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Neutrino emissivity of 3 P2-3 F2 superfluid cores in neutron stars
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The influence of the admixture of the 3F2 state onto collective spin oscillations and neutrino emission processes
in the triplet superfluid neutron liquid is studied in the BCS approximation. The eigenmode of spin oscillations
with ω � √

58/35� is predicted to exist in the triplet superfluid neutron condensate besides the already known
mode ω � �/

√
5. Excitation of the high-frequency spin oscillations in the condensate occurs through the tensor

interactions between quasiparticles. Neutrino energy losses through neutral weak currents are found to consist
of three separate contributions caused by a recombination of broken Cooper pairs and by weak decays of the
collective modes of spin oscillations. Neutrino decays of the low-frequency spin waves can play an important
role in the cooling scenario of neutron stars. Weak decays of the high-frequency oscillations that occur only if
the tensor forces are taken into account in the pairing interactions does not modify substantially the total energy
losses. Simple expressions are suggested for the total neutrino emissivity.
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I. INTRODUCTION

It is considered well established that the inner core of
neutron stars contains a condensate of superfluid neutrons
below the critical condensation temperature Tc. A superfluid
energy gap � arising in the quasiparticle spectrum suppresses
most of the neutrino emission mechanisms in the volume of
the star [1], especially when the temperature falls substantially
below the critical value. In this case the number of broken
Cooper pairs rapidly decreases and leads to a strong quenching
of the neutrino emission caused by pair breaking and formation
(PBF) processes, which is considered as the most efficient
cooling mechanism of superfluid neutron cores [2–5]. Accord-
ing to this scenario, at temperatures T � 0.1Tc, the neutron star
enters the epoch of a surface cooling.

The neutron superfluidity in the inner core of neutron stars
is believed to arise owing to pairing of fermions into a triplet
state. It is natural to expect the existence of low-frequency
collective modes associated with spin fluctuations of such
a condensate. Previously, spin modes have been thoroughly
studied in the p-wave superfluid liquid 3He with a central
interaction between quasiparticles [6–9]. These results cannot
be applied without revision to the triplet superfluid condensate
of neutrons, where the pairing occurs mostly owing to a
short-range negative spin-orbit force of the interaction in the
channel of j = 2.

In a series of papers [10–12] we have investigated the
collective spin oscillations in the 3P2 superfluid neutron liquid
which can be formed because of the strong attractive spin-orbit
interaction between neutrons at high densities. Spin waves
with the excitation energy ω = �/

√
5 were predicted to exist

in such a superfluid condensate and it has been shown that the
spin-wave decay (SWD) through neutral weak currents leads
to a substantial neutrino emission at the lowest temperatures
T � Tc, when all other mechanisms of the neutrino energy
losses are killed by the superfluidity.

In this paper the problem is considered for the case of
3P2-3F2 pairing. We consider the spin eigenmodes of the
superfluid condensate in the case of pairing owing to spin-orbit

and tensor forces. The neutrino emission owing to PBF and
SWD processes is calculated. The calculations are made within
the BCS approximation by assuming a projection of the total
angular momentum of the bound pairs mj = 0 as the preferable
one at supernuclear densities.

The paper is organized as follows. Section II contains
some preliminary notes and outlines some of the important
properties of the Green’s functions and the one-loop integrals
used below. We recollect the gap equations for the case of
spin-orbit and tensor pairing forces. In Sec. III we derive, in
the BCS approximation, the equations for anomalous three-
point vertices responsible for the interaction of the neutron
superfluid liquid with an external axial-vector field. In Sec. IV
we discuss the renormalizations which transform the standard
gap equations to a very simple form valid near the Fermi
surface. In Sec. V we apply the angle average approximation
to make the equations solvable analytically. In Sec. VI we
analyze the poles of anomalous vertices to derive the dispersion
of spin-density oscillations in the condensate. In Sec. VII we
calculate the linear response of the superfluid neutron liquid
onto an external axial-vector field. In Sec. VIII we derive
neutrino losses caused by the recombination of broken Cooper
pairs and by the decay of spin waves. In Sec. IX, we evaluate
neutrino energy losses in the 3P2-3F2 superfluid neutron liquid.
Section X contains a short summary of our findings and the
conclusion.

Throughout this paper, we use the standard model of weak
interactions, the system of units h̄ = c = 1 and the Boltzmann
constant kB = 1.

II. GENERAL APPROACH AND NOTATION

A. Green’s functions and loop integrals

The order parameter, D̂ ≡ Dαβ , arising owing to triplet
pairing of quasiparticles, represents a 2 × 2 symmetric matrix
in spin space, (α, β =↑,↓). The spin-orbit interaction among
quasiparticles is known to dominate in the nucleon matter of
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a high density. Therefore, it is conventional to represent the
triplet order parameter of the system D̂ = ∑

j lmj
�jlmj

�
(j lmj )
αβ

as a superposition of standard spin-angle functions of the total
angular momentum (j,mj ),

[
�jlmj

(n)
]
αβ

≡
∑

ms+ml=mj

(
1

2

1

2
αβ|sms

)
(slmsml|jmj )Yl,ml

(n).

(1)

The angular dependence of the order parameter is represented
by the unit vector n = p/p, which defines the polar angles
(θ, ϕ) on the Fermi surface.

For our calculations it is more convenient to use vector
notation that involves a set of mutually orthogonal complex
vectors bj lmj

(n) defined as

bj lmj
(n) = − 1

2 Tr
(
ĝσ̂ �̂jlmj

)
, bj l,−mj

= (−)mj b∗
j lmj

,

(2)

where σ̂ = (σ̂1, σ̂2, σ̂3) are Pauli spin matrices and ĝ = iσ̂2.
The vectors bj lmj

obey the normalization condition∫
dn
4π

b∗
j ′l′m′

j
bj lmj

= δjj ′δll′δmj m
′
j
. (3)

Using the vector notation the order parameter is D̂(n) =
�b̄σ̂ ĝ, where the vector b̄ in spin space is defined by the
relation

�(p)b̄(n) =
∑
j lmj

�jlmj
(p)bj lmj

(n). (4)

Because the ground-state order parameter is to be a unitary
triplet [13,14], b̄(n) is a real vector, which we normalize by
the condition ∫

dn
4π

b̄2(n) = 1. (5)

Making use of the adopted graphical notation for the
ordinary and anomalous propagators, Ĝ = , Ĝ−(p) =

, F̂ (1) = , and F̂ (2) = , it is convenient to
employ the Matsubara calculation technique for the system in
thermal equilibrium. Then the analytic form of the propagators
is as follows [15,16]:

Ĝ(pη, p)=G(pη, p)δαβ, Ĝ−(pη, p)=G−(pη, p)δαβ,

(6)
F̂ (1)(pη, p)=F (pη, p)b̄σ̂ ĝ, F̂ (2)(pη, p)=F (pη, p)ĝσ̂ b̄,

where the scalar Green’s functions are of the form
G−(pη, p) = G(−pη,−p) and

G(pη, p) = −ipη − εp

p2
η + E2

p
, F (pη, p) = −�

p2
η + E2

p
. (7)

Here pη ≡ iπ (2η + 1)T with η = 0,±1,±2, . . . is the Mat-
subara’s fermion frequency, and the quasiparticle energy is
given by

E2
p = ε2

p + �2b̄2(n), (8)

where εp is the single-particle spectrum of the normal Fermi
liquid. Near the Fermi surface one has

εp = p2

2M∗ − p2
F

2M∗ � υF (p − pF ) . (9)

The effective mass of a neutron quasiparticle is defined as
M∗ = pF /υF , where υF � 1 is the Fermi velocity of the
nonrelativistic neutrons. In the absence of external fields, the
gap amplitude �(T ) is real.

The following notation is used below. We denote as
LX,X(ω, q; p) the analytical continuation of the Matsubara
sums:

LXX′

(
ωκ, p + q

2
; p − q

2

)

= T
∑

η

X

(
pη + ωκ, p + q

2

)
X′

(
pη, p − q

2

)
, (10)

where X,X′ ∈ G,F,G−, and ωκ = 2iπκT with κ = 0,±1,

±2 . . .. We divide the integration over the momentum space
into integration over the solid angle and over the energy
according to∫

d3p

(2π )3
· · · = �

∫
dn
4π

1

2

∫ ∞

−∞
dεp · · · , (11)

where � = pF M∗/π2 is the density of states near the Fermi
surface in the normal state, and operate with integrals over the
quasiparticle energy:

IXX′(ω, n, q; T ) ≡ 1

2

∫ ∞

−∞
dεpLXX′

(
ω, p + q

2
, p − q

2

)
.

(12)

These are functions of ω, q, and the direction of a quasiparticle
momentum n.

The loop integrals (12) possess the following properties,
which can be verified by a straightforward calculation:

IG−G = IGG−, IGF = −IFG,

IG−F = −IFG− , (13)

IG−F + IFG = ω

�
IFF , (14)

IG−F − IFG = −qv
�

IFF . (15)

For arbitrary ω, q, T one can obtain also

IGG− + b̄2IFF = A + ω2 − (qv)2

2�2
IFF , (16)

where v is a vector with the magnitude of the Fermi velocity
υF and the direction of n, and

A(n) ≡ [IGG−(n) + b̄2(n)IFF (n)]ω=0,q=0. (17)

B. Gap equation

The block of the interaction diagrams irreducible in the
channel of two quasiparticles, �αβ,γ δ , is usually generated by
the expansion over spin-angle functions (1). The spin-orbit
interaction among quasiparticles is known to dominate at high
densities. In this case the spin s and orbital momentum l of the
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pair cease to be conserved separately. Thus, the complete list
of channels participating in the triplet-spin P -wave pairing
includes the pair states with j = 0, 1, 2, and |mj | � j . The
pairing occurs in the state with j = 2 because the attractive
interaction in this channel strongly dominates. The tensor
components of the neutron-neutron interaction are known also
to exert some influence on pair formation in dense neutron
matter, favoring the condensation of pairs in the 3P2 + 3F2

state, but the contributions from 3P2 → 3P0 or 3P2 → 3P1

transitions are deemed to be unimportant. Hence, we take the
approximation to neglect the j = 0, 1 coupling throughout
this paper. From now on we omit the suffix j everywhere by
assuming that the pairing occurs into the state with j = 2.
Then, in the vector notation, the pairing interaction is of the
form

��αβ,γ δ(p, p′)

=
∑
l′lmj

(−1)
l−l′

2 Vll′ (p, p′)
[
blmj

(n)σ̂ ĝ
]
αβ

[
ĝσ̂b∗

l′mj
(n′)

]
γ δ

,

(18)

where the pairing matrix elements Vll′ (p, p′) with l, l′ = j ±
1 = 1, 3 are the corresponding interaction amplitudes.

The ground-state problem is normally treated in terms of
the set of equations for the coupled partial-wave amplitudes
�lmj

[17–22]. Making use of the identity

1

2Ep
tanh

Ep

2T
≡ T

∑
η

1

p2
η + E2

p
, (19)

one can obtain the standard set of equations for the triplet
partial amplitudes �lmj

in the form

�lmj
(p) = −

∑
l′=1,3

1

2�

∫
dp′p′2(−1)

l−l′
2 Vll′ (p, p′)

×�(p′)

〈
b∗

l′mj
(n′)b̄(n′)T

∑
η

1

p2
η + E2

p′

〉
. (20)

Here and in what follows we use the angle brackets to denote
angle averages,

〈· · ·〉 ≡ 1

4π

∫
dn . . . .

Notice that
1

p2
η + E2

p
≡ G(pη, p)G−(pη, p) + b̄2F (pη, p)F (pη, p),

(21)

and the gap equation (20) can be identically written as

�lmj
(p) = −

∑
l′

1

2�

∫
dp′p′2(−1)

l−l′
2 Vll′ (p, p′)�(p′)

× 〈
b∗

l′mj
(n′)b̄(n′)[LGG− + b̄2LFF ]ω=0,q=0

〉
. (22)

III. VERTEX EQUATIONS

We are interested in the linear medium response onto
an external axial-vector field. The field interaction with a

=
+ + +

=
+ + +

FIG. 1. Dyson’s equations for the anomalous vertices. The ordi-
nary vertices are shown by small filled circles. The shaded rectangle
represents the pairing interaction.

superfluid should be described with the aid of two ordinary
and two anomalous three-point effective vertices. In the
BCS approximation, the ordinary axial-vector vertices of
a nonrelativistic particle and a hole are to be taken as
σ̂ and σ̂ T , respectively. The anomalous effective vertices,
T̂(1)(n;ω, q) and T̂(2)(n;ω, q) are given by the infinite sums
of the diagrams taking account of the pairing interaction in the
ladder approximation [23]. These 2 × 2 vector matrices are to
satisfy the Dyson’s equations symbolically depicted by graphs
in Fig. 1.

The analytic form of the diagrams in Fig. 1 is derived
in Ref. [10]. We are interested in the neutrino energy losses
through neutral weak currents. In the case of a nonrelativistic
medium the relevant input for this calculation are the effective
weak vertices at zero momentum transfer. This substantially
simplifies the problem. After some algebraic manipulations the
BCS equations for anomalous vertices at q = 0 can be found
in the following form (we omit for brevity the dependence of
functions on ω):

T̂(1)(n) =
∑
lmj

σ̂blmj
(n)ĝ

∑
l′

Vll′
1

2

〈
IGG−Tr

[
ĝ
(
σ̂b∗

l′mj

)
T̂(1)

]
− IFF Tr

[
(σ̂b∗

l′mj
)(σ̂ b̄)ĝT̂(2)(σ̂ b̄)

]
− ω

�
IFF 2i

(
b∗

l′mj
× b̄

)〉
, (23)

T̂(2)(n) =
∑
lmj

ĝσ̂b∗
lmj

(n)
∑

l′
Vll′

1

2

〈
IG−GTr

[
(σ̂bl′mj

)ĝT̂(2)
]

− IFF Tr
[(

σ̂bl′mj

)
(σ̂ b̄)T̂(1)ĝ(σ̂ b̄)

]
− ω

�
IFF 2i

(
bl′mj

×b̄
)〉
. (24)

Inspection of the equations reveals that the anomalous axial-
vector vertices can be found in the following form:

T̂(1)(n, ω) =
∑
lmj

B(1)
lmj

(ω)
(
σ̂blmj

)
ĝ, (25)

T̂(2)(n, ω) =
∑
lmj

B(2)
lmj

(ω)ĝ
(
σ̂b∗

lmj

)
. (26)
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Insertion of these expressions into Eqs. (23) and (24) makes it
possible to obtain the following equations:

B+
lmj

= −
∑

l′
Vll′

[ ∑
l′′m′

j

〈(
IGG− + b̄2IFF

)(
b∗

l′mj
bl′′m′

j

)〉
B+

l′′m′
j

− 2
∑
l′′m′

j

〈(
b̄b∗

l′mj

)(
b̄bl′′m′

j

)
IFF

〉
B+

l′′m′
j

+ ω

�

〈
IFF i

(
b∗

l′mj
×b̄

)〉]
,

(27)

B−
lmj

= −
∑

l′
Vll′

∑
l′′m′

j

[〈(
IGG− − b̄2IFF

)(
b∗

l′mj
bl′′m′

j

)〉

+ 2
〈(

b̄b∗
l′mj

)(
b̄bl′′m′

j

)
IFF

〉]
B−

l′′m′
j
, (28)

where the new unknown vector functions are defined as

B(±)
lmj

= 1
2

[
B(1)

lmj
± (−)mj B(2)

l,−mj

]
. (29)

The uniform Eqs. (28) have nontrivial solutions if the deter-
minant of the system equals zero. This condition could be
considered as the dispersion equation for the eigenmodes of
oscillations. However, the solutions obtained in this way would
be spurious, because the physical solution must develop a
pole in the vertex function when the frequency approaches
the eigenvalue. In the case of uniform equations the solution
remains finite at the resonant frequency. Therefore, only trivial
solutions B−

lmj
= 0 are physically meaningful. We then obtain

B+
lmj

= B(1)
lmj

= (−)mj B(2)
l,−mj

. (30)

From now on we omit “plus” in the notation by assuming
Blmj

≡ B+
lmj

.
By making use of Eq. (16) and denoting IFF (n, ω,

q = 0) = I0(n,ω; T ), where

I0(n,ω) =
∫ ∞

0

dεp

Ep

�2

4E2
p − (ω + i0)2

tanh
Ep

2T
, (31)

one can obtain Eq. (27) in the form

Blmj
= −

∑
l′

Vll′

{ ∑
l′′m′

j

Bl′′m′
j

〈
A(n)

(
b∗

l′mj
bl′′m′

j

)〉

+
∑
l′′m′

j

Bl′′m′
j

〈
I0(n)

[
ω2

2�2

(
b∗

l′mj
bl′′m′

j

)

− 2
(
b̄b∗

l′mj

)(
b̄bl′′m′

j

)]〉
+ i

ω

�

〈
I0(n)

(
b∗

l′mj
×b̄

)〉}
.

(32)

This equation is to be solved together with the gap
equation (22).

IV. RENORMALIZATIONS

Both the gap equation (22) and the vertex equation (32)
involve integrations over the regions far from the Fermi surface

while we are interested in the processes occurring in a vicinity
of the Fermi sphere. To get rid of the integration over the
far regions we renormalize the interaction as suggested in
Refs. [24,25]: We define

Vll′(p, p′) = Vll′ (p, p′) −
∑
l′′

∫
dp′′p′′2

π2
Vll′′ (p, p′′)

×L
(N)
GG−(p′′)Vl′′l′ (p

′′, p′)

= Vll′ (p, p′) −
∑
l′′

∫
dp′′p′′2

π2
Vll′′ (p, p′′)

×L
(N)
GG−(p′′)Vl′′l′ (p

′′, p′),

where the loopL
(N)
GG−(p′′) is evaluated in the normal (nonsuper-

fluid) state. Using the identity

�(p)

�lmj
(p)

∫
dn
4π

(
b∗

lmj
b̄
) ≡ 1

one can recast the above as

Vll′ (p, p′) = Vll′ (p, p′) −
∑
l′′

∫
d3p′′

4π3
Vll′ (p, p′′)

× �(p′′)
�l′′mj

(p′′)
(
b∗

l′′mj
b̄
)

n′′L
(N)
GG−(p′′)Vl′′l′(p

′′, p′).

Then it can be shown [11] that we may everywhere
substitute Vll′ for Vll′ provided that at the same time, we
understand by the LGG− element, the subtracted quantity
LGG−−L

(N)
GG−(p′′) [L(N)

GG− is to be evaluated for ω = 0, q = 0
in all cases]. The gap equation (22) becomes of the form

�lmj
= −

∑
l′

il−l′Vll′�
〈
b∗

l′mj
(n)b̄(n)A(n)

〉
, (33)

which is valid in the narrow vicinity of the Fermi surface,
where the smooth functions �lmj

(p), Vll′(p, p′), and �(p)
may be replaced with constants �(p) � �(pF ) ≡ �, etc. The
function (17) is now to be understood as

A(n) → [
IGG− − I (N)

GG− + b̄2IFF

]
ω=0,q=0. (34)

It can be found explicitly by performing the Matsubara
summation:

A(n)

= 1

2

∫ ∞

0
dε

(
1√

ε2+�2b̄2
tanh

√
ε2 + �2b̄2

2T
− 1

ε
tanh

ε

2T

)
.

(35)

The renormalization of Eq. (32) also reduces to the replace-
ments Vll′ → Vll′ . The function A(n) should be replaced by
the expression (35).

V. ANGLE AVERAGE APPROXIMATION

The angle dependence of the functions A(n) and IFF (n)
arises owing to anisotropy of the square of the energy
gap �2(p′)b̄2(n) entering the energy of a quasiparticle. The
consideration can be substantially simplified using the angle
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average approximation, that is, replacing the anisotropic
energy gap with its angle average, �2b̄2 → 〈�2b̄2〉 = �2.
In Refs. [26–28], it has been shown that the angle average
approximation is an excellent approximation to the true
solution, as long as one is only interested in the average
value of the gap near the Fermi surface and not the angular
dependence of the gap functions. After this replacement
the angle integration becomes trivial. Making use of the
orthogonality relations (3) after the renormalizations from
Eq. (32) we get a set of linear equations for each value of
mj

Blmj
= −

∑
l′

Vll′

{
Bl′mj

(
Aav + ω2

2�2
Iav

)
− 2

∑
l′′m′

j

Bl′′m′
j

× 〈(
b̄b∗

l′mj

)(
b̄bl′′m′

j

)〉
Iav + i

ω

�
Iav

〈
b∗

l′mj
×b̄

〉}
, (36)

where

Aav = 1

2

∫ ∞

0
dε

(
1

E
tanh

E

2T
− 1

ε
tanh

ε

2T

)
, (37)

and

Iav =
∫ ∞

0

dε

E

�2

4E2 − ω2
tanh

E

2T
, (38)

with E = √
ε2 + �2.

The gap equation (33) becomes of the form

�lmj
= −

∑
l′

il−l′Vll′�l′mj
Aav. (39)

It is convenient to write the Eqs. (36) and (39) as two matrix
equations. The corresponding vertex equation is(

B1mj

B3,mj

)
= −

(
V11 −V13

−V13 V33

) {((
Aav + ω2

2�2 Iav
)
B1mj(

Aav + ω2

2�2 Iav
)
B3mj

)

−
(

2Iav
∑

lm′
j

〈(
b̄b∗

1mj

)(
b̄blm′

j

)〉
Blm′

j

2Iav
∑

lm′
j

〈(
b̄b∗

3mj

)(
b̄blm′

j

)〉
Blm′

j

)

+ ω

�
i

(
Iav

〈
b∗

1mj
×b̄

〉
Iav

〈
b∗

3mj
×b̄

〉
)}

, (40)

and the gap equation becomes of the form(
�1mj

�3mj

)
= −

(
V11 −V13

−V13 V33

) (
�1mj

Aav

�3mj
Aav

)
. (41)

In obtaining the equations the fact is used that the interaction
matrix is symmetric on the Fermi surface, V31 = V13.

The interaction matrix which enters Eqs. (40) and (41) can
be diagonalized by unitary transformations V

′ = UV U †, with
U being the unitary matrix

U = (U−1)† = 1

(V+ + V−)
1
2

( √
V+

√
V−

−√
V−

√
V+

)
, (42)

where V± =
√

(V33 − V11)2 + 4V2
13 ± (V33 − V11).

One has UV U † = diag(W−,W+), with

W± = 1
2

(
V33 + V11 ±

√
(V33 − V11)2 + 4V2

13

)
. (43)

Applying the unitary transformation U to the gap equations
(41) yields two coupled equations:√

V+�1mj
+

√
V−�3mj

= −W−(
√

V+�1mj
+

√
V−�3mj

)Aav,

(44)√
V−�1mj

−
√

V+�3mj
= −W+(

√
V−�1mj

−
√

V+�3mj
)Aav.

(45)

In Eq. (40), the interaction matrix can be also diagonalized
by the unitary transformation (42). Further simplification
is possible owing to the fact that, by virtue of Eqs. (44)
and (45), the coupling constants W± can be removed out of
the equations. This results in the set of equations

ω2

4�2

(√
V+B1mj

+
√

V−B3mj

) −
∑
lm′

j

[√
V+

〈(
b̄b∗

1mj

)(
b̄blm′

j

)〉

+
√

V−
〈(

b̄b∗
3mj

)(
b̄blm′

j

)〉]
Blm′

j

= − ω

2�
i
(√

V+
〈
b∗

1mj
× b̄

〉 + √
V−

〈
b∗

3mj
× b̄

〉)
, (46)

ω2

4�2

(√
V−B1mj

−
√

V+B3mj

) −
∑
lm′

j

[√
V−

〈(
b̄b∗

1mj

)(
b̄blm′

j

)〉

−
√

V+
〈(

b̄b∗
3mj

)(
b̄blm′

j

)〉]
Blm′

j

= − ω

2�
i
(√

V−
〈
b∗

1mj
× b̄

〉 − √
V+

〈
b∗

3mj
× b̄

〉)
. (47)

Equations (46) and (47) represent a closed set of equations for
determining the vertex amplitudes Blmj

(ω).

VI. EIGENMODES OF SPIN OSCILLATIONS

For further progress we have to define the ground state of
the condensate which is specified by the vector b̄(n). We focus
on the condensation with mj = 0, which is conventionally
considered as the preferable one in the bulk matter of neutron
stars [2,3,20]. In this case only the partial gap amplitudes with
l = 1, 3 and mj = 0 contribute. To simplify the notation we
denote them as �10 ≡ �1 and �30 ≡ �3. Taking into account
spin-orbit and tensor interactions the ground state of such a
triplet condensate is given by the vector b̄(n) of the form

b̄(n) = �1

�
b10(n) + �3

�
b30(n), (48)

where �2 = �2
1 + �2

3. For this particular form of the ground
state the following relations can be verified by a straightfor-
ward calculation:〈(

b̄b∗
lmj

)(
b̄bl′m′

j

)〉 = δmj m
′
j

(
b̄b∗

lmj

)(
b̄bl′mj

)
. (49)

We denote

βl,l′
mj

≡ 〈(
b̄b∗

lmj

)(
b̄bl′mj

)〉
, (50)
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and

� = ω

2�
.

From Eqs. (46) and (47) one can obtain five sets of
linear equations corresponding to different values of mj = 0,

±1,±2.
For mj = 0 we obtain a set of two equations:[√

V+
(
�2 − β

1,1
0

) −
√

V−β
3,1
0

]
B10

+ [√
V−

(
�2 − β

3,3
0

) −
√

V+β
1,3
0

]
B30 = 0, (51)

[√
V−

(
�2 − β

1,1
0

) +
√

V+β
3,1
0

]
B10

− [√
V+

(
�2−β

3,3
0

) +
√

V−β
1,3
0

]
B30 = 0. (52)

The sets of equations for mj = ±2 are of the form[√
V+

(
�2 − β

1,1
±2

) −
√

V−β
3,1
±2

]
B1,±2

+ [√
V−

(
�2 − β

3,3
±2

) −
√

V+β
1,3
±2

]
B3,±2 = 0, (53)

[√
V−

(
�2 − β

1,1
±2

) +
√

V+β
3,1
±2

]
B1,±2

− [√
V+

(
�2 − β

3,3
±2

)+√
V−β

1,3
±2

]
B3,±2 = 0. (54)

For each of the values of mj = ±1 we get a set of two
equations:[√

V+
(
�2 − β

1,1
±1

) −
√

V−β
3,1
±1

]
B1,±1

+ [√
V−

(
�2 − β

3,3
±1

) −
√

V+β
1,3
±1

]
B3,±1

= −�i(
√

V+〈b∗
1,±1 × b̄〉 +

√
V−〈b∗

3,±1 × b̄〉), (55)

[√
V−

(
�2 −

√
V−β

1,1
±1

) +
√

V+β
3,1
±1

]
B1,±1

− [√
V+

(
�2 − β

3,3
±1

)+√
V−β

1,3
±1

]
B3,±1

= −�i
√

V−〈b∗
1,±1 × b̄〉 −

√
V+〈b∗

3,±1 × b̄〉). (56)

By the same reason as in the case of Eqs. (28) the uniform
equations for mj = 0 and for mj = ±2 have only trivial
physical solutions B10 = B30 = 0 and B1,±2 = B3,±2 = 0. The
solutions to Eqs. (55) and (56) are

B1,±1 = −i�

χ±1(�)

[(
�2 − β

3,3
±1

)〈b∗
1,±1 × b̄〉 + β

1,3
±1 〈b∗

3,±1 × b̄〉],
(57)

B3,±1 = −i�

χ±1(�)

[(
�2 − β

1,1
±1

)〈b∗
3,±1 × b̄〉 + β

3,1
±1 〈b∗

1,±1 × b̄〉],
(58)

where

〈b∗
1,±1×b̄〉 = 1

2

√
3

2

�1

�
(i,±1, 0), (59)

〈b∗
3,±1×b̄〉 = −1

6

√
6
�3

�
(i,±1, 0), (60)

and

χ±1(�) = (
�2 − β

1,1
±1

)(
�2 − β

3,3
±1

) − β
1,3
±1 β

3,1
±1 . (61)

Notice that the interaction parameters V± drop out of the final
result in Eqs. (57) and (58).

Poles of the effective vertices at χ±1(ω) = 0 signal the exis-
tence of collective modes. Frequencies of the eigenoscillations
are independent of the sign of mj . For each of the values of
mj = ±1 we obtain two eigenmodes:

�2
1,2 = 1

2

(
β1,1

mj
+ β3,3

mj
±

√(
β

3,3
mj

− β
1,1
mj

)2 + 4β
1,3
mj

β
3,1
mj

)
.

(62)

Straightforward calculations give

β
1,1
±1 = 1

20

�2
1

�2

(
1 − 2

7

√
6
�3

�1
+ 58�2

3

7�2
1

)
, (63)

β
3,3
±1 = 29

70

�2
1

�2

(
1 − 32

87

√
6
�3

�1
+ 28

87

�2
3

�2
1

)
, (64)

β
1,3
±1 = β

3,1
±1 = − 1

140

√
6
�2

1

�2

(
1 − 11

√
6
�3

�1
+ 32

3

�2
3

�2
1

)
.

(65)

It is interesting to compare the resonant frequencies (62)
with the spin oscillation frequency ωs = �/

√
5 obtained in

Refs. [10,11] in a simple model restricted to excitations of
the condensate with l = 1. By taking �3 = 0 and �1 = � in
the matrix elements we find 4β

1,3
±1 β

3,1
±1 � (β3,3

±1 − β
1,1
±1 )2. By

neglecting the small term 4β
1,3
±1 β

3,1
±1 under the root in Eq. (62)

we obtain

ω1(�3 = 0) = 2�β
1,1
±1 (�3 = 0) = 1√

5
� � 0.45� (66)

and

ω2(�3 = 0) = 2�β
3,3
±1 (�3 = 0) =

√
58

35
� � 1. 29�. (67)

We see that the extending of the decomposition scheme of the
excited states with the total angular momentum j = 2 up to
l = 1, 3 leads to a very small frequency shift of the known
mode, ωs = �/

√
5, but opens the new additional mode of

collective spin oscillations. Inclusion of the tensor interaction
implies �3 �= 0 and �2 = �2

1 + �2
3. In this case from Eq. (62)

we obtain two twofold (mj = ±1) frequency:

ω2
1 = �2

1

(
13

14
− 1

3

√
6
�3

�1
+ 23

21

�2
3

�2
1

−
√

15

28
− 25

49

√
6
�3

�1
+ 485

147

�2
3

�2
1

− 370

441

√
6
�3

3

�3
1

+ 55

63

�4
3

�4
1

)
, (68)

ω2
2 = �2

1

(
13

14
− 1

3

√
6
�3

�1
+ 23

21

�2
3

�2
1

+
√

15

28
− 25

49

√
6
�3

�1
+ 485

147

�2
3

�2
1

− 370

441

√
6
�3

3

�3
1

+ 55

63

�4
3

�4
1

)
. (69)
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According to calculations of different authors, at the Fermi
surface one has �3 � 0.17�1 (see, e.g., Ref. [18]). In this
case our theoretical analysis predicts two degenerate modes
with ω = ω1 � 0.42� and two degenerate modes with ω =
ω2 = 1. 19�.

VII. ANOMALOUS VERTICES AND POLARIZATION
FUNCTIONS

Making use of Eqs. (25), (26), (29), and (30) we find

T̂(1)(n, ω) =
∑

mj =±1

[
B1mj

(
σ̂b1mj

)
ĝ + B3mj

(
σ̂b3mj

)
ĝ
]
, (70)

T̂(2)(n, ω) =
∑

mj =±1

[
B1mj

ĝ
(
σ̂b1mj

) + B3mj
ĝ
(
σ̂b3mj

)]
, (71)

where the functions B1mj
(ω) and B3mj

(ω) are given in Eqs. (57)
and (58).

The general expression of the axial polarization tensor in
the BCS approximation has been already discussed before. It
can be obtained in the form [10–12]

�
ij

A (ω) = −4�Iav(δij − 〈b̄i b̄j 〉) − ��Iav
〈
Tr

[
σ̂i T̂

(1)
j ĝ

(
σ̂ b̄

)]
− Tr

[
σ̂i

(
σ̂ b̄

)
ĝT̂

(2)
j

]〉
, (72)

where i, j = 1, 2, 3 and the anomalous axial-vector vertices
T̂(1,2) are given by Eqs. (70) and (71). We omit for brevity the
dependence on n and ω. Calculation of the traces results in the
expression

�
ij

A (ω) = − 4�Iav(δij − 〈b̄i b̄j 〉) + 4��Iav

∑
mj =±1

(
i
〈
b1mj

×b̄
〉i

×B
j

1mj
+ i

〈
b3mj

×b̄
〉i
B

j

3mj

)
. (73)

Inserting the vectors Bl,mj
, given by Eqs. (57) and (58), we

write the function (61) as

χmj
(ω) = (

�2 − �2
1

)(
�2 − �2

2

)
, (74)

where mj = ±1, and

�2
1 = ω2

1

4�2
, �2

2 = ω2
2

4�2
. (75)

In this way we obtain

�
ij

A (ω) = −4�Iav(δij − 〈b̄i b̄j 〉)

+ 4�Iav
�2(

�2 − �2
1 + i0

)(
�2 − �2

2 + i0
)

×
∑

mj =±1

[(
�2 − β3,3

mj

)〈
b1mj

×b̄
〉i 〈

b∗
1mj

× b̄
〉j

+β1,3
mj

〈
b1mj

×b̄
〉i 〈

b∗
3mj

× b̄
〉j

+ (
�2 − β1,1

mj

)〈
b3mj

×b̄
〉i 〈

b∗
3mj

× b̄
〉j

+β3,1
mj

〈
b3mj

×b̄
〉i 〈

b∗
1mj

× b̄
〉j ]

. (76)

The poles location on the complex plane of � is chosen so that
to obtain the retarded polarization function.

Summation over mj = ±1 can be done using the fact that
the parameters βl,l′

mj
entering this equation are independent of

the sign of mj , and β
1,3
±1 = β

3,1
±1 . Then a simple calculation

gives ∑
mj =±1

〈
blmj

×b̄
〉i 〈

b∗
l′mj

× b̄
〉j = λll′(δij − δi3δj3), (77)

with

λ11 = 3

4

�2
1

�2
, λ33 = 1

3

�2
3

�2
, λ13 = λ31 = −1

2

�1�3

�2
,

(78)

and

〈b̄i b̄j 〉 = 1

6

�2
1

�2

[(
1 + 12

7

�2
3

�2
1

)
δij +

(
3 + 6

7

�2
3

�2
1

)
δi3δ3j

]
.

(79)

We finally obtain the expression

�
ij

A (ω) = −4�Iav(δij − 〈b̄i b̄j 〉) + 4�Iav(δij − δi3δ3j )

× 4�2ω2(
ω2 − ω2

1 + i0
) (

ω2 − ω2
2 + i0

)
×

[
λ11

(
ω2

4�2
− β

3,3
1

)
+ λ33

(
ω2

4�2
− β

1,1
1

)

+ 2λ13β
1,3
1

]
. (80)

Below we use the retarded polarization tensor for a
calculation of the neutrino emissivity of a nonrelativistic
superfluid matter. In this calculation one can neglect the
temporal and mixed components of the polarization tensor
occurring as small relativistic corrections.

VIII. NEUTRINO ENERGY LOSSES

We examine the neutrino energy losses in the standard
model of weak interactions. Then after integration over the
phase volume of freely escaping neutrinos and antineutrinos
the total energy which is emitted per unit volume and time can
be obtained in the form (see details, e.g., in Ref. [29])

ε = −G2
F C2

ANν

192π5

∫ ∞

0
dω

∫
d3q

ω�(ω − q)

exp
(

ω
T

) − 1
Im�

μν

A (ω, q)

× (
kμkν − k2gμν

)
, (81)

where GF is the Fermi coupling constant, CA = 1.26 is the
axial-vector weak coupling constant of neutrons, Nν = 3 is
the number of neutrino flavors, �(x) is the Heaviside step
function, and kμ = (ω, q) is the total energy and momentum
of the freely escaping neutrino pair (μ, ν = 0, 1, 2, 3).

In Eq. (81), we have neglected the neutrino emission in
the vector channel, which is strongly suppressed owing to
conservation of the vector current [10,30]. Therefore, the
energy losses are connected to the imaginary part of the
retarded polarization tensor in the axial channel, Im�

μν

A �
δμiδνj Im�

ij

A . The latter is caused by the PBF processes and by
the SWDs. These processes operate in different kinematical
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domains so that the imaginary part of the polarization tensor
consists of two clearly distinguishable contributions, Im�

ij

A =
Im�

ij

PBF + Im�
ij

SWD, which we now consider.

A. PBF channel

The imaginary part of Iav, which arises from the poles of
the integrand in Eq. (38) at |ω| = 2E is given by

ImIav(ω > 0) = π

2

�2�(ω2 − 4�2)

ω
√

ω2 − 4�2
tanh

ω

4T
. (82)

With the aid of this expression we find

Im�PBF
ij (ω) = −2π�

�2�(ω2 − 4�2)

ω
√

ω2 − 4�2
tanh

ω

4T

{
δij − 〈b̄i b̄j 〉

− (δij − δi3δ3j )
3

4

�2
1

�2

4�2ω2(
ω2 − ω2

1

) (
ω2 − ω2

2

)
×

[(
ω2

4�2
− β

3,3
1

)
+ 4

9

�2
3

�2
1

(
ω2

4�2
− β

1,1
1

)

− 4

3

�3

�1
β

1,3
1

]}
. (83a)

Inserting the imaginary part of the polarization tensor into
Eq. (81), we calculate the contraction of Im�

μν

PBF with the
symmetric tensor kμkν − k2gμν . This gives

εPBF = 1

96π6
G2

F C2
ANνpF M∗�2

∫ ∞

2�

dω
1√

ω2 − 4�2

× 1

exp
(

ω
T

) − 1
tanh

ω

4T

∫
q<ω

d3q

{
2ω2 − q2

− 1

6

�2
1

�2

[(
1 + 12

7

�2
3

�2
1

)
q2

⊥ +
(

4 + 18

7

�2
3

�2
1

)
q2

z

]

− 3

4

[
2
(
ω2 − q2

z

) − q2
⊥
]�2

1

�2

4�2ω2(
ω2 − ω2

1

)(
ω2 − ω2

2

)
×

[(
ω2

4�2
− β

3,3
1

)
+ 4

9

�2
3

�2
1

(
ω2

4�2
− β

1,1
1

)

− 4

3

�3

�1
β

1,3
1

]}
. (84)

Integration over d3q can be done in cylindrical frame, where
q1 = q⊥ cos �, q2 = q⊥ sin �, and q3 = qz. This results in the
neutrino energy losses of the form

εPBF = 2

3π5
G2

F C2
ANνpF M∗T 7y2

∫ ∞

0

z4dx

(1 + exp z)2

×
{

4

5
− 3

5

�2
1

�2

x2 + y2[
x2 + y2

(
1 − �2

1

)][
x2 + y2

(
1 − �2

2

)]
×

[
x2 + y2

(
1 − β

3,3
1

) + 4

9

�2
3

�2
1

[
x2 + y2

(
1 − β

1,1
1

)]

− 4

3

�3

�1
y2β

1,3
1

]}
, (85)

where z =
√

x2 + y2, y = �(T )/T , and �1,2 are defined
in Eq. (75). In obtaining Eq. (85) the change is used ω =
2T

√
x2 + �2/T 2.

For a practical usage from Eq. (85), we find

εPBF = 5. 85 × 1020

(
M∗

M

)(
pF

Mc

)
T 7

9 NνC
2
AFPBF(y)

erg

cm3 s
,

(86)

where M is the bare nucleon mass; T9 = T/109 K, and

FPBF(y) = y2
∫ ∞

0
dx

z4

(1 + exp z)2

×
{

4 − 3
�2

1

�2

x2 + y2[
x2 + y2

(
1 − �2

1

)][
x2 + y2

(
1 − �2

2

)]
×

[
x2 + y2(1 − β

3,3
1

) + 4

9

�2
3

�2
1

[
x2 + y2(1 − β

1,1
1

)]

−4

3

�3

�1
y2β

1,3
1

] }
. (87)

In the limit �3 = 0, the neutrino energy losses, as given
by Eq. (85) reproduce the result obtained in Ref. [12] for
the one-component phase mj = 0. It is necessary to notice
that Eq. (87) obtained in the angle-average approximation
is much simpler for numerical evaluations than the “exact”
expression which contains additionally the angle integration
[11]. To avoid possible misunderstanding we stress that
the gap amplitude �(T ) in Eq. (87) is

√
2 times larger

than the gap amplitude �YKL used in Ref. [31], where
the same anisotropic gap �n = �b̄(n) is written in the
form �n = �YKL

√
1 + 3 cos2 θ ≡ �YKL

√
2 b̄(n). In other

words, 〈�2
n〉 = �2 = 2�2

YKL.

B. SWD channel

In the frequency domain 0 < ω < 2�, the imaginary part
of the weak polarization tensor (80) arises from the poles of
the denominator at ω = ω1 and ω = ω2 and consists of two
terms:

Im�SWD
ij (ω > 0)

= −2π
3

4
�(δij − δi3δ3j )Iav(ω1)

�2
1

�2

ω1δ(ω − ω1)(
�2

1 − �2
2

)
×

[
�2

1 − β
3,3
1 + 4

9

�2
3

�2
1

(
�2

1 − β
1,1
1

) − 4

3

�3

�1
β

1,3
1

]

− 2π
3

4
�(δij − δi3δ3j )Iav(ω2)

�2
1

�2

ω2δ(ω − ω2)(
�2

2 − �2
1

)
×

[
�2

2 − β
3,3
1 + 4

9

�2
3

�2
1

(
�2

2 − β
1,1
1

)− 4

3

�3

�1
β

1,3
1

]
. (88)

According to Eqs. (67) at �3 = 0 one has �2 = β
3,3
±1 and

Im�SWD
ij (ω → ω2) = 0. In other words, the high-frequency

spin oscillations cannot be excited if the tensor interactions
between the pairing particles are not taken into account.

Inserting Eq. (88) into Eq. (81) and performing trivial
calculations, we find two contributions to the neutrino energy
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losses. The first contribution is caused by the decay into
neutrino pairs of the lowest mode of spin oscillations at
ω = ω1:

ε
(1)
SWD = 1

320π5
G2

F C2
ANνpF M∗ �2

1

�2

1

�2
1 − �2

2

×
[
�2

1 − β
3,3
1 − 4

3

�3

�1
β

1,3
1 + 4

9

�2
3

�2
1

(
�2

1 − β
1,1
1

)]

× ω7
1

exp
(

ω1
T

) − 1

∫ ∞

0

dε

E

�2

E2 − ω2
1/4

tanh
E

2T
. (89)

According to this equation, in the case of �3 → 0, �1 → �,
and ω1 → �/

√
5, the energy losses are twice less than that

found in Ref. [12]:

ε
(1)
SWD(�3 = 0) = 1

320π5
G2

F C2
ANνpF M∗ ω7

1

exp
(

ω1
T

) − 1

×
∫ ∞

0

dε

E

�2

E2 − ω2
1/4

tanh
E

2T
. (90)

We use the opportunity to point out the error in Eqs. (79)
and (81) of Ref. [12], where the factor of 1/2 is lost.

The second contribution originates from weak decays of
the second (higher) mode at ω = ω2:

ε
(2)
SWD = 1

320π5
G2

F C2
ANνpF M∗ �2

1

�2

1

�2
2 − �2

1

×
[
�2

2 − β
3,3
1 − 4

3

�3

�1
β

1,3
1 + 4

9

�2
3

�2
1

(
�2

2 − β
1,1
1

)]

× ω7
2

exp
(

ω2
T

) − 1

∫ ∞

0

dε

E

�2

E2 − ω2
2/4

tanh
E

2T
. (91)

Because excitation of the high-frequency spin oscillations
occurs through the tensor interactions, the contribution of the
second mode vanishes if the tensor forces are switched off
(i.e., when �3 = 0).

The expressions (89) and (91) can be written in the
traditional form,

ε
(1)
SWD = 1. 76 × 1021

(
M∗

M

) (
pF

Mc

)
NνC

2
AT 7

9 y7 �2
1

�2

×
[
�2

1 − β
3,3
1 − 4

3

�3

�1
β

1,3
1 + 4

9

�2
3

�2
1

(
�2

1 − β
1,1
1

)]

× 1

�2
1 − �2

2

�7
1

exp(2y�1) − 1
FSWD(�1, y)

erg

cm3 s
,

(92)

ε
(2)
SWD = 1. 76 × 1021

(
M∗

M

) (
pF

Mc

)
NνC

2
AT 7

9 y7 �2
1

�2

+
[
�2

2 − β
3,3
1 − 4

3

�3

�1
β

1,3
1 + 4

9

�2
3

�2
1

(
�2

2 − β
1,1
1

)]

× 1

�2
2 − �2

1

�7
2

exp(2y�2) − 1
FSWD(�2, y)

erg

cm3 s
,

(93)

where β
l,l′
1 , given by Eqs. (63)–(65), are functions of the gap

components �1 and �3; y ≡ �(T )/T , and

FSWD(�, y) = y7
∫ ∞

0

du√
u2 + 1

1

u2 + 1 − �2

× tanh
y

2

√
u2 + 1. (94)

IX. EFFICIENCY OF THE NEUTRINO EMISSION

In general, the temperature dependence of the gap ampli-
tudes �1 and �3 is to be found with the aid of the gap equations.
For simple estimates we take the approximation that the ratio
�3/�1 remains constant when the temperature varies, and the
temperature dependence of the gap is given by the function
y = �(T )/T . This function is well investigated for a 3P2

pairing. Because the tensor contribution can be considered
as a perturbation [21], in a zero approximation we can use, for
example, the simple fit to �YKL(T )/T = vB(τ ), as suggested
in Ref. [31], where τ ≡ T/Tc. Taking into account that, in
Ref. [31], the gap amplitude �YKL(T ) is defined by the relation
�2

n = �2
YKL(1 + 3 cos2 θ ), while our definition is �2

n(�3 =
0) = 1

2�2(1 + 3 cos2 θ ), we obtain y(τ ) = √
2vB(τ ).

In Fig. 2 we show the neutrino emissivity ε caused by
the PBF processes and by the decay of the lowest mode
(SWD1) and the higher mode (SWD2) of spin oscillations.
The temperature dependence of the emissivity is evaluated at
pF = 2.1 fm−1 assuming �3/�1=0.17. We set the effective
nucleon masses M∗ = 0.7M; the critical temperature for
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FIG. 2. Temperature dependence of the neutrino emissivity owing
to recombination of Cooper pairs (PBF) and owing to decay of
spin waves (SWD1, the emissivity of the lower mode; SWD2, the
emissivity of the upper mode) at �3/�1 = 0.17 and pF = 2.1 fm−1.
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neutron pairing is chosen to be Tc = 3 × 109 K and Tc =
3 × 108 K.

One can see that the decay of the low-frequency spin
waves into neutrino pairs (SWD1) is very effective at low
temperatures, when other known mechanisms of neutrino
energy losses in the bulk neutron matter are strongly sup-
pressed by the superfluidity. As discussed in Ref. [12] the
neutrino emission caused by the decay of the low-frequency
spin waves can dominate the γ radiation within a wide range
of low temperatures, which was considered before as the
photon-cooling era. A simple estimate has shown that the
decays of spin waves can modify the cooling trajectory of
neutron stars (see Fig. 5 in Ref. [12]).

Weak decays of the high-frequency mode of spin oscilla-
tions occur only if the tensor forces are taken into account in the
pairing interaction, that is, if �3 �= 0. Although the maximal
neutrino emission caused by the SWD2 processes is as large
as in the SWD1, the neutrino energy losses from the decay of
the upper mode decrease more rapidly along with lowering of
the temperature. As a result the SWD2 contribution into the
total energy losses is negligible in comparison with the sum
of the PBF and SWD1 contributions. We found that the latter
can be excellently described by the expressions obtained in
Ref. [12] for the case of 3P2 pairing with mj = 0 [However,
see note after Eq. (90).] We quote these simple expressions for
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FIG. 3. Temperature dependence of the total bulk neutrino lumi-
nosity from a homogeneous superfluid core owing to recombination
of Cooper pairs (PBF) and owing to decay of spin waves (SWD) for
pF = 2.1 fm−1. The effective mass is taken to be M∗ = 0.7M . Solid
lines are calculated according to the exact expressions (86), (92),
(93). Dashed lines are calculated by simplified formulas (95) and
(97). Volume of the triplet condensate is estimated as 7 × 1018 cm3.
The short-dashed line is the energy losses per unit of time owing to
the surface γ radiation, as calculated in Ref. [2].

references:

εPBF = 5. 85 × 1020

(
M∗

M

)(
pF

Mc

)
T 7

9 NνC
2
AFPBF(y)

erg

cm3 s
,

(95)

with

FPBF(y) = y2
∫ ∞

0
dx

z4

(1 + exp z)2
, (96)

and

εSWD = 1. 37 × 1019

(
M∗

M

) (
pF

Mc

)
T 7

9 NνC
2
A

× (y/
√

5)7I0(y)

exp(y/
√

5) − 1

erg

cm3 s
, (97)

where

I0(y) =
∫ ∞

0

du

(u2 + 1)3/2
tanh

y

2

√
u2 + 1. (98)

To get an idea of the accuracy of the simplified expressions,
in Fig. 3 we demonstrate the total neutrino energy losses caused
by PBF and SWD neutrino emission from the superfluid core
of the volume 7 × 1018 cm3. The total neutrino luminosity, as
calculated by the exact Eqs. (86), (92), and (93), is shown in
comparison with the sum of the PBF and SWD neutrino losses
calculated with the aid of simple expressions given by Eqs. (95)
and (97). We display also the the luminosity of the surface
photon radiation. The latter is taken as in Fig. 20 of Ref. [2].

X. SUMMARY AND CONCLUSION

According to modern theories the triplet-spin superfluid
condensate in the inner core of neutron stars arises owing to
pairing of neutrons caused by attractive spin-orbit and tensor
forces and consists of the orbital contributions corresponding
to l = 1, 3. Assuming the projection of the total angular
momentum mj = 0, the superfluid energy gap � arising in
the 3P2-3F2 state is �2 = �2

1 + �2
3, where the contribution

�3 �= 0 is caused by the tensor interactions. We have studied
the influence of the admixture of the 3F2 state onto the
collective spin oscillations and neutrino emission processes
in the triplet superfluid neutron liquid.

To evaluate the rate of neutrino energy losses out of the
3P2-3F2 superfluid neutron liquid we have calculated the
anomalous three-point vertices responsible for the interaction
of the superfluid liquid with an external axial-vector field.
The BCS-like calculation has done in the angle average
approximation. The polelike behavior of the vertices points
out the existence of two twofold eigenmodes of oscillations.
The oscillation frequencies in terms of the gap components
are given by Eqs. (68) and (69). According to the obtained
expressions the known low-frequency mode ω1 � �/

√
5

undergoes only a small frequency shift owing to the ten-
sor interactions. The frequency of the new, upper mode
ω2(�3 = 0) � √

58/35� decreases slightly along with in-
creasing of the tensor contribution into the energy gap. We
found that the excitation of the high-frequency spin oscillations
is strongly quenched if the tensor interactions between the
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pairing particles are not taken into account, that is, if �3 = 0.
According to calculations of different authors, at the Fermi
surface one has �3 � 0.17�1 (see, e.g., Ref. [18]). In this
case our theoretical analysis predicts two twofold modes:
ω = ω1 � 0.42� and ω = ω2 = 1. 19�.

We have derived the linear response of the superfluid
liquid onto an external axial-vector field. At the timelike
momentum transfer the imaginary part of this polarization
function consists of three contributions originating from a
recombination of broken Cooper pairs and from weak decays
of the collective modes of spin oscillations. Accordingly, the
neutrino energy losses through neutral weak currents consist of
three contributions caused by the above decay processes. The
neutrino energy losses owing to PBF, SWD1, and SWD2 pro-
cesses are presented analytically by Eqs. (86), (92), and (93).

Neutrino decays of the low-energy spin waves (SWD1) can
play an important role in the cooling scenario of neutron stars.

Previously we have demonstrated (see Fig. 5 in Ref. [12])
that the decays of spin waves with ω = �/

√
5 can become

the dominant cooling mechanism in a wide range of low
temperatures and modify the cooling trajectory of neutron
stars.

Weak decays of the high-frequency mode (SWD2) occur
only if the tensor forces are taken into account in the pairing
interaction, that is, if �3 �= 0. The maximal neutrino emission
caused by the SWD2 processes is of the same order as in the
SWD1; however, the neutrino energy losses from the decay of
the upper mode decrease more rapidly along with lowering of
the temperature. As a result the SWD2 contribution into the
total energy losses is negligible in comparison with the sum of
the PBF and SWD1 contributions. This fact makes it possible
to neglect the SWD2 contribution and describe the neutrino
energy losses from the 3P2-3F2 superfluid liquid by simple
expressions given by Eqs. (95) and (97).
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