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K− nuclear potentials from in-medium chirally motivated models
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A self-consistent scheme for constructing K− nuclear optical potentials from subthreshold in-medium K̄N

s-wave scattering amplitudes is presented and applied to analysis of kaonic atoms data and to calculations of K−

quasibound nuclear states. The amplitudes are taken from a chirally motivated meson-baryon coupled-channel
model, both at the Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms
potentials are characterized by a real part −Re V chiral

K− = 85 ± 5 MeV at nuclear matter density, in contrast to half
this depth obtained in some derivations based on in-medium K̄N threshold amplitudes. The moderate agreement
with data is much improved by adding complex ρ- and ρ2-dependent phenomenological terms, found to be
dominated by ρ2 contributions that could represent K̄NN → YN absorption and dispersion, outside the scope
of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The effects of p-wave
interactions are studied and found secondary to those of the dominant s-wave contributions. The in-medium
dynamics of the coupled-channel model is discussed and systematic studies of K− quasibound nuclear states are
presented.
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I. INTRODUCTION

A key issue in studying in-medium K− meson interactions
concerns the strength of the attractive K− nuclear potential [1].
Related topical questions involve (i) the underlying free-space
K̄N interaction and whether or not it can realistically support
K− nuclear clusters (see Ref. [2] for a recent review), and (ii)
the role of K− mesons in multistrange self-bound matter [3]
and in compact stars [4]. An order of magnitude estimate of
the nuclear potential VK− is provided by the leading-order
(LO) Tomozawa-Weinberg (TW) vector term of the chiral
effective meson-baryon Lagrangian [5] which in the Born
approximation gives

VK− = − 3

8f 2
π

ρ ≈ −57
ρ

ρ0
(in MeV), (1)

where ρ is the nuclear density, ρ0 = 0.17 fm−3, and fπ ≈
93 MeV is the pion decay constant. This attraction is doubled,
roughly, within chirally based coupled-channel K̄N–π�–π�

calculations that produce dynamically a K̄N quasibound state
loosely identified with the �(1405) resonance [6]. Deeper
potentials, in the range Re VK− (ρ0) ∼ −(150–200) MeV are
obtained in comprehensive global fits to K−-atom strong-
interaction shifts and widths by introducing empirical density
dependent effective K−N amplitudes [7–10]. Such strongly
attractive potentials are expected to generate K− nuclear
quasibound states which could prove relatively narrow once
the strong transition K̄N → π� becomes kinematically
forbidden for binding energies exceeding about 100 MeV,

*cieply@ujf.cas.cz
†elifried@vms.huji.ac.il
‡avragal@vms.huji.ac.il
§gazda@ujf.cas.cz
‖mares@ujf.cas.cz

as conjectured by Akaishi and Yamazaki [11]. Experimen-
tally, we mention the K− quasibound signals claimed for
K−pp [12,13] at and below the π�N threshold. However,
these reported signals are quite broad, at variance with the
underlying physics. In contrast to the indications of a deep K−
potential, considerably shallower potentials, Re VK− (ρ0) ∼
−(40–60) MeV, are obtained for zero kinetic-energy kaons by
introducing self-energy (SE) contributions to the in-medium
K−N threshold scattering amplitude, within a self-consistent
procedure that includes in particular the potential VK− thus
generated [14,15].

In a recent Letter [16] we reported on new, self-consistent
calculations of K− quasibound states that lead to deep K−
nuclear potentials, considerably deeper than the “shallow”
potentials deduced in Refs. [14,15]. The basic idea is to
identify the K−N subthreshold energy domain required for
the construction of VK− . For kaonic atoms, essentially at the
K− nuclear threshold, this was explored during the 1970s by
Wycech [17], Bardeen and Torigoe [18], and Rook [19] who
noted the dominance of the subthreshold K̄N quasibound state
�(1405) in causing the in-medium K̄N scattering amplitude
to become more attractive as one goes to subthreshold K−N

energies. In our Letter [16] we applied this idea, introducing
a new self-consistency requirement, to a comprehensive study
of kaonic atoms that uses scattering amplitudes derived from a
chirally motivated coupled channel meson-baryon Lagrangian
[20]. Here we expand on these recent calculations to provide
more details on derivation, systematics and results. In addition
to the next to leading-order (NLO) model CS30 used in the
Letter, in the present work we report on a new LO model TW1
fitted to the new SIDDHARTA values of shift and width of the
1s state in the K− hydrogen atom [21].

The paper is organized as follows. In Sec. II we describe
a self-consistent scheme of handling in-medium subthreshold
K−N scattering amplitudes used in the construction of VK− .
In Sec. III we discuss the derivation of in-medium scattering
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CIEPLÝ, FRIEDMAN, GAL, GAZDA, AND MAREŠ PHYSICAL REVIEW C 84, 045206 (2011)

amplitudes in both models TW1 and CS30. Some details are
relegated to an appendix. In Sec. IV we discuss kaonic atom
calculations, and in Sec. V we discuss calculations of K−
nuclear quasibound states. Section VI concludes the work with
a brief summary of the main results.

II. HANDLING K− N SUBTHRESHOLD AMPLITUDES

In the single-nucleon approximation, the K− potential in
nuclear matter of density ρ is given in terms of the in-medium
K−N scattering amplitude FK−N ,

VK− = − 2π

ωK

(
1 + ωK

mN

)
FK−N ( �p,

√
s; ρ) ρ, (2)

where FK−N ( �p,
√

s; ρ → 0) reduces to the free-space two-
body K−N c.m. forward scattering amplitude FK−N ( �p,

√
s)

and the nucleon energy EN is approximated by its mass mN in
the kinematical factor in front of FK−N . Here, �p is the relative
K−N momentum and s = (EK + EN )2 − ( �pK + �pN )2 is the
Lorentz invariant Mandelstam variable s which reduces to the
square of the total K−N energy in the two-body c.m. frame.
In the laboratory frame, EK = ωK . Before constructing VK−

for use in actual calculations, we need to prescribe how to
interpret in Eq. (2) the two-body arguments �p and

√
s of

the in-medium scattering amplitude. For s-wave amplitudes,
the momentum dependence arises through the magnitude
p of the relative momentum �p which near threshold is
approximated by

�p = ξN �pK − ξK �pN, ξN(K) = mN(K)/(mN + mK ). (3)

Averaging over angles, the square of �p assumes the form

p2 → ξNξK

(
2mK

p2
N

2mN

+ 2mN

p2
K

2mK

)
. (4)

For
√

s we note that �pK + �pN = 0 in the two-body c.m.
system, but �pK + �pN �= 0 in the nuclear laboratory system
which nearly coincides with the K−-nucleus c.m. system. Av-
eraging over angles yields ( �pK + �pN )2 → (p2

K + p2
N ). Near

threshold, neglecting quadratic terms in the binding energies
BK = mK − EK , BN = mN − EN , we have

√
s ≈ Eth − BN − BK − ξN

p2
N

2mN

− ξK

p2
K

2mK

, (5)

where Eth = mN + mK . To transform the momentum depen-
dence into density dependence, the nucleon kinetic energy
p2

N/(2mN ) is approximated in the Fermi gas model by
TN (ρ/ρ0)2/3, with TN = 23.0 MeV, and the K− kinetic energy
p2

K/(2mK ) is identified in the local density approximation with
−BK − Re VK− (ρ), where VK− = VK− + Vc and Vc is the K−
finite-size Coulomb potential. Under these approximations,
Eqs. (4) and (5) become

p2 ≈ ξNξK [2mKTN (ρ/ρ0)2/3 − 2mN (BK + Re VK− (ρ))],

(6)

where both terms on the r.h.s. are positive for attractive VK− ,
and
√

s ≈ Eth − BN − ξNBK − 15.1

(
ρ

ρ0

)2/3

+ ξKRe VK− (ρ),

(7)

where all the terms following Eth on the r.h.s. are negative,
thus implementing the anticipated downward energy shift into
the K−N subthreshold energy region. Equation (7) is used
in most of the bound state applications below as is, although
we also checked the effect of implementing gauge invariance
through the substitution

√
s → √

s − Vc. Gauge invariance
often is not implemented in the solution of the free-space
Lippmann-Schwinger equations of underlying chiral models
simply because its effects on the two-body meson-baryon
system are negligible.

We note that the K− nuclear potential VK− appears as
an argument in expressions (6) and (7) for p2 and

√
s,

respectively, which in turn serve as arguments in expression
(2) for this same VK− . This suggests to calculate VK− self-
consistently within a scheme in which the downward energy
shift into the K−N subthreshold energy region is density
dependent and is controlled by the outcome self-consistent
VK− (ρ). In the corresponding sections below we elaborate on
the self consistency scheme which is applied to the solution of
the wave equation satisfied by in-medium K− mesons.

III. IN-MEDIUM K̄ N AMPLITUDES

The synergy of chiral perturbation theory and coupled
channel T -matrix resummation techniques provides successful
description of K̄N interactions at low energies [2]. In our
approach we employ chirally motivated coupled-channel s-
wave potentials that are taken in a separable form,

Vij (p, p′;
√

s) =
√

1

2ωi

Mi

Ei

gi(p)
Cij (

√
s)

f 2
π

gj (p′)

√
1

2ωj

Mj

Ej

,

gj (p) = 1

1 + (p/αj )2
, (8)

with Ei , Mi , and ωi denoting baryon energy, baryon mass, and
meson energy in the c.m. system of channel i. The coupling
matrix Cij is determined by chiral SU(3) symmetry. The
parameter fπ ∼ 100 MeV represents the pseudoscalar-meson
decay constant in the chiral limit, and the inverse range
parameters αi are fitted to the low energy K̄N data. The indices
i and j run over the meson-baryon coupled channels π�,
π�, K̄N , η�, η�, and K
, including all their appropriate
charge states. Details of the free-space version of this model
are given in Ref. [20]. Here we summarize its essential points
with emphasis on in-medium modifications.

The chiral symmetry of meson-baryon interactions is
reflected in the structure of the Cij coefficients derived
directly from the Lagrangian. The exact content of the matrix
elements up to second order in the meson c.m. kinetic energies
was specified already in Ref. [22]. In practice, one often
considers only the leading order TW interaction [5] with
energy dependence given by

Cij (
√

s) = −CTW
ij (2

√
s − Mi − Mj )/4. (9)
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The structure constants CTW
ij are listed in Ref. [23]. We note

that this relativistic prescription differs from the one adopted in
models derived from a chiral Lagrangian formulation for static
baryons [20,22] and expanded strictly only to second order in
meson energies and quark masses. There, the energy depen-
dence form (2

√
s − Mi − Mj ) is replaced by (ω′

i + ω′
j ) where

the primed meson energies ω′
j include a relativistic correction:

ω′
j = ωj + (ω2

j − m2
j )/(2M0), with mj denoting the meson

mass in channel j and where M0 is the baryon mass in the chiral
limit. In principle, approaches based on different formulations
of the chiral Lagrangian should give identical results for
physical observables. However, this is true only when one sums
up an infinite series of relevant Feynman diagrams to all orders
in q, and need not hold at a given perturbative order. In other
words, models based on different Lagrangian formulations, or
models that differ from each other in prescribing how to treat
terms beyond leading order, may give within reasonable limits
different predictions for physical observables.

The scattering amplitudes corresponding to the separable
potentials (8) are also of a separable form

Fij (p, p′;
√

s) = gi(p)fij (
√

s)gj (p′), (10)

with the same form factors gi(p) and gj (p′), and where the
reduced scattering amplitude fij is given explicitly by

fij (
√

s)

= − 1

4πf 2
π

√
MiMj

s
[(1 − C(

√
s) · G(

√
s))−1 · C(

√
s)]ij .

(11)

Here the meson-baryon propagator G(
√

s) is diagonal in the
channel indices i and j . When the elementary K̄N system is
submerged in the nuclear medium one has to consider Pauli
blocking and self-energies (SE) generated by the interactions
of mesons and baryons with the medium. Thus, the propagator
G(

√
s) and the reduced amplitudes fij (

√
s) become dependent

on the nuclear density ρ. The intermediate state Green’s
function is calculated as

Gi(
√

s; ρ)

= 1

f 2
π

Mi√
s

∫
�i (ρ)

d3 �p
(2π )3

g2
i (p)

p2
i − p2 − �i(ωi, Ei, �p; ρ) + i0

.

(12)

Here �pi is the on-shell c.m. momentum in channel i and the
integration domain �i(ρ) is limited by the Pauli principle in
the K̄N channels. Included in the denominator of the Green’s
function (12) is the sum �i of meson and baryon self-energies
in channel i. In particular the kaon SE �K = 2ωKVK− , which
serves as input in Eq. (12) and therefore also in Eq. (11)
for the output reduced amplitude fK−N , requires by Eq. (2)
the knowledge of this same output fK−N . This calls for a
self-consistent solution of the in-medium reduced scattering
amplitudes fij (

√
s, ρ) as was first suggested by Lutz [24].

In the present calculation, following Ref. [15], the baryon
and pion self-energies were approximated by momentum
independent potentials V = V0 ρ/ρ0 with real and imaginary
parts of V0 chosen consistently from mean-field potentials used
in nuclear structure calculations and in scattering calculations,
respectively. Specifically, we adopted V π

0 = (30 − i10) MeV,
V �

0 = (−30 − i10) MeV, V �
0 = (30 − i10) MeV, and V N

0 =
(−60 − i10) MeV.

The free parameters of the separable-interaction chiral
models considered in Ref. [20] and in the present work were
fitted to the available experimental data on low energy K̄N

interactions, consisting of K−p low-energy cross sections for
elastic scattering and reactions to the K̄0n, π+�−, π−�+,
π0� and π0�0 channels (as listed in Ref. [22]). In addition, the
accurately determined K−p threshold branching ratios γ , Rc,
Rn [25] provide a rather strict test for any quantitative model.
Another stringent test is provided by the recent SIDDHARTA
measured values �E1s and �1s of the K−–hydrogen atom 1s

level shift and width [21].
In the present work we focus on a separable-interaction

LO chiral model marked TW1, constructed by fitting just two
parameters to the data, fπ = 113 ± 2 MeV for the PS meson
decay constant and α = 701 ± 20 MeV for the common inverse
range parameter, both within one’s theoretical expectations.
Some characteristics of the TW1 model in comparison to other
LO models are listed in Table I. These LO models include only
the leading TW interaction [5], with interchannel couplings
given by Eq. (9). Also listed in the table are the positions
z1, z2 of the two I = 0 S-matrix poles that reside on the
second Riemann sheet [−,+] of the complex energy manifold,
where the signs are those of the imaginary parts of the c.m.
momenta in the π� and K̄N channels, respectively. Their
origin may be traced to poles in decoupled I = 0 channels, a
π� resonance pole z

(0)
1 and a K̄N quasibound state pole z

(0)
2 .

TABLE I. K−p threshold observables calculated in several free-space LO coupled-channel chiral models. The K−–hydrogen atom 1s

shift �E1s and width �1s (in eV) marked by asterisks were obtained from the calculated K−p scattering length by means of a modified
Deser-Trueman relation [26] and are compared to the SIDDHARTA measured values [21]. The K−p threshold branching ratios γ , Rc, Rn are
from Ref. [25]. The last two columns list the calculated I = 0 S-matrix pole positions z1, z2 (in MeV) on the [−, +] second Riemann sheet of
the complex energy plane.

�E1s �1s γ Rc Rn z1 z2

TW1 323 659 2.36 0.636 0.183 (1371,−54) (1433,−25)
JOORM [27] 275∗ 586∗ 2.30 0.618 0.257 (1389,−64) (1427,−17)
HW [28] 270∗ 570∗ 1.80 0.624 0.225 (1400,−76) (1428,−17)
exp. 283 541 2.36 0.664 0.189 – –
error (±) 42 111 0.04 0.011 0.015 – –
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FIG. 1. (Color online) Energy dependence of the c.m. reduced amplitudes fK−p (left panels) and fK−n (right panels) in model TW1. The
upper and lower panels refer to the real and imaginary parts of f , respectively. Dashed curves: free space, dot-dashed: Pauli blocked amplitude
(without SE) at ρ = ρ0, solid curves: including meson and baryon self-energies (with SE) at ρ = ρ0.

The π�-K̄N interchannel coupling moves the poles away
from their zero-coupling position, the precise full-coupling
position exhibiting some model dependence. It is remarkable
that all the LO TW models listed in the table are in close
agreement on the position of the upper pole z2. This agreement
is spoiled when NLO corrections that require additional low
energy constants to be fitted to the experimental data are
included in the interchannel couplings. In contrast, the position
of the lower pole z1 exhibits model dependence already in TW
models. Generally, it is located much further away from the
real axis than the pole z2. The pole z2 is usually relegated to
the subthreshold behavior of the K−p amplitude and to the
�(1405) resonance observed in the π� mass spectrum in K̄N

initiated reactions. Nuclear medium effects on the poles z1, z2

are discussed in the Appendix.
In Fig. 1 we show the energy dependence of the reduced

elastic scattering amplitudes fK−p and fK−n in model TW1
in free space and for two versions of in-medium modi-
fications (marked “with” and “without” SE). Recall that
fK−p = 1

2 (f I=0
K̄N

+ f I=1
K̄N

) is affected by the subthreshold I = 0
�(1405) resonance, whereas fK−n = f I=1

K̄N
is not affected.

Indeed, the free-space amplitudes, in dashed lines, exhibit
a marked difference between K−p and K−n, with the
former amplitude showing a typical resonance structure. The
pronounced peak in Im fK−p and the change of sign in Re
fK−p point to the existence of a quasibound state generated by
the I = 0 K̄N interaction closely below the K−p threshold.
In contrast, the pure I = 1 K−n amplitude displays hardly
any energy dependence besides a smooth and slow decrease of
the imaginary part upon going to subthreshold energies where
phase space cuts it down. The free-space K−n interaction is
weakly attractive and its in-medium renormalization, given
by the other curves on the right-hand panels, is rather weak
and exhibits little density dependence, in clear distinction to

the in-medium effect on the K−p amplitudes shown on the
left-hand panels. Here, in-medium Pauli blocking moves the
K−p free-space resonance structure to higher energies, as
demonstrated by the dot-dashed lines (marked “without SE”)
in the left panels of the figure which correspond to nuclear
matter density ρ0 = 0.17 fm−3. The TW1 results obtained here
with Pauli blocking fully agree with those obtained long ago
by Waas, Kaiser, Weise [6] and which are recoverable upon
switching on their parameter set in our chiral formulation. In
contrast, a very different pattern was presented by Ramos and
Oset [14], most likely due to their on-shell treatment of the
intermediate state propagator and the inclusion of a “nucleon
hole” term.

The effect of combined Pauli blocking and hadron SE
on the K−p amplitude is shown by the solid lines (marked
“with SE”) in Fig. 1. The real part of the amplitude remains
positive (attractive) in the whole energy range, in agreement
with phenomenological analyses of kaonic atoms [7], while
the peak of the imaginary part moves back to approximately
where it was in the free-space amplitude. The most striking
feature of the model is the sharp increase in the real part of the
amplitude when going to subthreshold energies, caused mainly
by the introduction of kaon self energy in the propagator (12)
which is responsible for moving the resonant structure related
to the �(1405) back below the K̄N threshold. Consequently,
the K−p interaction becomes much stronger at energies
about 30 MeV below the K−p threshold with respect to its
strength at threshold. This feature is missing in the in-medium
calculations of Ref. [14] which get substantially different
results than ours already when only Pauli blocking is accounted
for.

Although the simple LO TW1 model was used to demon-
strate the nuclear medium effect on the K−p interaction in
Fig. 1, the same pattern is obtained within the NLO CS30
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FIG. 2. (Color online) Energy dependence of the in-medium c.m.
reduced amplitude fK−p at nuclear matter density ρ0 in models TW1
(solid lines) and CS30 (dashed lines). The calculations include Pauli
blocking and self-energies.

model of Ref. [20]. This is demonstrated in Fig. 2 where
in-medium “with SE” K−p reduced scattering amplitudes
generated in these two models are compared to each other
at ρ = ρ0. The differences between the two sets of curves are
seen to be minute.

To end this section we show in Fig. 3, for model TW1, the
reduced scattering amplitude corresponding to the interaction
of K− mesons with symmetric nuclear matter,

fK−N (
√

s, ρ) = 1
2 [ fK−p(

√
s, ρ) + fK−n(

√
s, ρ) ], (13)

where fK−N (
√

s, ρ = 0) ≡ fK−N (
√

s). The free-space ampli-
tude fK−N (

√
s), for ρ = 0, is marked by dashed lines. Its

imaginary part peaks about 15 MeV below the K̄N threshold,
and its real part rapidly varies there from weak attraction above
to strong attraction below threshold. While fK−N (

√
s) at and

near threshold is constrained by data that serve to determine
the parameters of the chiral model, the extrapolation to the
subthreshold region may suffer from ambiguities depending
on the applied model [2]. Also shown in Fig. 3 are two
versions of in-medium reduced amplitudes fK−N (

√
s, ρ =

0.5ρ0). One version, in dot-dashed lines (marked “without
SE”), implements Pauli blocking in the intermediate K̄N

states for ρ �= 0. The resulting fK−N exhibits a resonance-
like behavior about 20 MeV above threshold, in agreement
with Ref. [6]. The other in-medium version, in solid lines
(marked “with SE”), adds self-consistently meson and baryon
self-energies in intermediate states, as explained earlier. The
resulting in-medium fK−N is strongly energy dependent, with
a resonance-like behavior about 35 MeV below threshold.
Similar results are obtained at full nuclear matter density
ρ0 = 0.17 fm−3. We note that whereas the two in-medium
reduced amplitudes shown in the figure are close to each other
far below and far above threshold, they differ substantially at
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FIG. 3. (Color online) Energy dependence of the c.m. reduced
amplitude fK−N (13) in model TW1 below and above threshold.
Dashed curves: in free-space; dot-dashed curves: Pauli blocked
amplitude at 0.5ρ0; solid curves: including meson and baryon
self-energies at 0.5ρ0.

and near threshold. This applies also to the full amplitudes
FK−N , Eq. (10), since the form factors g(p) remain the same
in the transition from free-space to in-medium separable
amplitudes. At threshold, in particular, the real part of the
“with SE” amplitude is about half of that “without SE,”
corresponding to a depth −Re VK− (ρ0) ≈ 40 MeV, in rough
agreement with Ref. [14].

IV. K− ATOM CALCULATIONS

Strong interaction level shifts and widths in kaonic atoms
have been for decades a source of precise data on the K−
nuclear interaction near threshold. Particularly instructive are
so-called “global” analyses when data for many nuclei across
the periodic table are being analyzed together, usually with
the help of optical potentials which are related to the nuclear
densities [10]. This type of analyses could reveal characteristic
features of the interaction which, in turn, reflect on the
underlying K−N interaction in the medium, for example,
its energy and density dependence. It was shown already in
1993 [7] that with density-dependent empirical amplitudes
within a “tρ” approach to the optical potential, very good fits to
the data were possible. Depths of the real potential were close
to 180 MeV whereas fixed-t models achieved inferior fits and
the resulting potentials were half as deep. Later predictions of
in-medium chiral models at threshold [14] presented depths of
only 50 MeV for the real potential at full nuclear density. This
wide span of values has been termed the “deep vs shallow”
controversy in kaonic atoms [29]. While attention has been
focused on depths of the potentials, little attention was paid
to the other empirical finding [7], namely, that the best-fit real
potentials were not only deep but also “compressed” relative
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to the corresponding nuclear densities, with rms radii smaller
than the nuclear rms radii. This feature means that the real
part of the underlying K−-bound nucleon interaction increases
with density, and it is shown below to be in line with the
density dependence of the chiral model in-medium amplitudes
employed in the present work.

A. Wave equation

The choice of K− wave equation follows naturally from the
in-medium dispersion relation

ω2
K − �p2

K − m2
K − �K ( �pK,ωK, ρ) = 0, (14)

where �K ( �pK,ωK, ρ) = 2(Re ωK )VK− is the self-energy (SE)
operator for a K− meson with momentum �pK and energy
ωK [30]. The Klein-Gordon (KG) dispersion relation (14) leads
in hadronic atoms applications to a KG equation satisfied by
the K− wave function [10]:[

∇2 − 2μ(BK + Vc) + (Vc + BK )2 + 4π

(
1 + A − 1

A

μ

mN

)

×FK−N ( �p,
√

s; ρ) ρ

]
ψ = 0. (15)

Here, μ is the K−-nucleus reduced mass, BK = BK + i�K/2
is a complex binding energy, including a strong interaction
width �K , and Vc is the K− Coulomb potential generated by
the finite-size nuclear charge distribution, including vacuum-
polarization terms.

B. s waves

The first application of the scheme presented in Sec. II
for handling K−N amplitudes below threshold was to global
analyses of strong-interaction effects in kaonic atoms. The
database was the same as in Ref. [7] with 65 data points for
targets from 7Li to 238U. In solving the KG equation (15),
the �pK momentum dependence of FK−N was transformed into
density and energy dependence according to Eq. (6). Further-
more, proton and neutron densities were handled separately,
replacing FK−N (

√
s, ρ)ρ(r) by an effective amplitude

F eff
K−N (

√
s, ρ)ρ(r)

= FK−p(
√

s, ρ)ρp(r) + FK−n(
√

s, ρ)ρn(r), (16)

with ρp and ρn normalized to Z and N , respectively, and
Z + N = A. Two-parameter Fermi distributions (2pF) were
used for both densities, with ρp obtained from the known
charge distribution by unfolding the finite size of the charge
of the proton. For ρn averages of the “skin” and “halo” forms
of Ref. [31] were chosen with the difference between rms
radii given by rn − rp = (N − Z)/A − 0.035 fm. The reduced
amplitudes fK−p and fK−n were evaluated at

√
s given by

Eq. (7), where the atomic binding energy BK was neglected
with respect to BN ≈ 8.5 MeV. A similar approximation was
made in Eq. (6) for p2 when using the form factors g(p)
of Eq. (10). The K−-nucleus potentials were calculated by
requiring self-consistency in solving Eq. (7) with respect to
Re VK− , i.e., the value of Re VK− (ρ) in the expression for
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FIG. 4. (Color online) Density dependence of the in-medium
“without SE” CS30 self-consistent subthreshold amplitude F eff

K−N

for Ni.

√
s and in the form factors g had to agree with the resulting

Re VK− (ρ). That was done at each radial point and for every
target nucleus in the database.

It is instructive to start by inspecting the effective ampli-
tudes Eq. (16) obtained in the above self-consistent procedure.
Figure 4 shows effective amplitudes for K− on Ni, calculated
from the CS30 “without SE” K−N amplitudes, with and with-
out the

√
s → √

s − Vc substitution discussed in Sec. II. The
increase of Re F eff

K−N (ρ) with density over the nuclear surface
region combined with the decrease of Im F eff

K−N (ρ) are the
underlying mechanisms behind the compression of the real part
and inflation of the imaginary part of best-fit density-dependent
phenomenological potentials [7]. Similar results for CS30
amplitudes that include SE were shown in Ref. [16]. Although
there are differences in details between the various models, the
geometrical implications are robust. The decrease of Im F eff

K−N

with increasing density is unreasonably rapid, originating from
the one-nucleon nature of the CS30 amplitudes, where, as
seen in Fig. 3 for the similar TW1 amplitude, the imaginary
part practically vanishes around 80 MeV below threshold. We
note that multinucleon absorption processes which become in-
creasingly important at subthreshold energies are not included
in the present approach. Since strong-interaction effects in
kaonic atoms are dominated by the widths, the deficiency in
the imaginary part of the amplitudes must be reflected when
comparing predictions with experiment. This is indeed the case
with χ2 per point of about 10.

Figure 5 shows, as representative examples, several K−–
Ni potentials based on the CS30 “without SE” amplitudes,
within the self consistent procedure described above. As a
reference, the curves marked DD represent the best fit purely
phenomenological density-dependent potentials [7] with χ2 =
103 for 65 data points. The potential marked CS30 is without
any adjustable parameters and it differs substantially from the
DD reference potential. Nevertheless its real part of −85 MeV
is twice as deep as the shallow potential (not shown here) of
Ref. [32] which results from threshold values fK−N (Eth, ρ),
without going subthreshold. Figure 5 also demonstrates
the effect of adding adjustable ρ and ρ2 terms to the
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FIG. 5. (Color online) Left: K−-nuclear potentials for K− atoms of Ni. Dashed curves: derived self consistently from in-medium CS30
amplitudes; solid curves: plus phenomenological terms from global fits; dot-dashed curves: purely phenomenological DD potentials from
global fits. Right: the same as on the left, but with the substitution

√
s → √

s − Vc in F eff
K−N

(
√

s, ρ).

CS30-based potentials, resulting in best-fit potentials marked
“CS30 + phen.” with χ2 of around 130–140 for 65 points,
very close to χ2 values achieved with a fixed-t approach.
It is seen that the resulting “CS30 + phen.” potentials are
close to the DD ones and we note that the additional terms,
both real and imaginary, are dominated by ρ2 terms which are
required by the fit procedure and which are likely to represent
K̄NN absorptive and dispersive contributions, respectively.
Similar results hold for in-medium TW1 amplitudes, such as
shown in Fig. 3. The resulting TW1 K− nuclear potentials are
shown in Fig. 6, exhibiting remarkable similarity to the CS30
K− nuclear potentials of Fig. 5. We note that the addition of
phenomenological terms lowers the resulting χ2 to as low a
value as 124 for 65 data points.

On first sight the additional “phen.” terms appear large
in comparison with the one-nucleon based CS30 and TW1
potentials, particularly if one considers values of the potentials
near the nuclear center. However, strong interaction effects
in kaonic atoms are sensitive mostly to potential values near
the nuclear surface [29], about 3.5 to 5 fm in the examples
shown. It is seen from the figures that over this range of
radii the phenomenological part of the imaginary potential
is of the order of 30% of the starting values, consistent
with the fraction of multinucleon absorptions estimated from
experiments in emulsion and bubble chambers [33]. By the
same token one may safely conclude that the data imply real
potentials of depths 80–90 MeV near the half-density radius.
Finally a significant observation is that when the CS30 or the
TW1 amplitudes are taken at threshold, then the additional
phenomenological potential is no longer dominated by ρ2

terms. In particular, negative imaginary ρ2 terms are obtained,
thus defying a two-nucleon absorption interpretation. The
emerging phenomenology is similar to that for Vπ− in pionic
atom studies where theoretically motivated single-nucleon
contributions are augmented by phenomenological ρ2 terms

representing πNN processes [34]. More work is required
to justify microscopically the size of the ρ2 kaonic atom
contributions suggested by successful V

chiral+phen.

K− potentials.

C. Adding p waves

Next we turn to the question of whether kaonic atom
data support contributions from a p-wave term in the K−N
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FIG. 6. (Color online) K− nuclear potentials for K− atoms of
Ni. Dashed curves: derived self-consistently from in-medium TW1
amplitudes; solid curves: plus phenomenological terms from global
fits; dot-dashed curves: purely phenomenological DD potentials from
global fits.
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TABLE II. Results of tρ global fits to kaonic atoms data.

χ 2 (N = 65) Re b0 (fm) Im b0 (fm) Re c0 (fm3) Im c0 (fm3)

132 0.60 ± 0.05 0.94 ± 0.05 – –
110 0.73 ± 0.09 0.59 ± 0.09 −0.79 ± 0.32 0.75 ± 0.30

interaction and, for reference, we first checked the effect of
including such a phenomenological term in a tρ potential. A
p-wave term was added to the simplest tρ s-wave potential as
follows [10]:

2μVK−N (r) = q(r) + �∇ · α(r) �∇ (17)

with q(r) its s-wave part given by

q(r) = −4π

(
1 + μ

mN

)
b0[ρn(r) + ρp(r)] (18)

and the p-wave part given by

α(r) = 4π

(
1 + μ

mN

)−1

c0[ρn(r) + ρp(r)]. (19)

Terms proportional to ρn(r) − ρp(r) are neglected here.
It is seen from Table II that an improved fit to the data is

obtained with some of the absorption shifted from the s-wave
term into the p-wave term which is repulsive and, thereby,
the s-wave attraction required to fit the data is enhanced.
However, this could also be just a numerical effect of the
χ2 fit process “compressing” the real part of the otherwise
s-wave tρ potential, as noted above.

The empirical p-wave term may be compared, for example,
with the K−p p-wave amplitude of Weise and Härtle [30]
which is dominated by the I = 1 �(1385) subthreshold
resonance. Over the energy range between about 1385 MeV
and the K−N threshold at 1432 MeV the K−p p-wave
amplitude is approximated there by

cK−p =
√

sγ1

s0 − s − i
√

s�(
√

s)
+ d (20)

with
√

s0 = 1385 MeV, γ1 = 0.42/m3
K , �(

√
s) ≈ 40 MeV

and a background term d = 0.06 fm3. Considering that cK−n =
2cK−p for an I = 1 dominated amplitude, then for ρp ≈ ρn and
neglecting ρn − ρp terms in the empirical potential, cK−p is
to be multiplied by 3/2 in order to compare with the above
c0. Table III shows calculated values for a “microscopic”
cm

0 = (3/2)cK−p obtained for
√

s given by Eq. (7), here applied
to Ni.

It is seen that at threshold the empirical c0 is an order of
magnitude too large compared to its “microscopic” counterpart
cm

0 . Averaging over subthreshold energies is unlikely to
produce agreement between the two.

The natural next step was to include cK−p of Eq. (20)
in the subthreshold evaluation of the s-wave potential to
create also a K−N -based p-wave potential. This was done
at each radial point for the local density and the

√
s obtained

self-consistently for the dominant s-wave potential. Without
any adjustable parameters it reduced the CS30-based χ2 from
≈10 per point to about 6 per point. Including also two scaling
factors, for the resonance part and for the background part

of Eq. (20) and searching on these parameters, yielded a
scaling factor −0.025 ± 0.029 for the resonance and 3.5 ± 0.1
for the background, with χ2 ≈ 3 per point. It means that
within the subthreshold approach to the K−N interaction a
resonance term in the p-wave interaction is not required to
fit the data. This is consistent with the first comprehensive
phenomenological analysis of K̄N–πY coupled channels by
Kim [35], concluding that the �(1385) is definitely not a
p-wave K̄N bound state, but rather a π� scattering resonance
with very weak coupling to the K̄N channel. This conclusion
was reinforced in a dispersion relation analysis by Martin [25]
in which the K̄N channel coupled very weakly, compatible
with zero coupling to the �(1385) resonance. Finally, the
p-wave amplitude cK−p of Eq. (20) was included in the
“CS30 + phen.” fits, where ρ and ρ2 terms were added to
the CS30 potentials. Again the resonance term was found
to vanish and only a small p-wave constant background
term was acceptable. It is therefore concluded that fits to
kaonic atom data do not require a resonant p-wave term
within the subthreshold self-consistent approach of the present
work.

V. CALCULATIONS OF K− NUCLEAR QUASIBOUND
STATES

Quasibound K− nuclear states in several nuclei across the
periodic table were calculated in Refs. [3,9] within the rela-
tivistic mean field (RMF) model for nucleons and antikaons.
The energy independent K− nuclear real potential V RMF

K− was
supplemented in these calculations by a phenomenological
“tρ” imaginary potential Im VK− with energy dependence
that accounted for the reduced phase-space available for
in-medium K− absorption. Two-nucleon absorption terms
were also included.

The present formulation differs fundamentally from these
previous RMF calculations in that we use a K− nuclear poten-
tial VK− given by Eq. (2) in terms of energy and density depen-
dent in-medium K−N scattering amplitudes FK−N ( �p,

√
s, ρ)

TABLE III. Values of a “microscopic” p-wave amplitude cm
0 =

(3/2)cK−p [see Eq. (20)] to be compared with the empirical c0 of
Table II.

ρ/ρ0
√

s (MeV) Re cm
0 (fm3) Im cm

0 (fm3)

0 1432 −0.09 0.08
0.25 1420 −0.12 0.12
0.50 1404 −0.16 0.25
0.75 1392 −0.06 0.44
1.00 1382 0.10 0.49
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generated from a well-defined coupled-channel chiral model.
The momentum dependence of FK−N was transformed into
energy and density dependence using Eq. (6). The in-medium
KG dispersion relation (14) leads to a bound-state KG equation
satisfied by the K− wave function which is written here in the
form[

∇2 + ω2
K − m2

K + 4π

√
s

mN

FK−N (
√

s, ρ)ρ

]
ψ = 0, (21)

where

ωK = mK − BK − Vc , (22)

BK = BK + i�K/2 and
√

s is given by Eq. (7) which now also
includes the substitution

√
s → √

s − Vc:

√
s ≈ Eth − BN − ξN (BK + Vc) − 15.1

(
ρ

ρ0

)2/3

+ ξKRe VK− (ρ). (23)

Equation (21) differs from the K− atom equation (15) by
A−1 correction terms. Since BK and VK− (ρ) appear through
Eq. (23) in the argument

√
s of FK−N (the latter is essentially

VK− ), it suggests a self-consistency scheme in terms of both
BK and VK− (ρ) for solving the KG equation (21). In order
to study the effect of energy and density dependencies of the
argument

√
s of the chiral K−N scattering amplitude FK−N ,

we first solved the KG equation in a static approximation,
switching off the RMF self-consistency cycle that accounts
for the modification of the nuclear density by the strongly
bound K− meson and its effect on the binding energy BK .
Self-consistency with respect to BK and VK− (ρ), however,
remained operative in the static approximation. Realistic
RMF density distributions ρ(r) of the core nuclei were
employed.

In Table IV, we list binding energies BK and widths
�K of 1s K− nuclear quasibound states obtained by solv-
ing Eq. (21) self-consistently in several nuclei across the
periodic table, using in-medium “no SE” and “+SE” TW1
subthreshold amplitudes with argument

√
s given by Eq. (23)

(denoted “
√

s” in the table). These values of BK and �K

are compared to those calculated using threshold amplitudes
without undergoing self consistency cycles (denoted “Eth” in
the table). The table illustrates the peculiar role of energy
dependence of the K̄N scattering amplitudes. In the “no
SE” case, when the in-medium effects consist only of Pauli
blocking, the self-consistent calculations with subthreshold
amplitudes yield lower BK values compared to those calculated
using threshold amplitudes. In contrast, in the “+SE” case,
when hadron in-medium self-energies are included, the self-
consistent calculations with subthreshold amplitudes yield
considerably higher BK values compared to those calculated
using threshold amplitudes (in which case the 1s state in
12C is even unbound). It is worth noting that the self-
consistent calculations of BK give very similar results in the
“+SE” version to those in the “no SE” version, as could
be anticipated from the deep-subthreshold portion of the
scattering amplitudes shown in Fig. 1. These BK values are
also remarkably close to those calculated within a static RMF
approach for nucleons and antikaons, when the K− nucleus

TABLE IV. Binding energies BK and widths �K (in MeV) of 1s

K− nuclear quasibound states in several nuclei, calculated using static
RMF nuclear densities in Eq. (21) and TW1 chiral amplitudes with (i)√

s = Eth and (ii)
√

s from Eq. (23), in both in-medium versions “no
SE” and “+SE.” K−NN → YN decay modes are excluded. Results
of static RMF calculations of BK , with a K− nuclear interaction
mediated by vector mesons only, are shown for comparison in the
last row.

12C 16O 40Ca 90Zr 208Pb

Eth, no SE BK 61.1 57.5 83.4 96.0 104.8
�K 149.1 135.9 150.7 151.2 143.9√

s, no SE BK 40.9 42.4 58.5 69.5 77.6
�K 29.4 30.8 23.6 22.4 22.0

Eth, +SE BK (−0.9) 6.4 25.0 39.0 53.4
�K (137.6) 120.2 141.8 141.0 129.1√

s, +SE BK 42.4 44.9 58.8 68.9 76.3
�K 16.5 16.2 12.0 11.5 11.3

V RMF
K− BK 49.1 47.7 60.5 69.6 76.8

interaction is mediated exclusively by vector mesons with
purely vector SU(3) F-type couplings, as shown in the last
row of Table IV.

The calculated widths displayed in Table IV represent only
K−N → πY decays, accounted for by the coupled-channel
chiral model. The widths are very large in both “no SE” and
“+SE” in-medium versions when using threshold amplitudes,
and are considerably smaller in the self-consistent calculations
using subthreshold amplitudes owing to the proximity of the
π� thresholds. In this case the “+SE” widths are about half of
the “no SE” widths and approximately 10% of those calculated
using threshold amplitudes.

The sensitivity of the calculated K− binding energies and
widths to the specific form of the in-medium subthreshold
extrapolation of

√
s is demonstrated in Fig. 7. Here, 1s states

in several nuclei are calculated self-consistently in the “no SE”
version within the TW1 model for

√
s = Eth − BK (dotted

line),
√

s = Eth − BK − Vc (dashed line),
√

s of Eq. (23) (dot-
dashed line), and for the latter

√
s choice also in the “SE”

version (full line). To lead the eye, each of the four lines
connects (BK,�K ) values in different core nuclei using one of
the above forms for

√
s. It is seen that the specific form chosen

to extrapolate
√

s has a relatively small effect on the binding
energies BK , which vary within 5 MeV for a particular nucleus.
In contrast, the widths are reduced significantly from about
55 ± 10 MeV to 14 ± 3 MeV, when

√
s is shifted further below

threshold and the “SE” version which incorporates in-medium
hadron self-energies is applied.

Figure 8 illustrates the model dependence of K− nuclear
quasibound state calculations by showing binding energies and
widths of 1s states in several nuclei calculated self-consistently
by applying the subthreshold extrapolation

√
s = Eth − BK −

Vc [30] to the TW1 and CS30 in-medium “no SE” amplitudes.
It is seen that the K− binding energies are more sensitive to
the applied chiral model than to the form of subthreshold

√
s

extrapolation exhibited in Fig. 7. However, the difference in
widths for a given nucleus is comparable to the differences due
to the various forms of subthreshold

√
s extrapolation shown
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FIG. 7. (Color online) Binding energies BK and widths �K

(in MeV) of 1s K− nuclear quasibound states, calculated by
applying self-consistently several prescriptions of subthreshold

√
s

extrapolation with static RMF nuclear densities to in-medium TW1
amplitudes (“no SE” unless specified “+SE”). K−NN → YN decay
modes are excluded.

there. The CS30 model produces higher binding energies
and lower values of widths than in the TW1 model, with
a difference of approximately 10 MeV. This systematics is
explained by the stronger downward energy shift induced in
CS30 with respect to TW1.

Effects of including a p-wave K̄N interaction assigned
to the �(1385) subthreshold resonance are demonstrated in
Table V within the “no SE” in-medium version of TW1 chiral
amplitudes, for two subthreshold

√
s extrapolations: [WH]

denotes the form
√

s = Eth − BK − Vc which was applied
by Weise and Härtle [30] self-consistently to chiral K̄N

amplitudes within a local density approximation to calculate
K− nuclear 1s quasibound states in 16O and 208Pb; and

√
s

corresponds to the energy argument of Eq. (23). For the
p-wave amplitude we adopted the parametrization (20) from
Ref. [30], used also in the previous section on kaonic atoms.
The calculated binding energies and widths result from a
delicate interplay between the energy dependent s-wave and
p-wave amplitudes. The effect of p waves is more pronounced
in light nuclei where surface contributions are relatively more
important, and it decreases with increasing size of the nucleus.
The p-wave interaction leads to larger (smaller) widths in the
[WH] (

√
s) version and increases the K− binding energies,

with the exception of 12C and 16O in the [WH] subthreshold
extrapolation where the substantially increased absorption acts
repulsively to reduce BK .

Table VI presents binding energies and widths of 1s

K− nuclear quasibound states in several nuclei across the
periodic table, calculated self-consistently within in-medium
versions of CS30 chiral amplitudes. The first two sequences
denoted [WH] and

√
s illustrate the role of subthreshold
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FIG. 8. (Color online) Binding energies BK and widths �K (in
MeV) of 1s K− nuclear quasibound states, calculated by applying
self-consistently the subthreshold extrapolation

√
s = Eth − BK −

Vc [30] with static RMF nuclear densities to the TW1 and CS30
in-medium “no SE” amplitudes. K−NN → YN decay modes are
excluded.

√
s extrapolation which affects particularly the widths �K ,

in a similar pattern to that already shown for the TW1
model in Table V. The next three sequences exhibit the
effects of successively sophisticating the calculations: first, the
in-medium “no SE” amplitudes are dressed by self-energies
(denoted “+SE”), bringing the calculated widths further
down (and marginally so the binding energies); then, the
calculations are made dynamical (denoted “+dyn.”) taking
into account the polarization of the nuclear core by the strongly
bound K−, which produces higher binding energies BK and
smaller widths �K ; and last, energy dependent imaginary
ρ2 terms are added self-consistently to simulate two-nucleon
K−NN → YN absorption modes (denoted “+2N abs.”) and
their available phase space [3,9]. Whereas the binding energies

TABLE V. Binding energies BK and widths �K (in MeV) of
1s K− nuclear quasibound states in several nuclei, calculated self-
consistently using static RMF nuclear densities and the in-medium
“no SE” version of TW1 chiral amplitudes with (i)

√
s = Eth − BK −

Vc and (ii)
√

s from Eq. (23), without and with p-wave amplitudes.
K−NN → YN decay modes are excluded.

12C 16O 40Ca 90Zr 208Pb

WH BK 44.8 45.5 64.1 75.3 82.8
�K 63.4 59.4 51.7 46.6 43.8

[WH], +p wave BK 39.7 43.7 69.1 79.9 87.2
�K 85.6 73.6 55.5 46.7 44.3√

s BK 40.9 42.4 58.5 69.5 77.6
�K 29.4 30.8 23.6 22.4 22.0√

s, +p wave BK 46.0 46.0 60.8 71.5 79.4
�K 27.5 29.6 22.4 21.3 21.0
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TABLE VI. Binding energies BK and widths �K (in MeV) of
1s K− nuclear quasibound states in several nuclei, calculated self-
consistently using in-medium CS30 chiral amplitudes in the ‘no SE’
version (first two sequences) and in the “+SE” version (last three
sequences) for various subthreshold

√
s extrapolations marked as in

Table V. A combined nucleons+antikaon RMF scheme is applied
dynamically in the last two sequences, and K−NN → YN decay
modes are included in the last sequence (“+2N abs.”).

12C 16O 40Ca 90Zr 208Pb

WH BK 58.4 58.2 77.0 86.7 95.8
�K 52.6 49.8 33.8 33.8 32.8√

s BK 52.0 53.0 69.7 81.5 89.6
�K 19.6 21.6 14.4 13.6 14.0

+SE BK 50.7 52.5 68.2 79.3 86.6
�K 13.0 12.8 10.9 11.0 10.9

+dyn. BK 55.7 56.0 70.2 80.5 87.0
�K 12.3 12.1 10.8 10.9 10.8

+2N abs. BK 54.0 55.1 67.6 79.6 86.3
�K 44.9 53.3 65.3 48.7 47.3

decrease insignificantly, the resulting widths of order �K ∼
50 MeV become comparable in light nuclei to the binding
energies BK .

VI. CONCLUSION

In this work we have used several versions of in-medium
K̄N scattering amplitudes constructed in a chirally motivated
coupled channel separable potential model to derive self-
consistently the K− nuclear potential for several bound state
applications. The K̄N scattering amplitudes exhibit, invari-
ably, a strong energy and density dependence below threshold,
which reflects the dominant effect of the �(1405) subthreshold
resonance. This is precisely the energy region relevant for the
self consistent construction of VK− for kaonic atoms and for
K− nuclear quasibound state calculations. It was found that
kaonic atoms probe K̄N c.m. energies typically 30–50 MeV
below threshold whereas K− nuclear 1s quasibound states
reach considerably lower K̄N subthreshold energies. Thus,
the chiral model versions used in the present work produced
potential depths in the range −Re V chiral

K− (ρ0) ∼ 80–90 MeV in
kaonic atoms, and somewhat deeper potentials of depths 100–
110 MeV for K− nuclear quasibound states. By comparing the
size and shape of our subthreshold K̄N scattering amplitudes
with those of other chiral models, as discussed for example
in Ref. [28], we expect these results to hold generally in any
coupled-channel chiral model constrained by low energy K−p

data once our self-consistency construction is applied. The
density dependence of the resulting kaonic atom potentials
is such that by adding adjustable phenomenological terms
to be determined by fits to the data, the real part of the
potential becomes twice as deep and the imaginary part
about three times as deep due to a ρ2-dominated complex
term which could represent K̄NN → YN dispersive and
absorptive modifications. These substantial modifications at
full nuclear density represent extrapolations from the nuclear
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FIG. 9. Pole movements on the complex energy manifold due
to the increased effect of Pauli blocking in model TW1. I = 0 pole
trajectories are marked by full lines, I = 1 pole trajectories by dashed
lines. Pole positions in free space are encircled and the bullets mark
pole positions for ρ = xρ0 for increments of x between 0 to 1, see
text for more details. The solid triangles denote the K−p and K0n

thresholds.

surface region to which kaonic atoms are mostly sensitive and
where such modifications appear more modest. More work is
needed to explain the origin and test the existence of the sizable
ρ2 term. Finally, the effects of a p-wave interaction generated
by the �(1385) subthreshold resonance are found secondary
to the effects of the s-wave interaction which is dominated by
the �(1405) subthreshold resonance.
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APPENDIX: IN-MEDIUM POLE TRAJECTORIES

The observed properties of in-medium K̄N interaction
may be related to the dynamics of the �(1405) resonance in
the nuclear medium. This is demonstrated for model TW1
in Fig. 9 which shows the motion in the complex energy
plane of poles related to the π� and K̄N channels upon
increasing the nuclear density, including Pauli blocking but
disregarding self-energy insertions. The lower half of the
energy plane, below the real axis, corresponds to the [−,+]
Riemann sheet standardly referred to as the second Riemann
sheet and accessed from the physical region by crossing the
real energy axis in between the π� and K̄N thresholds. The
upper half of the energy plane (above the real axis) shows
the [+,−] Riemann sheet, the third Riemann sheet, which
does not allow for K̄N quasibound interpretation of poles
located therein. The pole trajectories shown in the figure were
calculated from the free-space pole positions (encircled dots)
up to the pole positions at full nuclear density ρ0. In addition
to the two I = 0 poles listed and discussed in Table I of the
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main text, each of the decoupled π� and K̄N channels also
exhibits an I = 1 pole, the one related to K̄N developing into
a resonance residing on the [+,−] Riemann sheet and another
one related to a π� state residing on the [−,+] Riemann sheet.
While the I = 1 pole related to π� lies too far from the real
energy axis to affect any physical observable, the one related to
K̄N is responsible for the peak structure in the real part of the
K−n amplitude near threshold. However, the Riemann sheet
location of this pole denies it of any quasibound interpretation.
The I = 1 poles persist also in the more involved NLO chiral
models discussed in Ref. [20].

As expected, the nuclear medium has no significant impact
on the position of poles related to the π� channel. On the

other hand, both poles related to the K̄N channel move to
considerably higher energies as the density increases. The I =
0 K̄N pole that affects most the K̄N scattering amplitude
moves as high as about 1475 MeV, almost reaching the real
energy axis. Since the pole is relatively far from the physical
region due to the K̄N branch cut, the scattering amplitude
exhibits a cusp instead of a proper resonance structure (see
the dot-dashed line in Fig. 1 of the main text). When kaon
self-energy is implemented the pole moves back below the
K̄N threshold, residing now in the [+,−] Riemann sheet.
Since it remains relatively far from the physical region, one
again gets a cusp structure as exhibited by the solid line in
Fig. 1.
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