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Strong decay of low-lying S11 and D13 nucleon resonances to pseudoscalar mesons and octet baryons
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Partial decay widths of lowest-lying nucleon resonances S11(1535), S11(1650), D13(1520), and D13(1700) to
the pseudoscalar mesons and octet baryons are studied within a chiral constituent quark model. Effects of the
configurations mixing between the states |N2

8 PM〉 and |N 4
8 PM〉 are considered, taking into account SU(6) ⊗ O(3)

breaking effects. In addition, possible contributions of the strangeness components in the S11 resonances are
investigated. Experimental data for the partial decay widths of the S11 and D13 resonances are well reproduced.
Contributions from five-quark components in the S11 resonances are found crucial in reproducing the partial
widths. Predictions for coupling constants of the four nucleon resonances to pseudoscalar mesons and octet
baryons, crucial issues in the photo- and hadron-induced meson production reactions, are reported.
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I. INTRODUCTION

Production of mesons with hidden or open strangeness via
electromagnetic or hadronic probes, in the baryon resonance
energy range, is subject to extensive experimental and the-
oretical investigations. In this realm, partial decay widths of
resonances to meson-baryon final states, as well as the relevant
coupling constants, are crucial, but not well enough known [1],
ingredients in our understanding of the reaction mechanisms
and also of the nature of those resonances. Phenomenological
approaches, dealing with the above ingredients, arise mainly
from two families of formalisms: effective Lagrangians based
on meson-baryon degrees of freedom [2–30] and QCD
based/inspired models [31–46].

Among the low-lying nucleon excitations, the S11(1535)
resonance plays a special role due to its large ηN decay
width [1], though its mass is very close to the threshold
of the decay. Moreover, in the KY production reactions the
importance of the S11(1650) is well established. For the two
other first orbitally excited (quark model prediction) nucleon
resonances, D13(1520) and D13(1700), the couplings to the
pseudoscalar meson and octet baryons seem to be rather
weak, but the first one is known to intervene significantly
in polarization asymmetries.

The observables of interest in this paper are partial decay
widths. Experimental values are available [1] for all four
resonances’ decay to πN and ηN final states, as well
as for the S11(1650) and D13(1700) resonances to K�,
although with rather large uncertainties. However, in spite
of extensive studies mentioned above, to our knowledge no
single formalism has reproduced simultaneously those partial
widths. The only exception here is a very recent comprehensive
study [46] based on the 1/NC expansion approach. In addition
to the fact that a large number of investigations concentrate on
the S11 resonances, recent copious photoproduction data have
not yet been fully exploited by sophisticated coupled-channels
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phenomenological approaches. The main motivation of the
present work is then to study those partial decay widths within
a QCD inspired formalism and shed light on the structure of
those baryons.

The theoretical frame of the present work is based on a
chiral constituent quark model (χCQM), complemented with
the SU(6) ⊗ O(3) symmetry-breaking effects. The outcomes
of those formalisms are compared to the known [1] partial de-
cay widths of the above-mentioned resonances. This approach
gives satisfactory results for the D13 resonances but misses
partly the data for S11.

Attempting to alleviate the observed theoretical and ex-
perimental discrepancies, the χCQM is subsequently com-
plemented with including contributions from higher Fock
components, namely five-quark configurations. Actually, sev-
eral authors [47–54] have shown that contributions from the
five-quark components are quite significant in describing
the properties of baryons and their electromagnetic and
strong decays, especially contributions from the qqqqq̄ →
M(γ ) + qqq transitions. For recent reviews on five-quark
components in baryons; see Refs. [55–57].

The extended χCQM allows us to reproduce the known
partial decay widths for both S11 resonances. Following the
successful results obtained for low-lying baryon resonances,
we put forward predictions for the coupling constants of those
resonances to seven meson-baryon final states, i.e., π0p, π+n,
ηp, K+�, K0�+, K+�0, η′p.

The present manuscript is organized in the following way:
In Sec. II, we present the theoretical formalism which includes
the wave functions, strong decays, and the resulting transition
amplitudes for the nucleon resonances S11(1535), S11(1650),
D13(1520), and D13(1700) to the pseudoscalar mesons and
octet baryons. Numerical results are given in Sec. III and,
finally, Sec. IV contains a summary and conclusions.

II. THEORETICAL FORMALISM

In Sec. II A, we present the wave functions of the nucleon
resonances S11(1535), S11(1650), D13(1520), and D13(1700).
Section II B embodies a brief review of the formalism for the
strong decay of the baryon resonances to meson-baryon in a
χCQM, where we derive transition coupling amplitudes for
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the above four nucleon resonances to the πN , ηN , K�, K�,
and η′N channels.

A. Wave functions

In the χCQM, complemented with five-quark components,
a baryon is a superposition of a three- and five-quark mixture
and the wave function can be written as

|B〉 = A3|qqq〉 + A5|qqqqq̄〉, (1)

with A3 and A5 the probability amplitudes for the correspond-
ing qqq and qqqqq̄ states, respectively.

For the three-quark components, we employ the wave
functions in traditional three-quark χCQM. In the SU(6) ⊗
O(3) conserved case, the general form for the wave functions
of the octet baryons, the N (2

8PM )S− and N (4
8PM )S− states, can

be expressed as∣∣B(2
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where |B〉ρ(λ) denotes the mixed symmetric flavor wave
function of the three-quark system for the corresponding
baryon and | 1

2 , sz〉ρ(λ) and | 3
2 , sz〉 are the mixed symmetric

and symmetric spin wave functions of the three-quark system,
respectively. ϕNlm(�λ, �ρ) is the harmonic oscillator basis orbital
wave function for the three quarks with the subscripts Nlm

being the corresponding quantum numbers. Finally, C
SSz

1m,ssz

are the Clebsch-Gordan coefficients for the coupling of the
orbital and spin of the three-quark system to form a baryon
state with spin S and z-component Sz. The explicit forms for
all of the above flavor, spin, and orbital wave functions can be
found in Ref. [54].

Taking into account the breakdown of SU(6) ⊗ O(3) sym-
metry due to either the color-magnetic [58] or flavor-magnetic
[59] hyperfine interactions between the quarks, one can express
the wave functions of the S11 and D13 resonances in terms of the
given N (2

8PM )S− and N (4
8PM )S− wave functions, Eqs. (3) and

(4), by introducing the configuration mixing angles θS and θD
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For the octet baryons, other than the lowest-lying S11 and
D13, the configuration mixing effects are not so significant.
So, for those baryons we take the wave functions within the
exact SU(6) ⊗ O(3) symmetry.

For the five-quark components of S11(1535), we use the
wave functions given in Ref. [53],

ψt,s =
∑
a,b,c

∑
Y,y,Tz,tz

∑
Sz,sz

C
[14]
[31]a [211]a

C
[31]a
[F ]b[S]c

[F ]b,Y,Tz
[S]c,Sz

× [211; C]a(Y, T , Tz, y, t̄ , tz|1, 1/2, t)

× (S, Sz, 1/2, sz|1/2, s)χ̄y,tz ξ̄sz
ϕ[5]. (7)

In fact, this general wave function is appropriate for the five-
quark components in all the low-lying nucleon resonances
with Sp = 1

2
−

, albeit with different probabilities for five-quark
components.

As reported in Ref. [53], there are five different flavor-spin
configurations which may form five-quark components in the
resonances with negative parity. If the hyperfine interaction
between the quarks is assumed to depend on flavor and spin,
the energy of the second and third configurations should be
about 80 and 200 MeV higher than the first configuration,
respectively. Since S11(1535) and S11(1650) are the first two
orbital excitations of the nucleon with spin 1/2, the config-
urations with low energies, namely the first two five-quark
configurations should be the most appropriate ones to form
higher Fock components in those two resonances. Moreover,
the contribution of the second five-quark configuration is very
similar to that of the first one, because of the same flavor
structure, which rules out the five-quark components with light
quark and antiquark pairs in the S11 resonances. Actually, the
transition elements between all five five-quark configurations
and the octet baryons differ just by constant factors. Therefore,
the contributions from all five configurations are similar,
albeit with appropriate probability amplitudes. Consequently,
the first configuration is enough for us to study the strong
decays of S11(1535) and S11(1650). The wave functions for
the five-quark components in S11(1535) and S11(1650) then
reduce to the following form:

ψ5q =
∑
abc

C
[14]
[31]a [211]a

C
[31]a
[211]b[22]c

[4]X[211]F (b)[22]S(c)

×[211]C(a)χ̄sz
ϕ({�ξi}), (8)

the explicit form of which is given in Ref. [52].
Following Eq. (5), the introduction of five-quark wave

functions leads to

|S11(1535)〉 = A3
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The probability amplitude for the five-quark component in a
baryon can be related to the coupling 5q〈V̂cou〉3q between the
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qqq and qqqqq̄ configurations in the corresponding baryon

A5q = 5q〈V̂cou〉3q

M − E5
, (11)

with E5 the energy of the five-quark component. Given that
the resonances considered here have negative parity, all of
the quarks and antiquark in the five-quark system should be
in their ground states. Hence, we can take V̂cou to be of the
following form:

V̂cou = 3V (r34)
σ̂3 · �p3

2m3
χ45

00 C45
00F 45

00 ϕ00( �p4 − �p5)b†4( �p4)d†
5( �p5),

(12)

where χ45
00 , C45

00 , F 45
00 , and ϕ00( �p4 − �p5) denote the spin, flavor,

color, and orbital singlets of the quark and antiquark pair,
respectively, and b

†
4( �p4) and d

†
5( �p5) are the creation operators

for a quark and antiquark pair with momentum �p4 and �p5,
respectively. V (r34) is the coupling potential which depends
on the relative coordinate |�r3 − �r4|. We then obtain
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= sinθS − 1
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2 sinθS

MS11(1535) − E5

MS11(1650) − E5
. (14)

Here we emphasize that the considered D13 resonances
are not relevant for five-quark components issues. Actually,
all of the quarks and antiquark should be in their ground
states (lowest energy) to form the negative parity. The spin
configuration of the four-quark subsystem then is limited
to be [31]S , for which the total spin of the four-quark
subsystems is S = 1, in order to combine with the antiquark
to form the required total spin 3/2. For the configurations
with spin [31]S , the flavor-spin overlap factors between such
five-quark configurations and the D13 states vanish. Therefore,

the probabilities for these five-quark components in the D13

resonances are 0. Some additional five-quark configurations,
other than those given in Ref. [53], could also be considered,
for instance, the configurations with the antiquark orbitally
excited (lq̄ = 2, 4 · · ·), the ones in which the four-quark
subsystem with spin symmetry [4]S (S4 = 2), or the ones given
in Ref. [49] with the four quark subsystem orbital symmetry
[31]X and orbital momentum L4 = 2, 4 · · ·. However, all those
configurations have very high energies, far away from the
lowest-lying D13 resonances masses.

Finally, we do not consider the five-quark components in
the ground states of octet baryons in this manuscript, because,
on the one hand, their probabilities in the baryons are very
small [48,60] and, on the other hand, their contributions to
electromagnetic and strong decays of nucleon resonances are
negligible [52]. Actually, the five-quark configurations in the
ground states of octet baryons cannot transit to three-quark
components of the first orbitally excited baryon resonances
due to the vanishing flavor-spin overlap factors.

B. Formalism for strong decay

It is well known that the pseudoscalar meson-quark cou-
pling, in the tree level approximation, takes the form

HM =
∑

j

g
q

A

2fM

ψ̄jγ
j
μγ

j

5 ψj∂
μφM, (15)

where ψj and φM are the quark and pseudoscalar fields,
respectively, and g

q

A is the axial coupling constant for the
constituent quarks, the value of which is in the range 0.7–1.26
[3,61,62]. fM denotes the decay constant of the corresponding
meson; the empirical values for the decay constants of π ,
K , η, and η′ are fπ = 93 MeV, fK = 113 MeV, fη = 1.2fπ ,
fη′ = −0.58fπ .

In the framework of the nonrelativistic qqq quark model,
the coupling, Eq. (15), takes the following form:

H
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)
X

j

M exp{−i�kM · �rj } , (16)

where �kM and ωM are the three-momentum and energy
of the final meson, �Pi(f ) and Mi(f ) denote the mass and
three-momentum of the initial (final) baryon, �pj and �rj the
three-momentum and coordinate of the j th quark, and μ

is the reduced mass of the initial and final j th quark which emits
the meson. Finally, Xj

M is the flavor operator for emission of the
meson from the corresponding j th quark, given by following
expressions:

X
j
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3, X
j

π± = ∓ 1√
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)
, (17)

Xj
η = cosθλ

j

8 − sinθ

√
2

3
I, X

j

η′ = sinθλ
j

8 + cosθ

√
2

3
I,

where λ
j

i are the SU(3) Gell-Mann matrices, and I is the unit
operator in the SU (3) flavor space, and θ denotes the mixing
angle between η1 and η8, leading to the physical η and η′

η = η8cosθ − η1sinθ, (18)

η′ = η8sinθ + η1cosθ, (19)

where θ = −23◦ [63].
Taking into account the five-quark components in the

resonances, we have to calculate the transition coupling
amplitudes for qqqqq̄ → qqq + M . The reduced form of the
coupling in Eq. (15) reads

H
NR(5)
M =

∑
j

g
q

A

2fM

C
j

XFSC(mi + mf )χ̄ †
z

(
1 0
0 1

)
χj

z X
j

M

× exp{−i�kM · �rj }, (20)
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FIG. 1. Strangeness component transit in the S11 resonances to
ηp or η′p (a), K+� or K+�0 (b), and K0�+ (c).

where mi and mf denote the constituent masses of the
quark and antiquark which combine to form a pseudoscalar
meson and C

j

XFSC denotes the overlap between the three-quark
configuration of the final baryon and the residual orbital-flavor-
spin-color configuration of the three-quark system that is left in
the initial qqqqq̄ after the combination of the j th quark with the
antiquark into a final meson. The transitions qqqss̄ → B + M

scheme is shown in Fig. 1. where three quarks of the five-quark
system go as spectators to form the final three-quark baryon,
and the fourth quark gets combined with the strange antiquark
to form a meson: K , η, or η′.

The transition coupling amplitude for a resonance to a
pseudoscalar meson and a octet baryon then is obtained by
calculating the following matrix element:

T MB = 〈
B

(2
8SS

)
1
2

+
∣∣(H NR(3)

M + H
(5)
M

)|N∗〉 ≡ T MB
3 + T MB

5 ,

(21)

the resulting transition coupling amplitudes T MB
3 and T MB

5
for the S11 and D13 resonances to π0p, π+n, ηp, K+�,
K0�+, K+�0, and η

′
p channels are shown in Tables I

and II, respectively. Notice that (Table I), within the exact
SU(6) ⊗ O(3) symmetry, the matrix elements for transition
N (4

8PM )S− → K� vanish, and, hence, the decay widths of
S11(1650) and D13(1700) to K� are null. Moreover, the
transition elements for 5q → MB do not vanish when kM = 0,
and it may enhance or depress the transitions S11 → MB

significantly near the meson-baryon threshold (Table II).
Finally, the strangeness component does not transit to π0p,
since the matrix element of the flavor operator X

j

π0 between
the ss̄ pair is 0.

To obtain the relevant expressions for partial decay widths,
we take the Lagrangian for N∗MB coupling in the hadronic
level to be of the following form:

LS11BM = −igS11BMψ̄BφMψS11 + H.c., (22)

LD13BM = 1

mM

gD13BMψ̄B∂μφMψ
μ

D13
+ H.c., (23)

where ψ̄B and ψS11 denote the Dirac spinor fields for the final
baryon and the S11 resonances, respectively, and φM is the
scalar field for the final meson.

For the D13 resonances, with spin 3/2, we employ the
Rarita-Schwinger vector-spinor fields ψ

μ

D13
[64,65], which are

TABLE I. Transition coupling amplitudes T MB
3 for the low-lying S11 and D13 resonances to meson-baryon final states. Note that the

full amplitudes are obtained by multiplying each term by the following expressions:
g

q
A

2fM
ω3[(aM − bM

3 )
k2
M

ω2
3

− 3bM ] exp{− k2
M

6ω2
3
} for S11 and
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3 )
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M

6ω2
3
} for D13 resonances. Here, ω3 is the harmonic oscillator parameter for the three-quark components aM = 1 + ωM

Ef +Mf

and bM = ωM

2μ
.
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√
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) √
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√
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) √
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√
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3
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√
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√
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1
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√
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)
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TABLE II. Transition coupling amplitudes T MB
5 . Note that the full amplitudes are obtained by multiplying each term by the following

expression,
g

q
A

2fM
C35 exp{− 3k2

M

20ω2
5
}, with C35 related to the harmonic oscillator parameter for the three- and five-quark components as C35 =

( 2ω3ω5
ω2

3+ω2
5
)3.

π 0p π+n ηp K+� K0�+ K+�0 η′p

0 0 2√
3
ms(2cos|θ + √

2sinθ ) 1√
3
(m + ms)

√
2(m + ms) −(m + ms) 2√

3
ms(2sinθ − √

2cosθ )

defined as

ψ
μ

D13
(Sz) =

∑
ms

C
3
2 Sz

1m, 1
2 s

εμ
mus. (24)

One can directly obtain the transition coupling amplitudes
for N∗ → MB in the hadronic level using the Lagrangian,
Eq. (23). Then, the coupling constants gN∗MB are extracted
by comparing the transition coupling amplitudes T MB in the
quark model to those in the hadronic model.

With the resulting coupling constants, the strong decay
widths for the S11 and D13 resonances to the pseudoscalar
meson and octet baryon read

�S11→MB = 1

4π
g2

S11MB

Ef + Mf

Mi

|�kM | , (25)

�D13→MB = 1

12π

1

m2
M

g2
D13MB

Ef − Mf

Mi

|�kM |3 . (26)

Note that in the center-of-mass frame of the initial reso-
nance, �Pi = 0, �kM , and Ef can be related to the masses of the
initial and final hadrons as

|�kM | = | �Pf |=
√[

M2
i − (Mf + mM )2

][
M2

i − (Mf − mM )2
]

2Mi

,

(27)

Ef =
√

|�kM |2 + M2
f = M2

i − m2
M + M2

f

2Mi

. (28)

For decay channels with thresholds above the mass of the
initial resonance, off-shell effects are taken into account by
putting |�kM | = 0 and introducing the form factor [4]

F = �4

�4 + (
q2

N∗ − M2
N∗

)2 , (29)

with the cutoff parameter � = 1 GeV and where qN∗ denotes
the threshold of the corresponding channel. In fact, this form
factor affects mainly the N∗ → η′N process, since thresholds
for all other channels are below or slightly above the masses
of the four resonances.

III. NUMERICAL RESULTS

In this section our results for partial decay widths �N∗→MB

and coupling constants gN∗MB are reported for the four inves-
tigated resonances, with MB ≡ π0p, π+n, ηp, K+�, K0�+,
K+�0, and η′p. The starting point, Sec. III A, is the standard
χCQM. In Sec. III B we introduce SU(6) ⊗ O(3) breaking
and, finally, in Sec. III C, the five-quark components are

embodied for the S11 resonances. For the partial decay widths,
we compare our results to the experimental values reported in
PDG [1] and produce predictions for yet unmeasured channels.

A. Pure qqq configuration and exact SU(6) ⊗ O(3) symmetry

Within this simplest configuration, there are three input
parameters: quarks’ masses and harmonic oscillator parameter.
For the constituent quarks’ masses, we use the traditional
qqq quark model values [31,35,59], namely m ≡ mu = md =
340 MeV and ms = 460 MeV.

The scale of the oscillator parameter, ω3, can be inferred
from the empirical radius of the proton via ω3 = 1/

√
〈r2〉,

which leads to ω3  250 MeV, for
√

〈r2〉  1 fm. However,
since the photon couples to u and d quarks through ρ and ω

mesons, the measured proton charge radius may reflect partly
the vector meson propagator [66]. Moreover, the pion cloud
has some influence on the measured proton charge radius.
Consequently, the intrinsic size of the proton still has some
model dependence, and, hence, the oscillator parameter ω3

might deviate from 250 MeV, within the range 100–400 MeV
[31,35,48,50].

Figure 2 shows the decay widths for S11(1535) → πN, ηN

(left panel) and S11(1650) → πN, ηN (right panel) as a
function of ω3. The solid and dashed curves are our results
and the horizontal lines give the bands reported in PDG [1].

The width for S11(1535) → πN (solid curve) falls in
the experimental range (dash-dotted lines) for 300 � ω3 �
340 MeV, while for S11(1535) → ηN the dashed curve and
dash-dot-dotted lines lead to 300 � ω3 � 380 MeV. Accord-

FIG. 2. (Color online) Partial decay widths of S11(1535) and
S11(1650) to πN and ηN channels as a function of the harmonic
oscillator parameter ω3. Results of the present work are depicted in
solid and dashed curves for S11 → πN and S11 → ηN , respectively,
without the SU(6) ⊗ O(3) breakdown effects. The horizontal lines
are the bands given in PDG for S11 → πN (dash-dotted line) and
S11 → ηN (dash-dot-dotted line).
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ingly, in the former range for ω3, the simple qqq configuration
allows reproducing the decay widths of S11(1535) in both πN

and ηN channels.
The situation with respect to the second S11 resonance

differs dramatically. In the whole ω3 range, the calculated
S11(1650) → πN width (solid curve) underestimates the ex-
perimental band (dash-dotted lines). For the ηN decay channel,
predicted values (dashed curve) agree with experimental
band (dash-dot-dotted lines) below ω3 ≈ 200 MeV, where
�S11(1650)→πN turns out to be vanishing. It is also worth-
while mentioning that, within exact SU(6) ⊗ O(3) symmetry,
�S11(1650)→K� = 0 and, hence, disagrees with the experimental
value [1]: 4.8 ± 0.7 MeV.

In summary, the pure qqq configuration, within exact
SU(6) ⊗ O(3), is not appropriate to describe the S11(1650)
resonance properties. Consequently, one has to consider the
SU(6) ⊗ O(3) breakdown effects.

B. Pure qqq configuration and broken SU(6) ⊗ O(3) symmetry

As discussed in Sec. II A, SU(6) ⊗ O(3) symmetry-
breaking effects can be related to the mixing angles θS and
θD . Several predictions on those angles are available (for a
recent review, see, e.g., Ref. [67]). Here we will extract ranges
for both angles and discuss them with respect to the two
most common approaches leading to SU(6) ⊗ O(3) symmetry
breaking, namely one-gluon-exchange (OGE) [31,68–72] and
one-boson-exchange (OBE) models [59]. Those approaches
have raised some controversy [73,74]. Given that both the sign
and the magnitude of the mixing angles in those approaches
differ (see, e.g., Refs. [67,75]) and that, even within a given
approach, the sign depends on the convention used [31,67]
or on the exchanged mesons included [76], in Appendix we
give values obtained within each approach in line with the de
Swart [77] convention for SU(3). In order to investigate the
sign and range for θS , in this section we report our numerical
results for partial decay widths of S11(1535) and S11(1650) to
πN and ηN as a function of ω3 for six values of θS , namely
±15◦,±30◦,±45◦, and compare them to the data ranges.

FIG. 3. (Color online) Decay widths of S11(1535) (upper panels)
and S11(1650) (lower panels) as a function of ω3, with θS taken to be
− π

4 , − π

6 , and − π

12 , respectively. The dotted curves are our results for
�S11(1650)→K�, and the other ones are as in Fig. 2.

FIG. 4. (Color online) Same as shown in Fig. 3 but with θS taken
to be π

12 , π

6 , and π

4 .

In Fig. 3 the strong decay partial widths �S11→πN and
�S11→ηN for S11(1535) (upper panel) and S11(1650) (lower
panel) are shown as a function of ω3, with negative values
for θS . Conventions for the curves are the same as in Fig. 2,
and, due to SU(6) ⊗ O(3) symmetry breaking, �S11(1650)→K�

gets nonvanishing values, depicted with dotted curves. The
experimental bands for this latter width are not shown, because
they are almost identical to those for �S11(1650)→ηN .

At all three mixing angles, our predictions for �S11(1535)→πN

and �S11(1650)→ηN fall in the experimental bands for ω3 ≈
300 MeV, while the model underestimates �S11(1535)→ηN and
�S11(1650)→πN very badly. Accordingly, within our approach,
negative values for θS lead to unacceptable results compared
to the data.

In Fig. 4 the strong decay partial widths �S11→πN and
�S11→ηN for both S11 resonances, as well as �S11(1650)→K�, are
depicted as a function of ω3 with positive values for θS . For
the S11(1535) resonance, we obtain good agreement with data
for θS = 15◦ and ω3 ≈ 300 MeV for both πN and ηN decay
widths. This is also the case at all angles for S11(1650) → πN ,
but for ω3 ≈ 350 MeV.

To go further in our investigation, we fix the harmonic
parameter at ω3 = 340 MeV and calculate partial widths and
coupling constants for two extreme positive values of the
mixing angle, θS = 15◦ and 35◦. Moreover, we extend our
study to the D13(1520) and D13(1700) resonances, with the
relevant mixing angle, also at two extreme values, θD = 0◦
and 17.5◦. Results obtained within this procedure are hereafter
referred to as model A. In Table III, we present our results for
the strong decay partial widths �πN , �ηN , and �K� for the
low-lying S11 and D13 resonances studied.

Within model A, the reduced χ2 per data point is 10.3.
However, this large value is due to S11 → ηN,K� decay
channels. It is worthwhile mentioning that for the five D13

partial decay widths, we get χ2
d.p. = 0.7. Here, �S11(1535)→πN

is well reproduced, while �S11(1535)→ηN is overestimated at
the level of 3σ and �S11(1650)→πN underestimated by roughly
2σ . For the remaining two other channels, large uncertainties
on �S11(1650)→ηN (from both experiment and the model)
and on �S11(1650)→K� (mainly the model) do not lead to
reliable conclusions. Because of those undesirable features,
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TABLE III. Strong decay partial widths (in MeV) for the S11 and D13 resonances in the three-quark model with broken SU(6) ⊗ O(3)
symmetry.

N∗ �tot πN ηN K� Ref.

S11(1535) 150 ± 25 68 ± 15 79 ± 11 PDG [1]
51 ± 21 121 ± 15 Model A

S11(1650) 165 ± 20 128 ± 29 3.8 ± 3.6 4.8 ± 0.7 PDG [1]
81 ± 22 28 ± 22 9 ± 6 Model A

D13(1520) 115 ± 15 69 ± 6 0.26 ± 0.05 PDG [1]
66 ± 7 0.19 ± 0.01 Model A
72 ± 11 0.26 ± 0.07 Jayalath et al. [46]

D13(1700) 100 ± 50 10 ± 5 0.5 ± 0.5 1.5 ± 1.5 PDG [1]
13 ± 10 0.5 ± 0.5 0.1 ± 0.1 Model A
12 ± 13 �0.15 �0.03 Jayalath et al. [46]

we postpone to the next section the discussion on results from
other sources, as well as the extraction of coupling constants.

For both D13 resonances, model A allows us to reproduce
satisfactorily enough (Table III) the known partial widths
and agrees with values obtained within the 1/NC expansion
framework [46]. Model A is, hence, appropriate to put forward
predictions for D13-meson-baryon coupling constants. In
Table IV, our predictions for �D13MB for seven meson-baryon
sets are reported. To end this section, we summarize our main
findings within a traditional qqqχCQM, complemented with
SU(6) ⊗ O(3) breakdown effects, and use the following input
values for adjustable parameters: ω3 = 340 MeV, 15◦ � θS �
35◦, and 0◦ � θD � 17.5◦.

Model A is found to be appropriate for the D13 resonances,
given that the partial decay widths show agreements with the
PDG values that range from reasonable to good . Therefore, we
do not push our studies further with respect to the D13(1520)
and D13(1700) resonances.

The main shortcomings of model A concern �S11(1535)→ηN

and the fact that, for the S11(1650) resonance, central values
for all three channels show significant discrepancies with
those reported in PDG. This latter point remains problematic
because of large uncertainties. In an attempt to alleviate these
disagreements with respect to the S11 resonances, in the next
section we consider possible contributions from higher Fock
components.

C. Mixed qqq and qqqqq̄ configuration and broken
SU(6) ⊗ O(3) symmetry

To produce numerical results, seven input parameters are
needed, the values of which are discussed below.

(i) Constituent quarks’ masses. Due to the introduction
of five-quark components, the masses to be used are
smaller than those we adopted in Sec. III A, while

dealing with pure three-quark states. In line with
Ref. [52], we take m = 290 MeV and ms = 430 MeV.

(ii) Oscillator parameters. Following the results presented
in Sec. III A, we fix the oscillator parameter at ω3 =
340 MeV. For the five-quark components, a commonly
used value for the oscillator parameter, ω5 = 600 MeV,
is adopted.

(iii) Mixing angle. In Sec. III B, we showed that to fit the
decay widths, the mixing angle should be in the range
15◦ � θS � 35◦. In the following, this angle is treated
as an adjustable parameter.

(iv) Probabilities of five-quark components. The probabili-
ties of the five-quark components in S11(1535) (P5q =
A2

5q) and S11(1650) (P ′
5q = A′2

5q) are also adjustable
parameters in our model search.

The latter three adjustable parameters have been extracted
by mapping out the whole phase space defined by 15◦ � θS �
35◦ and from 0 to 100% for five-quark probabilities in both
S11(1535) and S11(1650). The calculated observables include
the partial decay widths of both S11 resonances to πN and
ηN , as well as �S11(1650)→K�. Sets [θS, P5q, P

′
5q ] leading [78]

to decay widths within ranges reported in PDG have been
singled out. For each partial width, extreme values for those
parameters then are retained as model ranges, namely

26.8◦ � θS � 29.8◦; 21% � P5q�30%;

11% � P ′
5q�18%. (30)

The obtained model is hereafter called model B.
As an example, Fig. 5 illustrates how the known ranges for

the partial decay widths allow us to determine ranges for the
five-quark components’ probabilities. For each decay width,
intersections of the model curve with the horizontal bands
taken from PDG determine the extreme values for the relevant
five-quark probability.

TABLE IV. Coupling constants for D13 resonances to pseudoscalar meson and octet baryon within model A.

N∗ π 0p π+n ηp K+� K0�+ K+�0 η′p

D13(1520) −1.51 ± 0.07 2.13 ± 0.10 −8.33 ± 0.20 3.44 ± 0.08 0.99 ± 0.14 −0.69 ± 0.09 2.11 ± 0.05
D13(1700) −0.35 ± 0.17 0.50 ± 0.25 0.93 ± 0.91 1.43 ± 1.43 −2.80 ± 0.05 1.98 ± 0.04 1.67 ± 0.52
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FIG. 5. (Color online) Partial decay widths (in MeV) for S11

resonances as a function of five-quark components, θS = 28◦. The
curves are the same as those shown in Fig. 4.

Notice that the probability range for five-quark component
in S11(1535) given above is compatible with previous results
[52,53] obtained within χCQM approaches. The latter one [53]
puts an upper limit of P5q � 45%, based on the axial charge
study of the resonance, whereas the former one [52], dedicated
to the electromagnetic transition γ ∗N → S11(1535), reports
25% � P5q � 65%.

1. Partial decay widths �S11→M B

The resulting numerical partial decay widths, within both
models A and B, are reported in Table V and compared with the
PDG data [1] as well as with results from other authors, based
on various approaches [4,6,7,14,20,22,26,38,46]. Comparing

results of models A and B with the data for all five channels
shows clearly the superiority of model B. The χ2

d.p. is 0.15
instead of 19.9 in the case of model A.

The most striking feature here is that �S11(1535)→ηN is
nicely reproduced, which was not the case with previous
configurations, namely pure qqq without or with SU(6) ⊗
O(3) symmetry breaking. Moreover, �S11(1535)→πN agrees with
PDG values within better than 1σ . The range for �S11(1650)→πN

is significantly reduced within model B with respect to the
model A result and is compatible with the PDG value within
less than 1σ . Narrow experimental widths for �S11(1650)→ηN

and �S11(1650)→K� are well reproduced by the model B, with
uncertainties comparable to those of the data. In the following,
we proceed with comparisons with results from other sources.

The most complete set of results comes from a very recent
comprehensive study [46] of all known partial decay widths
for 16 baryon resonances within the framework of the 1/NC

expansion in the next-to-leading-order (NLO) approximation.
Results for the S11(1535) decay channels from that work and
model B are in excellent agreement. For the S11(1650), given
that the authors of Ref. [46] use branching fractions data in
PDG for ηN and K� channels, rather than the branching
ratios, we postpone the comparisons to Sec. III C3.

The Pitt-ANL [14] multichannel analysis of πN →
πN, ηN , produces rather small total widths for S11(1535)
and large one for S11(1650). Those features underes-
timate �S11(1535)→πN and �S11(1535)→ηN and overestimate
�S11(1650)→ηN . However, �S11(650)→πN comes out in agreement
with PDG and model B results.

An extensive coupled-channels analysis [4,5] studied all
available data in 2002 by use of an isobar approach for the

TABLE V. Strong decay widths (in MeV) for S11(1535) and S11(1650).

N∗ �tot πN ηN K� Approach Ref.

S11(1535) 150 ± 25 68 ± 15 79 ± 11 PDG [1]
51 ± 21 121 ± 15 Model A Present work
58 ± 5 79 ± 11 Model B Present work
57 ± 19 73 ± 44 1/NC-NLO Jayalath et al. [46]

112 ± 19 39 ± 5 57 ± 6 Coupled-channels Vrana et al. [14]
129 ± 8 46 ± 1 68 ± 1 Coupled-channels Penner-Mosel [4]

136 34.4 56.2 Coupled-channels Shyam [20]
42 ± 6 70 ± 10 PWA Arndt et al. [22]
21.3 65.7 Chiral unitary Inoue et al. [6]

95 42 51 Chiral quark model Golli et al. [38]
165 64 89 K-Matrix Ceci et al. [26]
142 71 Disp. Rel. Aznauryan [7]
195 97 Isobar Aznauryan [7]

S11(1650) 165 ± 20 128 ± 29 3.8 ± 3.6 4.8 ± 0.7 PDG [1]
81 ± 22 28 ± 22 9 ± 6 Model A Present work
143 ± 5 4.5 ± 3.0 4.8 ± 0.7 Model B Present work

202 ± 40 149 ± 4 12 ± 2 Coupled-channels Vrana et al. [14]
138 ± 7 90 ± 6 1.4 ± 0.8 3.7 ± 0.6 Coupled-channels Penner-Mosel [4]

133 71.9 2.5 Coupled-channels Shyam [20]
144 86 1.4 13 Chiral quark model Golli et al. [38]
233 149 37 K matrix Ceci et al. [26]
85 3.2 Disp. Rel. Aznauryan [7]
125 6.9 Isobar Aznauryan [7]
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following processes: γN → γN , πN , ππN , ηN , K�, K�,
ωN and πN → πN , ηN , K�, K�, ωN . That work describes
successfully four of the five decay channels, albeit with a
few tens of free parameters, with the main shortcoming being
the underestimate of �S11(1535)→πN . Interpreting the pN →
pNη data, within an effective Lagrangian approach [20],
underestimates all partial decay widths, except �S11(1650)→K�.

The latest available results from SAID [22], in 2005,
analyzing πN elastic scattering and ηN production data,
give a smaller �S11(1535)→πN with respect to PDG, which is
compatible with the PDG value for �S11(1535)→ηN .

A chiral unitary approach [6] dedicated to the S-wave
meson-baryon interactions reproduces well �S11(1535)→ηN but
underestimates �S11(1535)→πN by more than a factor of 2.

A recent chiral quark model [38], concentrating on the
meson scattering and π and η electroproduction amplitudes,
leads to a rather small total width for both resonances,
underestimating all πN and ηN partial decay widths by
roughly 2σ and overestimating �S11(1650)→K� by more than
10σ . The authors conclude, however, that the S11(1535)
resonance is dominated by a genuine three-quark state.

Results of a K-matrix approach [26] for πN and ηN final
states provide realistic values for all considered partial widths,
except for �S11(1650)→ηN . Finally, in Ref. [7], studying the ηN

final states, dispersion relations lead to values in agreement
with data, while the isobar model tends to overestimate
�S11(1535)→ηN .

The ambitious EBAC [79] program offers a powerful
frame to study the properties of baryons, including partial
decay widths [80], extraction of which requires nonambiguous
determination of the poles positions [81]; a topic under
extensive investigations [81–88].

2. Coupling constants gS11 M B

In Table VI, predictions for the relevant resonance-meson-
baryon coupling constants, gS11MB , from models A and B are
given in a particle basis.

In order to emphasize the most sensitive decay channels to
the five-quark components in S11(1535), we compare results
from models A and B. For K+�0 and K0�+, we observe
variations by a factor of 2 between the two models, with
central values differing from each other by more than 4σ .
Next are K+� and ηp, with about 30% differences and 2σ .
The other three channels (π0p, π+n, η′p) show no significant
sensitivities to the five-quark components.

In the case of S11(1650), similar sensitivities are observed.
However, the rather small branching ratios to those final

states require substantial experimental effort and sophisticated
phenomenological approaches, e.g., for γp → K0�+,K+�0.
In Table VI, results from a chiral unitary approach [6] are also
reported, showing compatible values with those of model B
for K+�0, K0�+, and ηp. For the other three channels the
two sets differ by roughly 60%.

In Table VII, predictions in an isospin basis are reported
for model B and other sources. Additional results reported in
the literature and limited to fewer channels are also discussed
below.

Within an isobar approach [23], a combined analysis [24]
of the data available in 2005 on pseudoscalar meson photopro-
duction has extracted coupling constants in an isospin basis,
with uncertanties of around ±60%. The reported couplings
gS11(1535)πN and gS11(1535)ηN are compatible with the model B
predictions within 2σ , while discrepancies between the two
approaches for gS11(1535)K� and gS11(1535)K� reach factors 3 to
4 and 4σ . For the second resonance, results from the two
calculations agree within 1σ for gS11(1650)πN , gS11(1650)ηN , and
gS11(1650)K�, with only significant disagreement observed for
gS11(1650)K� . Copious data released since then, if interpreted
within the same approach, might bring in new insights into
the coupling constants. Results from a recent SU(6) extended
chiral Lagrangian [30], embodying 11 meson-baryon final
states, are also reported in Table VII and show consistent
values between that approach and model B for gS11(1535)ηN ,
gS11(1535)K�, gS11(1535)K� , and gS11(1650)K�.

An effective Lagrangian focused on interpreting [20]
η production data in NN and πN collisions leads to
gS11(1535)ηN = 2.2 and gS11(1650)ηN = 0.55, compatible with our
values. Another effective Lagrangian approach [18] study-
ing η and η′ production data in the same reactions gives
gS11(1535)η′p = 3.7, about only 10% higher than the value given
by model B.

Here, we wish to make a few comments with respect to the
relative values of some of the coupling constants.

(i) While the ηNN coupling constant is known
to be smaller than that of πNN , the ratio
|gS11(1535)ηN/gS11(1535)πN | comes out to be significantly
larger than 1. This result is in line with the finding [43]
that, in the soft pion limit, πNN∗ coupling vanishes
due to chiral symmetry, while that of ηNN∗ remains
finite.

(ii) The ratio |gS11(1535)K�/gS11(1535)ηN | takes the value
1.3 ± 0.3, within an isobar model [8] interpreting
J/ψ → p̄pη and ψ → p̄K+� data, larger than the
results reported in Table VII. Dressed versus bare mass

TABLE VI. S11-meson-baryon coupling constants (gS11MB ) in a particle basis.

N∗ π 0p π+n ηp K+� K0�+ K+�0 η′p Ref.

S11(1535) −0.58 ± 0.13 0.82 ± 0.18 −2.57 ± 0.17 1.42 ± 0.11 0.95 ± 0.20 −0.62 ± 0.09 3.09 ± 0.20 Model A
−0.63 ± 0.03 0.89 ± 0.04 −2.07 ± 0.15 1.76 ± 0.02 1.81 ± 0.06 −1.28 ± 0.04 3.33 ± 0.10 Model B

±0.39 ±0.56 ±1.84 ±0.92 ±2.12 ±1.50 [6]
S11(1650) −0.70 ± 0.10 0.94 ± 0.19 0.84 ± 0.40 0.67 ± 0.25 −1.42 ± 0.21 0.95 ± 0.10 −1.61 ± 0.79 Model A

−0.94 ± 0.02 1.33 ± 0.03 0.35 ± 0.12 0.51 ± 0.03 −2.17 ± 0.05 1.53 ± 0.04 −1.62 ± 0.14 Model B
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TABLE VII. S11-meson-baryon coupling constants (gS11MB ) in an isospin basis.

N∗ πN ηN K� K� η′N Approach Ref.

S11(1535) −1.09 ± 0.05 −2.07 ± 0.15 1.76 ± 0.02 2.21 ± 0.07 3.3 ± 0.1 Model B Present work
±(0.62 ± 0.32) ±(0.97 ± 0.45) ±(0.55 ± 0.32) ±(0.55 ± 0.32) PWA Sarantsev et al. [24]

± 0.6 ± 2.1 ± 1.7 ± 2.4 Chiral Lagrangian Gamermann et al. [30]
S11(1650) −1.64 ± 0.03 0.35 ± 0.14 0.53 ± 0.04 −2.66 ± 0.06 −1.62 ± 0.14 Model B Present work

±(1.05 ± 0.45) ±(0.63 ± 0.32) ±(0.32 ± 0.32) ±(0.71 ± 0.39) PWA Sarantsev et al. [24]
± 1.2 ± 0.8 ± 0.6 ± 1.7 Chiral Lagrangian Gamermann et al. [30]

considerations [89], might affect the reported ratio in
Ref. [8]. Investigation of the same reaction within a
unitary chiral approach [6,27] puts that ratio around
0.5 to 0.7, smaller than our result.

(iii) The ratio |gS11(1650)K�/gS11(1650)K�| turns out to be
around 5. Actually, S11(1650) is dominant by the state
N (4

8PM ) 1
2

− , which cannot transit to K� channel. More-
over, there is a cancellation between the contributions
from qqq → K� and qqqqq̄ → K�, which leads
also to a very small decay width �S11(1650)→K�. In
addition, the threshold for S11(1650) → K� decay
channel being very close to the mass of S11(1650),
contributions from the five-quark component enhance
significantly the coupling constant gS11(1650)K� .

(iv) It is worth noting that the coupling constants
gS11ηN , gS11K� , and gS11η′N for S11(1535) and
S11(1650) have opposite signs. Moreover, the ratio
|gS11(1535)K�/gS11(1650)K� | is close to unity. These fea-
tures might lead to significant cancellations in the
interference terms in KY photo- and/or hadron-induced
productions.

(v) In Tables VI and VII, one finds the following orderings
for magnitudes of the coupling constants, predicted by
model B, and in Refs. [29,30], noted below as (a), (b),
and (c), respectively.

For S11 ≡ S11(1535)
In the particle basis:

(a) : |gS11π0p| < |gS11π+n| < |gS11K+�0 | < |gS11K+�|
≈ |gS11K0�+| < |gS11ηp| < |gS11η′p|, (31)

(b) : |gS11π0p| ≈ |gS11K+�0 | < |gS11π+n|
≈ |gS11K0�+| < |gS11ηp| < |gS11K+�|. (32)

The main feature of our result (a) is that the strongest
couplings are found the hidden strangeness sector, while those
for open strangeness channels come out in between πN and
ηN final states.

Inequalities in (b) come from a recent unitarized chiral
effective Lagrangian [29], in which both S11(1535) and
S11(1650) are dynamically generated. Within that model, the
coupling to K+�0 is highly suppressed and that to K+� turns
out to be larger than the coupling to ηp.

In the isospin basis:

(a′) : |gS11πN | < |gS11K�| < |gS11ηN | ≈ |gS11K�| < |gS11η′N |,
(33)

(c′) : |gS11πN | < |gS11K�| < |gS11ηN | ≈ |gS11K�|. (34)

Results from a chiral Lagrangian study [30], (c′), give the same
ordering for couplings as in model B. It is also the case for
results from a chiral unitary approach [6], while another chiral
unitary approach [44], distinguishing dynamically generated
resonances from genuine quark states, leads to

|gS11πN | < |gS11K�| < |gS11ηN | < |gS11K�|. (35)

For S11 ≡ S11(1650)
In the particle basis:

(a) : |gS11ηp| < |gS11K+�| < |gS11π0p| < |gS11π+n|
< |gS11K+�0 | < |gS11η′p| < |gS11K0�+|, (36)

(b) : |gS11K+�| < |gS11π0p| < |gS11π+n| ≈ |gS11K+�0 |
< |gS11ηp| < |gS11K0�+|. (37)

In our model, the ordering in strangeness sector is separated
by πN , according to the fact that the relevant disintegration
channel is above or below the resonance mass.

The main differences between the results from model B and
those in Ref. [29] concern couplings to K+� and ηp.

In the isospin basis:

(a′) : |gS11K�| < |gS11ηN | < |gS11πN | ≈ |gS11η′N | < |gS11K�|,
(38)

(c′) : |gS11ηN | � |gS11K�| < |gS11πN | < |gS11K�|. (39)

Here, again, model B and Ref. [30] lead basically to identical
orderings.

To end this section, we would like to emphasize the
following point, with respect to the importance of five-quark
components. Our model leads to the probability for the
strangeness component in S11(1650) being smaller than that
for the five-quark component in S11(1535). Moreover, the
probability amplitude turns out to be positive for S11(1535)
but negative for S11(1650).

Taking the ranges determined for probabilities [Eq. (30)],
one gets −77.4 � A5q/A

′
5q � −72.5. This latter range and

that for θS , embodied in Eq. (14), allow extracting values for
the energy of the strangeness component, 1641.60 � E5 �
1649.99 MeV. The coupling between qqq and qqqqq̄ in the
corresponding baryon 5q〈V̂cou〉3q , Eq. (14), turns out to be
negative for both S11 resonances.
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TABLE VIII. Strong decay widths (in MeV) for S11(1650).

�tot πN ηN K� Approach Ref.

165 ± 20 128 ± 29 3.8 ± 3.6 4.8 ± 0.7 BR PDG [1]
143 ± 5 4.5 ± 3.0 4.8 ± 0.7 Model B Present work
128 ± 29 10.7 ± 5.8 11.5 ± 6.6 BF PDG [1]
148 ± 8 9.7 ± 6.7 7.9 ± 0.3 Model C Present work
133 ± 33 12.5 ± 11.0 11.5 ± 6.4 1/NC-NLO Jayalath et al. [46]

3. Branching fraction versus branching ratio considerations

As mentioned earlier, in PDG [1] estimates for both branch-
ing fractions (BF) to meson-baryon states and branching
ratios (BR), (�MB/�total), are reported. In the case of the S11

resonances considered here, those estimates are not identical
for S11(1650) → ηN,K�. In the present work we have used
BR. However, a very recent work [46] has adopted BF. In order
to compare the results of this latter work with those of model B,
we have investigated the drawback of using BF instead of BR
in our approach. Accordingly, a third model, hereafter called
model C, was obtained.

Though we extract simultaneously the partial decay widths
for both S11 resonances, the above changes in the data do
not affect results for the S11(1535). In Table VIII, results
from PDG, Ref. [46] and our models B and C are given
for S11(1650). The χ2

d.p. for the three models are comparable,
namely 0.15 (model B), 0.25 (model C), and 0.19 (Ref. [46]).

Model C leads to results in agreement with the two other sets
within the uncertainties therein. Comparing models B and C,
we observe that the most sensitive width is �S11(1650)→K� and,
to a lesser extent, �S11(1650)→ηN , while �S11(1650)→πN increases
very slightly.

In Table IX, results for coupling constant from models B
and C are reported. We find, of course, the same features
as for partial decay widths. In addition, given the associated
uncertainties, it turns out that �S11(1650)→η′N and �S11(1650)→K�

change very slightly within the two models.
Those trends are also present in the coupling constants given

in particle basis (Table X).
Taking into account the associated uncertainties to the

coupling constants, model C does not significantly modify the
coupling constants ordering obtained in Sec. III C2 for model
B.

To end this section, we give the phase space defined by
model C:

24.7◦ � θS � 30.0◦; 19.8% � P5q � 31%;

3.0% � P ′
5q � 12.6%. (40)

Compared to model B, Eq. (30), the ranges for θS and P5q

increase slightly. The most significant change concerns P ′
5q ,

which goes from 11% � P ′
5q � 18 to 3% � P ′

5q � 13. This
feature shows the sensitivity of �S11(1650)→K� and, to a lesser
extent, that of �S11(1650)→ηN to the five-quark components in
S11(1650).

IV. SUMMARY AND CONCLUSIONS

Within a constituent quark approach, we studied the
properties of four low-lying baryon resonances with respect to
their partial decay widths to seven meson-baryon channels and
associated resonance-meson-baryon coupling constants. The
starting point was the simplest chiral constituent quark model
(χCQM). The second step consisted in introducing SU(6) ⊗
O(3) breaking effects. Finally, five-quark components in the
S11 resonances were implemented and investigated.

The outcome of the present work is reported below, focusing
on the considered nucleon resonances [S11(1535), S11(1650),
D13(1520), and D13(1700)] and their strong decays to πN ,
ηN , η′N , K�, and K� final states. Within the χCQM, the
only adjustable parameter (ω3) did not allow us to reproduce
the partial widths of resonances. Introducing SU(6) ⊗ O(3)
breaking, via configuration mixing angles θS and θD , brought
significant improvements with respect to the decay widths of
the D13 resonances but missed the data for the S11 resonances
partial decay widths. Nevertheless, this second step allowed
us to fix the value of ω3 and extract ranges for the mixing
angles, treated as free parameters. In an attempt to alleviate
this unsatisfactory situation, possible roles for the five-quark
component in the baryons’ wave functions were investigated.
Given that the latter issue is irrelevant with respect to the D13

resonances, the properties of which were well described in the
second step, the final phase of our study was devoted to the
S11 resonances.

We calculated the partial decay widths S11(1535) → πN ,
ηN and S11(1650) → π , ηN , K� in the whole phase space
defined by the mixing angle θS and the probability of five-quark
components in each of the two resonances. Regions of the
phase space allowing us to reproduce the data for those
widths were selected. Accordingly, that procedure allowed us
to extract ranges for partial widths, with a decay threshold
below the relevant resonance mass and resonance-meson-

TABLE IX. S11(1650)-meson-baryon coupling constants (gS11MB ) in isospin basis.

πN ηN K� K� η′N Approach Ref.

−1.64 ± 0.03 0.35 ± 0.14 0.53 ± 0.04 −2.66 ± 0.06 −1.62 ± 0.14 Model B Present work
−1.66 ± 0.05 0.55 ± 0.16 0.62 ± 0.09 −2.49 ± 0.16 −1.74 ± 0.24 Model C Present work
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TABLE X. S11(1650)-meson-baryon coupling constants (gS11MB ) in particle basis.

π 0p π+n ηp K+� K0�+ K+�0 η′p Ref.

−0.94 ± 0.02 1.33 ± 0.03 0.35 ± 0.14 0.51 ± 0.03 −2.17 ± 0.05 1.53 ± 0.04 −1.62 ± 0.14 Model B
−0.96 ± 0.03 1.36 ± 0.04 0.55 ± 0.16 0.62 ± 0.09 −2.03 ± 0.13 1.44 ± 0.09 −1.74 ± 0.24 Model C

baryon coupling constants for the following meson-baryon
combinations: π0p, π+n, ηp, K+�, K0�+, K+�0, and η′p.

The main findings of the present work are summarized
below with respect to the approaches studied in describing the
properties of the four low-lying nucleon resonances.

(i) The chiral constituent quark approach in three-quark
configuration and exact SU(6) ⊗ O(3) symmetry is
not appropriate to reproduce the known partial decay
widths.

(ii) Introducing symmetry-breaking effects due to one-
gluon-exchange mechanism allows us to account for
the partial decay width of the D13(1520) and D13(1700)
resonances but not for those of the S11 resonances.

(iii) Complementing the formalism with five-quark com-
ponents in the S11 resonances leads to satisfactory
results with respect to all known partial decay widths
investigated here.

(iv) The complete formalism puts ranges on the three ad-
justable parameters, namely the mixing angle between
configurations |N2

8 PM〉 and |N4
8 PM〉 and the five-quark

component probabilities in S11(1535) and S11(1650)
resonances.

(v) For S11(1535), the most sensitive entities to the five-
quark component turn out to be �S11(1535)→ηN , gS11K+�0 ,
gS11K0�+ , and gS11ηp, all with sizable magnitudes.

(vi) For S11(1650), the same trends as for S11(1535) are
observed. In addition, �S11(1650)→πN undergoes signif-
icant change due to the five-quark mixture. Here, the
ηN channel has a smaller width and coupling constant
compared to the S11(1535) case.

Further, interpretation of recent data, obtained using elec-
tromagnetic and/or hadronic probes, within approaches with
a reasonable number of free parameters, is very desirable.
Within the present extended χCQM approach, analysis of the
γp → ηp data is underway [90].
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APPENDIX: S11(1535) AND S11(1650) RESONANCES
MIXING ANGLE IN ONE-GLUON-EXCHANGE AND

ONE-BOSON-EXCHANGE MODELS

The mixing angle θS can be obtained by diagonalizing the
following matrix:

⎛
⎝

〈
N

(2
8PM

)
1
2

− , Sz

∣∣Hhyp

∣∣N(2
8PM

)
1
2

− , Sz

〉
,
〈
N

(2
8PM

)
1
2

− , Sz

∣∣Hhyp

∣∣N(4
8PM

)
1
2

− , Sz〉〈
N

(4
8PM

)
1
2

− , Sz

∣∣Hhyp

∣∣N(2
8PM

)
1
2

− , Sz

〉
,

〈
N

(4
8PM

)
1
2

− , Sz|hhyp

∣∣N(4
8PM

)
1
2

− , Sz

〉
⎞
⎠ , (A1)

where Hhyp is the hyperfine interaction between the quarks. In the OGE [58] and OBE models [59], the explicit forms of Hhyp are

H OGE
hyp =

∑
i<j

2αs

3mimj

[
8π

3
�Si · �Sjδ

3(�rij ) + 1

r3
ij

(
3�Si · �rij

�Sj · �rij

r2
ij

− �Si · �Sj

)]
, (A2)

H OBE
hyp =

∑
i<j

∑
F

g2

4π

1

12mimj

�λF
i · �λF

j

({
�σi · �σj

[
μ2e−μrij

rij

− 4πδ(�rij )

]}

+
(

3�σi · �rij �σj · �rij

r2
ij

− �σi · �σj

)
μ2e−μrij

rij

(
1 + 3

μrij

+ 3

μ2r2
ij

))
. (A3)

1. OGE model

The OGE hyperfine interaction leads to the following matrix
elements:〈

N
(2

8PM

)
1
2

− , Sz

∣∣H OGE
hyp

∣∣N(2
8PM

)
1
2

− , Sz

〉 = −C, (A4)
〈
N

(2
8PM

)
1
2

− , Sz

∣∣H OGE
hyp

∣∣N(2
8PM

)
1
2

− , Sz

〉 = C, (A5)
〈
N

(4
8PM

)
1
2

− , Sz

∣∣H OGE
hyp

∣∣N(2
8PM

)
1
2

− , Sz

〉 = C, (A6)

〈
N

(4
8PM

)
1
2

− , Sz

∣∣H OGE
hyp

∣∣N(4
8PM

)
1
2

− , Sz

〉 = 0, (A7)

with the constant C = 2αs

m2 ω3
3π

− 1
2 , where m and ω3 are the

light quark mass and the harmonic oscillator parameter,
respectively. We then obtain θOGE

S  32◦.
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Here a comment is in order with respect to the sign of θS .
As, reported in Ref. [67], a non ambiguous entity with respect
to that sign is the following ratio:

R =
〈N |Hm|N (4PM ) 1

2
−〉

〈N |Hm|N (2PM ) 1
2

−〉 , (A8)

with Hm the pseudovector couplings at the tree level.
The ratio R is a constant determined by SU(6) ⊗ O(3)
symmetry.

Notice that, in the present work, we have adopted
the convention introduced by Koniuk and Isgur [31], where
wave functions are in line with the SU(3) conventions of de
Swart [77]. In this frame, the constant R gets a negative
value, and the relevant mixing angle for the S wave, θS ,
turns out positive. However, in line with the Hey, Litchfield,
and Cashmore [91] analysis, Isgur and Karl, in their early
works [68,70–72], used another convention, for which R
= +1 and θS < 0. In the literature, both conventions are
being used, often without explicit mention of the utilized
convention.

2. OBE model

The OBE hyperfine interaction results in

〈
N

(2
8PM

)
1
2

− , Sz

∣∣H OBE
hyp

∣∣N(2
8PM ) 1

2
− , Sz

〉 = 5V11 − 7V00, (A9)

〈
N

(2
8PM

)
1
2

− , Sz

∣∣H OBE
hyp

∣∣N(2
8PM

)
1
2

− , Sz

〉 = −8T11, (A10)

〈
N

(4
8PM

)
1
2

− , Sz

∣∣H OBE
hyp

∣∣N(2
8PM

)
1
2

− , Sz

〉 = −8T11, (A11)

〈
N

(4
8PM

)
1
2

− , Sz

∣∣H OBE
hyp

∣∣N(4
8PM

)
1
2

− , Sz

〉 = 4V11−2V00+8T11,

(A12)

where V00, V11, and T11 are constants from the orbital integral

V00 = 〈ϕ00| g2

4π

1

12mimj

[
μ2e−μrij

rij

− 4πδ(�rij )

]
|ϕ00〉,

(A13)

V11 = 〈ϕ1m| g2

4π

1

12mimj

[
μ2e−μrij

rij

− 4πδ(�rij )

]
|ϕ1m〉,

(A14)

T11 = 〈ϕ1m| g2

4π

1

12mimj

μ2e−μrij

rij

(
1 + 3

μrij

+ 3

μ2r2
ij

)
|ϕ1m〉.

(A15)

Taking the same values for the parameters as in Ref. [59], we
obtain θS = −13◦. However, if one considers contributions
from the vector-meson exchanges, the absolute value of θS

might be decreased or the sign might change [74,76].
Relevance of the OGE versus the OBE has been

studied by several authors, see, e.g., Refs. [36,40,92,93],
favoring the OGE mechanism, and endorsed by the
present work, as the origin of the SU(6) ⊗ O(3) symmetry
breakdown.
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