2|d0|2

− ∣∣d [2],0
11 (θ )

∣∣2 − ∣∣d [2],0
22 (θ )

∣∣2 − ∣∣d [2],0
13 (θ )

∣∣2]
. (28)

The expression in Eq. (22) is an extension of the triple-
polarization cross section given in Eq. (16) of Ref. [3]
by including the contributions from the hadron and lepton
spin-orbit interactions. As a special case, one considers the
so-called hadronic spin-flip cross section for complete hadron
polarization, i.e., λi

h = −λ
f

h = λh = ±1, and the non-spin-flip
cross section with λi

h = λ
f

h = λh = ±1. For the spin-flip cross
section one finds

dσ sf
−λh,λh,λ

i
l

(θ, φ)

d�
= 2Lh

0(θ ) − S2(θ )

+ 2λi
lλh

[
S−

2 (θ, φ) + Lh
2(θ )

]
. (29)

It is governed by the hyperfine terms S2 and S−
2 and the

hadronic spin-orbit interaction via Lh
0 and Lh

2. On the other
hand, the non-spin-flip cross section is given by

dσ nsf
λh,λh,λ

i
l

(θ, φ)

d�
= 2

[
SC(θ ) + S0(θ ) + Ll

0(θ )
] + S2(θ )

+ 2λi
lλh

[
S+

2 (θ, φ) + Ll
2(θ )

]
. (30)

Its polarization-independent part is overwhelmingly domi-
nated by the Coulomb term SC , with additional tiny con-
tributions from the hyperfine and the leptonic spin-orbit
interactions. The difference of the non-spin-flip cross section
for λh = ±1,

1

2

(
dσ nsf

1,1,λ(θ, φ)

d�
− dσ nsf

−1,−1,λ(θ, φ)

d�

)
= 2λ

[
S+

2 (θ, φ) + Ll
2(θ )

]
, (31)

is considered lepton-hadron polarization transfer in Ref. [2].
This polarization transfer is dominated by the hyperfine struc-
ture function S+

2 because the additional spin-orbit contribution
Ll

2 is comparably small, as shown in the next section. It differs
by a factor of 2 and the presence of Ll

2 from the lepton-hadron
polarization transfer Pz00z for the scattering of unpolarized
hadrons on polarized leptons as considered in Ref. [1], where I
considered only the leading term S+

2 , the interference between
Coulomb and hyperfine amplitudes, neglecting higher order
contributions. The more complete expression reads

Pz00z

dσ0(θ, φ)

d�
= ∂2

∂λ
f

h ∂λi
l

dσ
triple

λ
f

h ,λi
h,λ

i
l

(θ, φ)

d�

∣∣∣∣
λi

h=0

=S+
2 (θ, φ) − S−

2 (θ, φ)+Ll
2(θ, φ) − Lh

2(θ, φ).

(32)

In addition to S+
2 , it includes S−

2 , which is quadratic in
the hyperfine amplitude, and Ll

2 and Lh
2, the contributions

from the interference of hyperfine and leptonic and hadronic
spin-orbit amplitudes, respectively. However, the largest of
these additional terms, Ll

2, is still quite small, if not negligible,
compared to S+

2 .

III. RESULTS FOR STRUCTURE FUNCTIONS
AND POLARIZATION CROSS SECTIONS

For evaluation of the structure functions in Eq. (22) and
the corresponding cross section, I have used two methods
for the calculation of Coulomb distortion, the integral rep-
resentation as well as the partial-wave expansion. The integral
representation has been used mainly to check the convergence
of the partial-wave expansion as described in detail in Ref. [8].
Thus all results presented in this section are based on the
partial-wave expansion. For the hyperfine amplitude it was
found that an expansion up to a partial wave with lmax = 2000
was sufficient, but for the spin-orbit interaction, being much
more slowly convergent, lmax = 4000 was taken.

A. The structure functions

First, I discuss the various structure functions which
determine the triple-polarization cross section of Eq. (22).
For the partial-wave expansion, one easily finds the following
expressions in the c.m. frame:

L
l/h

0 (θ ) = − 1
4 V

(
cLS
l/h

)2
cot2(θ/2), (33)

L
l/h

2 (θ ) = −V cLS
l/hc

SS cos2(θ/2), (34)

S0(θ ) = 2 V (cSS)2, (35)

S+
2 (θ ) = −V cSS

2p2
cot2(θ/2), (36)

S−
2 (θ ) = −2 V (cSS)2 sin2(θ/2), (37)

S2(θ ) = −2 V (cSS)2(1 + sin2(θ/2)). (38)

The structure functions, evaluated in the c.m. frame for a
low laboratory kinetic energy of Th = 1 keV corresponding
to ηC ≈ 5, are shown in Fig. 1 for the various approximations,
i.e., plane-wave approximation (PW) and Coulomb distortion
for like (DW+) and opposite (DW−) charges. More results at
higher energies are presented in Ref. [8].

The diagonal structure function S0, induced by the hyperfine
interaction, shows a rather flat, almost constant angular behav-
ior. Its size scales roughly proportional to the inverse of the
kinetic energy Th. Compared to the plane-wave approximation,
the DWA is strongly enhanced for opposite charges (DW−)
and strongly suppressed for like charges (DW+), by several
orders of magnitude. This enhancement or suppression is
increasingly reduced with growing kinetic energy Th and
approaches the plane-wave result above Th = 10 MeV (for
details see Ref. [8]). The pure Coulomb contribution SC ,
however, is much larger, by more than 10 orders of magnitude.

With respect to the other two diagonal structure functions
from the leptonic and hadronic spin-orbit interactions Ll

0
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FIG. 1. Structure functions of the triple-polarization differential
cross section in the c.m. system in plane-wave (PW) and distorted-
wave (DW) approximations for like charges (DW+) and opposite
charges (DW−) for a proton laboratory kinetic energy Th = 1 keV.

and Lh
0, respectively, it suffices to show only the former

one, because Lh
0 differs in magnitude only by the factor

(ch
LS/c

l
LS)2 ≈ 0.9 × 10−5. One readily notes that Ll

0 exhibits
a strong peaking in the forward direction only and tends to
oscillate at small angles for the lowest Th considered here. Over
the whole angular range, especially in the forward direction,
Ll

0 is much larger, by several orders of magnitude, than S0 but
it is still almost negligible compared to the size of SC . The
effect of Coulomb distortion is qualitatively similar to what
one observes in S0.

Only these diagonal structure functions contribute to the
unpolarized cross section. However, as already mentioned,
their relative contribution is extremely small as can be seen
by comparison with the pure Coulomb structure function SC ,
which is also shown in the upper right panel in Fig. 1, indicated
by the large reduction factor applied to SC .

The two hyperfine-hyperfine interference structure func-
tions, S2 and S−

2 , which both are negative throughout, exhibit
a similar pattern, a smooth angular distribution with a slight
decrease in size at backward angles. Again, one notes sizable
enhancements for opposite charges by Coulomb distortion
and suppression for like charges. Also, these two structure
functions are quite small like S0 because they are quadratic in
the hyperfine amplitudes.

Much larger is the third interference structure function S+
2

because it is an interference between the Coulomb and the
hyperfine amplitudes. Thus it is strongly forward peaked. For
this reason, it is displayed in Fig. 1 multiplied by sin2(θ/2).
Moreover, Coulomb distortion induces a strong oscillatory
behavior, again in conjunction with a large enhancement for
opposite charges and strong suppression for like charges.

Finally, the spin-orbit-hyperfine interference structure func-
tion Ll

2 is comparable in size to S2 and S−
2 but exhibits quite

a different pattern. It is strongly enhanced by distortion for
opposite charges and possesses a pronounced broad minimum

around 100◦. It falls off at forward and backward angles, with
many oscillations in the forward direction. With increasing
kinetic energy the minimum moves toward smaller angles with
fewer oscillations. Like the diagonal structure function Lh

0, the
hadronic interference structure function Lh

2 is quite small.

B. The triple-polarization cross section

Now I discuss the c.m. triple-polarization cross section
of Eq. (22). Previously, in Ref. [3] only the hyperfine
amplitude besides the Coulomb one was considered, whereas
the hadron spin-orbit interaction was already included in
Ref. [4]. However, as mentioned above, its contribution to
the helicity-dependent part of the spin-flip cross section in
Eq. (29) is negligible, whereas in the helicity-independent
part the diagonal contribution Lh

0 is comparable in size to
S2 in the forward direction. Much more important is the
leptonic spin-orbit contribution, which, however, appears in
the non-spin-flip cross section only [see Eq. (30)], where it is
buried completely by the Coulomb contribution SC .

The results for the c.m. spin-flip cross section for parallel
and opposite initial spin orientations of hadron and lepton
is shown in Fig. 2. One notes again the strong influence
of Coulomb distortion. Furthermore, the leptonic spin-orbit
interaction plays a relatively important role in the region of the
minimum as can also be seen in Fig. 2 by a comparison with
the curves labeled “hfs” for which the spin-orbit interaction is
switched off. One readily notes a substantial increase when the
spin-orbit part is included compared to the pure hyperfine case.
Furthermore, the spin-orbit interaction induces oscillations, in
particular, in the forward direction. The difference in the two
spin-flip cross sections determines the net hadron polarization
in a storage ring of initially unpolarized hadrons scattered at
polarized leptons.

The non-spin-flip cross section in Eq. (30) is overwhelm-
ingly dominated by the Coulomb contribution SC . The small
dependence on λi

l and λh leads to different scattering strengths
for hadron polarization parallel or antiparallel to lepton
polarization [see Eq. (31)].

C. The integrated structure functions and cross sections

Finally, I present results for the integrated c.m. structure
functions and spin-flip cross sections, which are the relevant
quantities for the polarization buildup in a storage ring. They
are defined by the integration over the solid angle except for
the small cone in the forward direction with θ < θmin, where
the minimal scattering angle is defined by the requirement
that the impact parameter should not exceed a given value b,

θmin = 2 arctan(ηC/l), (39)

with l = bp as the classical angular momentum. In the present
work I have chosen b = 1010 fm. The choice of this value has
been justified in Ref. [3]. The dependence on this parameter
is discussed below. Thus for any structure function or cross
section O(θ ), I define as an integrated quantity

〈O〉 = 2π

∫ π

θmin

d(cos θ )O(θ ) . (40)
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FIG. 2. Absolute value of the c.m. spin-flip cross sections dσ sf
± /d� for initial hadron polarization parallel (upper panels) and opposite

(lower panels) to lepton polarization along the initial relative momentum in the plane-wave (PW) and distorted-wave (DW) approximation for
like charges (DW+; right panels) and opposite charges (DW−; left panels) for a proton laboratory kinetic energy Th = 1 keV. Curves labeled
“hfs” were obtained without the spin-orbit contribution.

For the plane-wave approximation, one finds easily the
following expressions:〈
L

l/h

0

〉 = −2π V
(
cLS
l/h

)2(
ln(sin(θmin/2)) + 1

2 cos2(θmin/2)
)
,

(41)〈
L

l/h

2

〉 = −2π V cLS
l/hc

SS(1 − sin2(θmin/2)(1+cos2(θmin/2))),

(42)

〈S0〉 = 8π V (cSS)2, (43)

〈S+
2 〉 = 4π V

cSS

p2

(
ln(sin(θmin/2)) − 1

2 cos2(θmin/2)
)
, (44)

〈S−
2 〉 = −4π V (cSS)2 cos2(θmin/2)

(
1 + sin2(θmin/2)

)
, (45)

〈S2〉 = −4π V (cSS)2(3 − sin4(θmin/2)). (46)

Thus in PWA all of the integrated structure functions except
for 〈S+

2 〉 are almost independent of Th except for a very weak
dependence via the minimal scattering angle. One should note
the logarithmic divergence for θmin → 0 in 〈Ll/h

0 〉 and 〈S+
2 〉.

It corresponds to the logarithmic divergence in the angular
momentum l of the partial-wave expansion noted in Ref. [4]
which appears when integrating over the whole range of
scattering angles.

The results for those structure functions which determine
the integrated spin-flip cross section

〈σ sf
± 〉 = 2

〈
Lh

0

〉 − 〈S2〉 + 2 ± [〈S−
2 〉 + 〈

Lh
2

〉]
, (47)

are exhibited in Fig. 3. They show a strong increasing influence
of Coulomb distortion with decreasing hadron kinetic energy
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FIG. 3. Integrated structure functions 〈S2〉 (a), 〈S−
2 〉 (b), 〈Lh

0〉 (c), and 〈Lh
2〉 (d) as a function of the proton laboratory kinetic energy Th for

the plane-wave approximation (PW) and with Coulomb distortion for like charges (DW+) and opposite charges (DW−).
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FIG. 4. Integrated spin-flip cross section 〈σ sf
+ 〉 (a, c) and 〈σ sf

− 〉 (b, d) as a function of the proton laboratory kinetic energy Th for
the plane-wave approximation (PW) and with Coulomb distortion for like charges [DW+ (c, d)] and opposite charges [DW−(a, b)].
Curves labeled “hfs” include the hyperfine amplitude only, and in (a) and (c) the curves labeled MSS represent the results
of Ref. [4].

Th leading to large enhancements for opposite charges and
strong suppression for like charges compared to the plane-
wave case. The corresponding integrated spin-flip cross section
of Milstein et al. [4] reads, according to their Eq. (21),

〈σ sf
± 〉 = π

(
αμp

Mp

)2[
(2πηC)2

(
11

6
− ln 2

)
+ ln(lmax/ηC)2 ∓ (2πηC)2

]
. (48)

The logarithmic divergence in the angular momentum l is
regularized by choosing a finite lmax determined by the classical
relation lmax = bp, which corresponds to the choice of a
minimum scattering angle in the present work. The spin-flip
cross sections are displayed in Fig. 4. As expected, they show,
with decreasing Th, a growing strong influence of Coulomb
effects via hyperfine and hadronic spin-orbit interactions. The
latter is only important in the spin-independent part of the spin-
flip cross section, while its influence in the spin-dependent part
is negligible. The results of Milstein et al. [4], shown in the
upper panels in Fig. 4 for opposite charges, are comparable

to our results but display a slight overestimation, which
is probably caused by the different approximations in [4].
The dependence of the integrated spin-flip cross section for
opposite charges on the regularization parameter b is exhibited
in Fig. 5 for b = 109, 1010, and 1011 fm. It appears to be quite
weak.

The relevant quantity for a polarization buildup in a
storage ring is the ratio of the spin-independent part to the
spin-dependent part,

Rsf = 〈σ sf
+ 〉 − 〈σ sf

− 〉
〈σ sf+ 〉 + 〈σ sf− 〉 = 2

〈S−
2 〉 + 〈

Lh
2

〉
2
〈
Lh

0

〉 − 〈S2〉
, (49)

which is shown in Fig. 6. One readily notes the reduc-
tion in this ratio by the hadronic spin-orbit interaction, in
particular, it is quite strong at higher energies but only
about 12% at the lowest energy. This fact clearly shows the
importance of the hadronic spin-orbit interaction besides the
hyperfine contribution. Again, the agreement with Ref. [4] is
satisfactory.

10-2

10-1

 0.001  0.01  0.1  1  10  100

<
 σ

sf +
 >

 [
m

b]

Th [MeV]

(a) (b)b=10 10 [fm]
b=10 11 [fm]
b=10 9 [fm]

10-2

10-1

100

 0.001  0.01  0.1  1  10  100

<
 σ

sf − 
>

 [
m

b]

Th [MeV]

(a) (b) b=10 10 [fm]
b=10 11 [fm]
b=10 9 [fm]

FIG. 5. Dependence of the integrated spin-flip cross sections [〈σ sf
+ 〉 (a) and 〈σ sf

− 〉 (b)] for opposite charges on the regularization parameter b.
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FIG. 6. Ratio of the spin-dependent part of the spin-flip cross
section to its spin-independent part as a function of the proton
laboratory kinetic energy Th for the plane-wave approximation (PW)
and with Coulomb distortion for opposite charges: present calculation
(DW−) and the result from Ref. [4] (MSS). For the curves labeled
“hfs,” only the hyperfine amplitude is included.

IV. CONCLUSIONS

Formal expressions for the polarization observables in
electromagnetic hadron-lepton scattering have been presented
within a nonrelativistic framework including the central
Coulomb force as well as the lepton and hadron spin-orbit and
hyperfine interactions. While the Coulomb force is included
exactly, the latter have been treated in a DWA. Special
emphasis has been placed on the triple-polarization cross
section, with polarizations of the initial hadron and lepton and
of the final hadron along the incoming hadron momentum.
The structure functions which determine the differential
triple-polarization cross section have been evaluated in the
plane-wave approximation and DWA for hadron laboratory
kinetic energies between 1 keV and 100 MeV.

For evaluation of the spin-dependent spin-orbit and hy-
perfine interactions with Coulomb distortion, two methods
have been employed: (i) an integral representation of the
nonrelativistic Coulomb scattering wave function and (ii) a
partial-wave expansion. These two independent methods have
served as a mutual check for the numerical accuracy of the
results.

As expected, the distortion effects are very important at low
energies in small polarization observables, which are driven
by spin-orbit and hyperfine interactions, leading to sizable
enhancements for opposite charges and suppressions for like
charges according to the Coulomb attraction or repulsion. This
is shown in detail for the structure functions of the triple-
polarization cross section and for the special case of the spin-
flip differential cross sections.

The leptonic spin-orbit interactions plays a minor role
in the non-spin-flip cross section in its spin-dependent part,
which, however, as a whole is smaller by many orders
of magnitude than the spin-independent part, dominated by
the Coulomb term SC . The influence of the spin-orbit and
hyperfine interactions on the unpolarized cross section is
almost negligible in the whole range of energies studied here.

With respect to the integrated spin-flip cross sections, our
previous work has been extended by the inclusion of the
hadronic spin-orbit interaction, which shows a non-negligible
effect on the spin-independent part, notably changing the ratio

of the integrated strength of its spin-dependent to that of the
spin-independent part.
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APPENDIX A: THE GENERAL SCATTERING
CROSS SECTION

Evaluation of the trace in Eq. (2) yields the general
expression

O
( �P f

h , �P f

l , �P i
h

�P i
l ; θ, φ

) =
∑

α,β∈{C,LSl ,LSh,SS}
Sα,β (θ, φ),

(A1)

where the various contributions are defined by

Sα,β (θ, φ) = M2
l M2

h

π2W 2
(
1 + ∣∣ �P f

l

∣∣)(1 + ∣∣ �P f

h

∣∣)
× Trace

[
T †

α ρ
f

h

( �P f

h

)
ρ

f

l

( �P f

l

)
Tβρi

h

( �P i
h

)
ρi

l

( �P i
l

)]
,

(A2)

with Tα defined in Eq. (12). One should note the relation Sα,β =
S∗

β,α , from which it follows that Sα := Sα,α is real. Separating
the diagonal contributions (Sα) from the interference terms
(Sα,β for α �= β), one obtains for the “quadruple-polarization”
cross section

dσ �P f

h , �P f

l , �P i
h, �P i

l
(θ, φ)

d�
=

∑
α∈{C,LSl ,LSh,SS}

Sα(θ, φ)

+
∑

α<β∈{C,LSl ,LSh,SS}
2ReSα,β (θ, φ).

(A3)

Explicitly, one finds, in terms of the different contributions to
the T matrix in Eq. (11), for the various diagonal terms

SC(θ, φ) = V0 |aC |2�+
h �+

l , (A4)

SLSl/h
(θ, φ) = V0 �+

h/l

(
�−

l/h
�b∗
l/h · �bl/h

+ 2Re
[(�bl/h · �P f

l/h

)∗(�bl/h · �P i
l/h

)])
, (A5)

SSS(θ, φ) = V0
(
�−

h �−
l D0 − �P −

h · ↔
G · �P −

l

+ [
�−

h
�P f

l · ↔
D · �P i

l + (l ↔ h)
]

− Im

[
�−

h ( �P −
l · �H )

+ 2
∑
jst

P −
l,jP

f

h,sP
i
h,t Ejst + (l ↔ h)

]

+ 2Re
[( �P f

l · ↔
d

∗
· �P f

h

) ( �P i
l · ↔

d · �P i
h

)
+ ( �P i

l · ↔
d

∗
· �P f

h

) ( �P i
h · ↔

d · �P f

l

)])
, (A6)
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where V0 = 4α2M2
l M2

h/[W 2(1 + | �P f

l |)(1 + | �P f

h |)], and the
following quantities depend on the polarization parameters:

�±
h/l = 1 ± �P f

h/l · �P i
h/l,

�P ±
h/l = �P i

h/l ± �P f

h/l,

�Qh/l = �P +
h/l − i �P f

h/l × �P i
h/l . (A7)

Furthermore, for convenience I have introduced the follow-
ing quantities, which depend on the hyperfine interaction
tensor dij :

Dij = 2Re

(∑
k

d∗
ikdkj

)
, D0 =

∑
ij

d∗
ij dji = 1

2
Trace(

↔
D),

(A8)

Ejst =
∑
kl

εjkl d
∗
ksdlt , Gij =

∑
lmst

εils εjmt d∗
lmdst ,

Hi =
∑
klm

εikl d
∗
kmdml, (A9)

where εikl denotes the totally antisymmetric Levi-Civita tensor
in three dimensions. These functions depend on the scattering
angles (θ, φ). Correspondingly, one finds for the interference
terms

SC,LSl/h
(θ, φ) = V0 a∗

C�+
h/l

�bl/h · �Ql/h, (A10)

SC,SS(θ, φ) = V0 a∗
C

�Qh · ↔
d · �Ql, (A11)

SLSl,LSh
(θ, φ) = V0 (�bl · �Ql)

∗(�bh · �Qh), (A12)

SLSl/h,SS(θ, φ) = V0 �Qh/l · ↔
d · (

�−
l/h

�b∗
l/h − i �b∗

l/h × �P −
l/h

+ (�b∗
l/h · �P i

l/h

) �P f

l/h + (�b∗
l/h · �P f

l/h

) �P i
l/h

)
.

(A13)

Using the separation of the tensor
↔
d into a scalar and a

traceless symmetric tensor according to Eq. (13), one finds

D0 = 3|d0|2 +
∑
i,k

d
[2]∗
ik d

[2]
ki ,

(A14)
Dij = 2|d0|2δij + 4Re

(
d∗

0 d
[2]
ij

) + 2Re
∑

k

d
[2]∗
ik d

[2]
kj ,

Ejst = εjst |d0|2 +
∑
kl

εjkl d
[2] ∗
ks d

[2]
lt

+
( ∑

l

εjsld
∗
0 d

[2]
lt − (s ↔ t)∗

)
, (A15)

Gij = 2|d0|2δij − 2Re
(
d∗

0 d
[2]
ij

) +
∑
lmst

εilsεjmtd
[2]∗
lm d [2]

st ,

Hi =
∑
klm

εikl d
[2]∗
km d

[2]
ml . (A16)

It is now easy to see that the vector �H is purely imaginary
and that the tensor Gij is real and symmetric. Furthermore,
one notes the symmetry property E∗

jst = −Ejts . It suffices

to evaluate the spin-orbit vector �b and the hyperfine tensor
↔
d for φ = 0, because then the values for an arbitrary φ can
be generated by a rotation around the z axis exploiting their
rotation properties. For further details see Ref. [8].

1. The triple-polarization cross section

I now specialize to the case where only the final lepton
polarization is not analyzed, i.e., �P f

l = 0, but all other particles
are completely polarized (| �P i/f

h | = 1, | �P i
l | = 1). This case is

of particular interest for polarization transfer in a storage ring
[3]. The corresponding “triple-polarization” cross section has
the form

dσ
triple
�P f

h , �P i
h

�P i
l

(θ, φ)

d�
= O

( �P f

h , �0, �P i
h

�P i
l ; θ, φ

)
=

∑
α∈{C,LSl ,LSh,SS}

S triple
α (θ, φ)

+
∑

α<β∈{C,LSl ,LSh,SS}
2ReS triple

α,β (θ, φ).

(A17)

In this case, the lepton polarization quantities in (A7) become
�±

l = 1, �Ql = �P i
l , �P ±

l = �P i
l , and one finds for the diagonal

terms

S
triple
C (θ ) = V �+

h |aC(θ )|2, (A18)

S
triple
LSl

(θ, φ) = V �+
h

�b∗
l · �bl, (A19)

S
triple
LSh

(θ, φ) = V
(
�−

h
�b∗
h · �bh + 2Re

[
(�bh · �P f

h )∗
(�bh · �P i

h

)])
,

(A20)

S
triple
SS (θ, φ) = V

(
�−

h D0 − �P −
h · ↔

G · �P i
l + �P f

h · ↔
D · �P i

h

− Im
[ �P −

h · �H + �−
h

( �P i
l · �H )

+ 2
∑
jst

P i
l,jP

f

h,sP
i
h,t Ejst

])
, (A21)

and for the interference terms

S
triple
C,LSl

(θ, φ) = V a∗
C�+

h
�bl · �P i

l , (A22)

S
triple
C,LSh

(θ, φ) = V a∗
C
�bh · �Qh, (A23)

S
triple
C,SS(θ, φ) = V a∗

C
�Qh · ↔

d · �P i
l , (A24)

S
triple
LSl,LSh

(θ, φ) = V
(�bl · �P i

l

)∗
(�bh · �Qh), (A25)

S
triple
LSl,SS(θ, φ) = V �Qh · ↔

d · (�b∗
l − i �b∗

l × �P l
i

)
, (A26)

S
triple
LSh,SS(θ, φ) = V �P i

l · ↔
d · (

�−
h

�b∗
h − i �b∗

h × �P −
h

+ (�b∗
h · �P i

h

) �P f

h + (�b∗
h · �P f

h

) �P i
h

)
, (A27)

where V = 2α2M2
l M2

h

W 2 .

APPENDIX B: EVALUATION OF HYPERFINE
AND SPIN-ORBIT INTERACTION IN DWBA

For evaluation of the spin-orbit interaction amplitude
�bl/h and the hyperfine tensor amplitude d [2] with Coulomb
distortion in a DWBA, two methods have been applied: (i)
an integral representation for the Coulomb scattering wave
function and (ii) a partial-wave expansion of the Coulomb
wave function. For convenience, in this Appendix I set η = ηC .
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1. Integral representation

In Ref. [1] a detailed description of this method for the
evaluation of d [2] has been given. Therefore, I only summarize
the result. The method is based on an integral representation
of the confluent hypergeometric function as proposed in
Ref. [7]. With the help of this representation, the hyperfine
tensor d

[2]
ij and the spin orbit vector �bl/h can be expressed as

two-dimensional integrals, as described below.

a. Hyperfine interaction

For the hyperfine tensor one finds

d
[2]
ij (η) = cSS N (η)

[
d̃

[2]
ij (1, η) + iη

∫ 1

0

dt

1 − t
e−iη ln (1−t)

× (
d̃

[2]
ij (1, η) − eiη ln t d̃

[2]
ij (t, η)

)]
, (B1)

where N (η) = e−πηsinh (πη)/πη is a normalization factor and

d̃
[2]
ij (t, η) = Aij (t, 1) + iη

∫ 1

0

dt ′

1 − t ′
e−iη ln (1−t ′)

× (Aij (t, 1) − eiη ln t ′Aij (t, t ′)). (B2)

Here I have introduced the tensor

Aij (t, t ′) = (3âi(t, t
′) âj (t, t ′) − δij )ISS(c(t, t ′)), with

�̂a(t, t ′) = �p t − �p ′ t ′

p[t2 + t ′2 − 2t t ′ cos θ ]1/2
, (B3)

and ISS(c) denotes the integral

ISS(c) =
∫ ∞

0

dx

x
eicx j2(x) = 1

3
− 1

2
c2 − 1

4
c(1 − c2)

×
(

ln

∣∣∣∣c + 1

c − 1

∣∣∣∣ − iπ �(1 − c)

)
, (B4)

with �(x) as the Heaviside step function and c(t, t ′) = (2 −
t − t ′)/[t2 + t ′2 − 2t t ′ cos θ ]1/2. One should note that d

[2]
ij (η)

and d̃
[2]
ij (t, η) are also functions in θ and φ, the scattering

angles in the c.m. frame. However, as mentioned above, it
suffices to choose φ = 0. The remaining integrations over t

and t ′ in Eqs. (B1) and (B2) are done numerically. Details
are presented in Refs. [1] and [8]. In particular, the numerical
problems arising for large negative η are discussed in Ref. [8].

b. Spin-orbit interaction

Following the analogous steps for the spin-orbit interaction,
one finds

�bl/h(θ, φ) = i b
l/h

0 (η, θ )
�p ′ × �p

| �p ′ × �p| , (B5)

where

b0(η, θ ) = sin θ cLS N (η)

[
b̃0(θ, 1, η)

+ iη

∫ 1

0

dt

1 − t
e−iη ln (1−t)

× (̃b0(θ, 1, η) − eiη ln t t b̃0(θ, t, η))

]
, (B6)

b̃0(θ, t, η) = HLS(c(t, 1)) + iη

∫ 1

0

dt ′

1 − t ′
e−iη ln (1−t ′)

× (HLS(c(t, 1)) − eiη ln t ′HLS(c(t, t ′))), (B7)

with HLS(c(t, t ′)) = t ′ILS(c(t, t ′))/[t2 + t ′2 − 2t t ′ cos θ ] and
the radial integral

ILS(c) =
∫ ∞

0

dx

x
eicx j1(x) = 1 − c

2
ln

∣∣∣∣c + 1

c − 1

∣∣∣∣
+ i

πc

2
�(1 − c). (B8)

The numerical evaluation is analogous to the one for
the hyperfine interaction. For η = 0 one finds b0(0, θ ) =
cLS sin θ/(4 sin2 θ/2), in agreement with Eq. (15).

2. Partial-wave expansion

The expansion of the Coulomb wave function into partial
waves used in Ref. [4] reads [13]

ψ
(+)
�p (�r ) = 4π

pr

∑
l,m

ileiσ̄l Fl(η, pr)Y ∗
lm(r̂) Ylm(p̂), (B9)

where the radial function Fl is given in terms of the confluent
hypergeometric function 1F1(a, b, z) according to

Fl(η, ρ) = 2l

(2l + 1)!
e− π

2 η|�(l + 1 + iη)| eiρ ρl+1

×F1(l + 1 + iη, 2l + 2,−2iρ) . (B10)

In the above expression, I have separated the l = 0 phase
σ0 = σC for convenience. The remaining partial-wave phase
is given by σ̄l = σl − σ0, where for l > 0,

eiσ̄l = l + iη

|l + iη| · · · 1 + iη

|1 + iη| . (B11)

Evaluation of the various contributions to the scattering
matrix as listed in Eqs. (19) and (21) leads to the following
expressions, which are still operators in spin space,

�bDW
l/h · �σl/h =

∞∑
l=1

Gl
LSl/h

��ll(p̂
′, p̂) · �σl/h, (B12)

∑
ij

σl,id
[2]
ij σh,j =

∞∑
l′=0

∞∑
l=0

Gl′l
SS,2

[
�[2](�σl, �σh) × �

[2]
l′l

][0]
(p̂′, p̂),

(B13)

where, for convenience, I have introduced, in the notation of
Fano and Racah [12] for irreducible spherical tensors,

�
[K]
l′l (p̂′, p̂) = [Y [l′](p̂′) × Y [l](p̂)]][K],

�[2](�σl, �σh) = [
σ

[1]
l × σ

[1]
h

][2]
. (B14)

The coefficients are given in terms of the radial matrix elements
Rl′l

Gl
LSl/h

(η) = (−)l+1 4π√
3
cLS
l/hl̂

√
l(l + 1)e2iσ̄l Rll, (B15)
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Gl′l
SS,2(η) = il−l′16 π

√
6 cSS l̂′ l̂ ei(σ̄l′+σ̄l )

(
l′ l 2
0 0 0

)
Rl′l ,

(B16)

with

Rl′l = 4

p2

∫ ∞

0

dr

r3
Fl′(η, pr)Fl(η, pr)

= 4
∫ ∞

0

dρ

ρ3
Fl′(η, ρ)Fl(η, ρ). (B17)

Besides the matrix elements Rll , only Rl′l = Rll′ for |l − l′| =
2 are needed in view of the selection rule of the 3j symbol
in Eq. (B16). This type of radial matrix element is well
known in Coulomb excitation (see, e.g., Ref. [14]) and is also
derived in Ref. [4]. For l′ = l and l > 0 one has

Rll = 2

l(l + 1)

(
1 + fl(η)

2l + 1

)

with fl(η) = e−πη πη

sinh (πη)
− 1 − 2η2

l∑
k=1

1

k2 + η2
.

(B18)

One should note that fl vanishes for η = 0. For |l′ − l| = 2
one has

Rl,l+2 = 2

3|l + 1 + iη||l + 2 + iη| . (B19)

a. The hyperfine contribution

The tensor amplitude d
[2]
ij of the hyperfine interaction is

obtained by separating the spin dependence in Eq. (B13),

d
[2]
ij =

∞∑
l′=0

∞∑
l=0

Gl′l
SS,2

∂2

∂σl,i∂σh,j

[
�[2](�σl, �σh) × �

[2]
l′l

][0]
(p̂′, p̂).

(B20)

It suffices to consider d
[2],0
ij for the special case, for which the

scattering plane coincides with the x-z plane, i.e., φ = 0. A
straightforward evaluation (for details see Ref. [8]) yields for
the nonvanishing components

d
[2],0
33 = cSS

∞∑
l=0

S33
l Pl(cos θ ), (B21)

d
[2],0
11/22 = ± cSS

∞∑
l=2

S11
l P 2

l (cos θ ) − 1

2
d

[2],0
33 , (B22)

d
[2],0
13 = cSS

∞∑
l=1

S13
l P 1

l (cos θ ), (B23)

with

S33
l = 1

2
S0

l , S11
l = 1

2

√
3(l − 2)!

2(l + 2)!
S2

l ,

S13
l = −1

2

√
3(l − 1)!

2(l + 1)!
S1

l , (B24)

and where for m = 0, 1, 2,

Sm
l = (−i)l l̂ 2eiσ̄l

l+2∑
k=|l−2|

ikk̂ 2eiσ̄k

×
(

l k 2
0 0 0

) (
l k 2

−m 0 m

)
Rlk. (B25)

It is useful to separate the η-independent contributions, consti-
tuting the plane-wave approximation. One finds explicitly the
detailed expressions

d
[2],0
33 (η) = cSS

(
sin2(θ/2) − 1

3
+

∞∑
l=0

S̃33
l (η) Pl(cos θ )

)
,

(B26)

d
[2],0
11/22(η) = ± cSS

(
1

2
cos2(θ/2) +

∞∑
l=2

S̃11
l (η) P 2

l (cos θ )

)

− 1

2
d

[2],0
33 , (B27)

d
[2],0
13 (η) = cSS

(
− 1

2
sin(θ ) +

∞∑
l=1

S̃13
l (η) P 1

l (cos θ )

)
,

(B28)

where the coefficients S̃
ij

l (η) vanish for η = 0. In detail one
finds for i = j = 3 and l = 0, 1

S̃33
0 (η) = iη

3

3 − iη

(1 − iη)(2 − iη)
, (B29)

S̃33
1 (η) = −3

5

[
1 + iη

1 − iη

f1(η)

3
− iη(5 − iη)

6(2 − iη)(3 − iη)

− 2iη

1 − iη

(
1 − 1

(2 − iη)(3 − iη)

)]
, (B30)

and for l > 1

S̃33
l (η) = −e2iσ̄l

[
iη

2
(bl(η) − bl+2(η)∗) + fl(η)

(2l − 1)(2l + 3)

]
.

(B31)

Here I have introduced, for convenience,

bl(η) = 2l − 1 + iη

(2l − 1)(l − 1)l(l − 1 + iη)(l + iη)
. (B32)

One should note that the coefficients S̃33
l behave as 1/l2 for

l → ∞. For i = j = 1 one obtains (note that l > 1)

S̃11
l (η) = (2l + 1)(1 − e2iσ̄l )

2(l − 1)l(l + 1)(l + 2)
+ e2iσ̄l

(
iη

4
(bl(η)

− bl+2(η)∗) − 3fl(η)

2l(l + 1)(2l − 1)(2l + 3)

)
. (B33)

The coefficient S̃11
l behaves as l−3 for l → ∞. Finally, for S̃13

l

one obtains for l = 1

S̃13
1 (η) = 3

20

[
1 + iη

1 − iη
f1(η) + 5

3
iηb3(η)∗

+ 2iη

1 − iη

(
3 + 2

(2 − iη)(3 − iη)

)]
, (B34)
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and for l > 1

S̃13
l (η) = 1

2
e2iσ̄l

(
iη

4
(bl(η) + bl+2(η)∗)

+ 3fl(η)

l(l + 1)(2l − 1)(2l + 3)

)
. (B35)

The coefficient S̃13
l behaves like l−3 for l → ∞. The conver-

gence of the partial-wave series is quite good as demonstrated
in Ref. [8] for η = 2.

b. The spin-orbit contribution

Acording to Eq. (B12) the spin-orbit strength is given by

�bl/h =
∞∑
l=1

Gl
LSl/h

��ll(p̂
′, p̂). (B36)

For the chosen reference frame one obtains the spin-orbit
vector �bl/h in the form

�bl/h = i b
l/h

0

�p ′ × �p
| �p ′ × �p | with

b
l/h

0 (η, θ ) = −1

2
cLS
l/h

∞∑
l=1

βl(η)P 1
l (cos θ ), (B37)

where

βl(η) = 1

2
l̂2 e2iσ̄l Rll = e2iσ̄l

l(l + 1)
(2l + 1 + fl(η)). (B38)

This form is not well suited for a numerical evaluation, because
even for η = 0 the sum extends up to infinity. Therefore,

it is more advantageous to separate the η-independent part,
writing

βl(η) = 2l + 1

l(l + 1)
+ β

η

l with

β
η

l = e2iσ̄l

l(l + 1)
((2l + 1)(e2iσ̄l − 1) + fl(η)). (B39)

The coefficient β
η

l vanishes for η = 0. For the η-independent
part one can evaluate the sum by using

P 1
l (x) = l(l + 1)

l̂2
√

1 − x2
(Pl+1(x) − Pl−1(x)), (B40)

and one finds for b
l/h

0 (η, θ )

b
l/h

0 (η, θ ) = 1

2
cLS
l/h

(
cot(θ/2) −

∞∑
l=1

β
η

l P 1
l (cos θ )

)
,

(B41)

yielding b
l/h

0 (0, θ ) in accordance with Eq. (15). One can eval-
uate this expression directly or also rearrange the remaining
sum using Eq. (B40), yielding

b
l/h

0 (η, θ ) = 1

2
cLS
l/h

[
cot(θ/2) − 1

sin θ

∞∑
l=0

el(η) Pl(cos θ )

]
.

(B42)

The coefficients el(η) can be found in Ref. [8]. For l →
∞ the coefficients β

η

l and el behave as 1/l, resulting in
a considerably slower convergence than for the hyperfine
amplitude. Examples are presented in Ref. [8].
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