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The hydrodynamical description of the “Little Bang” in heavy-ion collisions is surprisingly successful, mostly
owing to the very small viscosity of the quark-gluon plasma. In this paper we systematically study the propagation
of small perturbations, also treated hydrodynamically. We start with a number of known techniques allowing for
the analytic calculation of the propagation of small perturbations on top of the expanding fireball. The simplest
approximation is the “geometric acoustics,” which substitutes the wave equation by mechanical equations for the
propagating “phonons.” Next we turn to the case in which variables can be separated, where one can obtain not
only the eikonal phases but also the amplitudes of the perturbation. Finally, we focus on the so-called Gubser
flow, a particular conformal analytic solution for the fireball expansion, on top of which one can derive closed
equations for small perturbations. Perfect hydrodynamics allows all variables to be separated and all equations to
be solved in terms of known special functions. We can thus collect the analytical expression for all the harmonics
and reconstruct the complete Green’s function of the problem. In the viscous case the equations still allow
for variable separation, but one of the equations has to be solved numerically. Summing all the harmonics we
show real-time perturbation evolution, observing the viscosity-induced changes in the spectra and the correlation
functions. The calculated angular shape of the correlation function is remarkably similar to the shape emerging
from the experimental data, for sufficiently large viscosity. We predict a minimum at m ∼ 7 and maximum at
m ∼ 9 harmonics, which also have some experimental evidence for it. We conclude that local “hot spots” in the
initial state are the only visible origin of the observed correlations.
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I. INTRODUCTION

Because this is the third paper of a series devoted to the
propagation of perturbations on top of the “Little Bang,” it
does not need a detailed introduction. Let us only briefly point
out the main physics of the phenomena in question and then
mention where the reader can find important earlier works on
the subject.

Initial-state perturbations of an “average fireball,” which
occur on an event-by-event basis, lead to divergent sound
waves, similar to the circles from a stone thrown into a
pond. The sound velocity is ∼1/2 and the time till freeze-out
τFO ∼ 2R (where R is the nuclear size, about 6 fm for Au
nuclei used in the experiment); thus, the “sound horizon” (the
maximal radius of the circles) reaches Hs ∼ R. In terms of the
angular variables we use, it means a response at relatively large
angles, O(±1 rad), from the perturbation. The strong radial
explosion of the fireball dramatically enhances the contrast,
making small deviations of the freeze-out surface easily
observable experimentally, provided the transverse momenta
of the particles are tuned into the appropriate range. The
shape of the hydro response to an initial point perturbation
(the Green’s function) is quite nontrivial, and we show that
for appropriate values of the viscosity it reproduces the shapes
of the two-point correlation functions observed experimen-
tally surprisingly well. We conclude with the “minimal”
and “maximally coherent” scenarios of the collisions: For
experimental selection between those one needs to measure
certain three-point correlations functions, as was discussed in
detail in our previous paper [1].

Many issues we discuss, such as the power spectrum of
higher harmonics of perturbations, are analogous to the events

in cosmology during the last decade. We mean in particular
the observations of the sound horizon scale, both in the cosmic
microwave background (CMB) radiation (see, e.g., Ref. [2]
and the earlier work cited in it) and in the distribution of
galaxies [3]. Discussing similarities and differences between
the Little and Big Bangs is a recurring theme of this paper.
Let us just comment that while these observations did turn
cosmology into a much more quantitative science, hopefully
their Little Bang analogs will also help us to fix the global
parameters of nuclear collisions and the quark gluon plasma
(QGP) much better.

Outlining the paper’s context, we now go into a bit more
detail over the brief history of the “second act of hydro.” Sound
propagation on top of the expanding fireball was first consid-
ered by Casalderrey-Solana and one of us (E.S.) in Ref. [4].
The fireball expansion was modeled by a universe expansion
using the Friedmann-Lemetre-Robertson-Walker metric, and
the specific phenomena discussed in it was the effect of the
variable speed of sound (owing to the QCD phase transition)
on sound propagation. Its main result was the appearance
of backward-moving or convergent spherical/conical waves,
together with the usual divergent ones. It is worth noting that
the hadronic era has a near-constant speed of sound cs ≈ 0.4
as noted in Ref. [5] and established later for the chemically
nonequilibrated version of hadronic matter in Ref. [6]. The so
called mixed phase era is the only one in which cs varies.

A qualitative picture of the “sound circles” resulting from
pointlike initial-state perturbations, and reaching by freeze-out
the so-called “sound horizon” radius, was introduced in the
first paper of this series [7].

(It is amusing that Gurzadyan and Penrose [8] not only
claim that the WMAP data provide some evidences for circles,
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or even concentral circles, in the CMB temperature variations.
The ones they found, however, have sizes few times larger
than the sound horizon scale. So, if the claim is statistically
sound, those must be some pre-Big-Bang events.)

Unlike the Big Bang, for which one reads the temperature
perturbations from the sky, the observable traces of the sound
circles in the Little Bang are not so direct. The temperature and
velocity perturbations both contribute to the particle spectra at
the freeze-out, and the picture is strongly affected by strong
radial flow and the existence of the fireball’s boundaries. The
contribution of all of this to the spectra predicted in Ref. [7] was
the “double-horn” shape of the angular distribution, with two
maxima identified with the latest crossings of the sound circle
with the fireball boundaries. The “circle” phenomenon has also
been found by the Brazilian group, in their (zero viscosity)
numerical studies of “event-by-event hydrodynamics” [9].
This group, however, went further and calculated the two-body
correlators, finding their characteristic three-maxima structure.
The details of such structure in our (viscous) solution are
compared to the experimental data at the end of this paper.

A general setting of the problem, including the identifi-
cation of the two basic scales of the problem, the so-called
“sound horizon” and “viscous horizon,” was made in the
second paper of the series [1], in which we also studied in
detail the perturbations using the geometric Glauber model.
Similar ideas have also been proposed by Mocsy and Sorensen
in Ref. [10].1

The impetus for experimental studies of perturbation-
related effects was provided by the paper by Alver and
Roland [11]. They have pointed out that the two-particle
correlation data contains large third angular harmonics and
attributed it to the “triangular” shapes of some events. That
prompted many studies of the initial perturbations in the
Glauber model, in which the fluctuations are attributable to
the random positions and the interaction probability of the
colliding nucleons inside the nuclei. It has been found that
the v3 data can indeed be explained, by Glauber estimates of
the initial perturbations 〈ε3(in)2〉 times the “hydro response”
at freezeout (fo) v3(fo)/ε3(in).

In general, there are two different views on the nature of
the perturbations. A priori, the structure of the initial state
perturbations can either (i) be just Gaussian noise or (ii) contain
important correlations between the harmonics. In the former
case, the “minimal Gaussian scenario” of the initial state,
the set of input parameters 〈εm(in)2〉 has all the information
one may possibly need, and all that needs to be done
is the hydrodynamical calculation of the “linear response”
ratios vn(pt , fo)/εn(in) between the initial perturbations of the
fireball shape and the final flow for each of the harmonics. The
other school was pioneered by the above-mentioned Brazilian
group, which started to do “event-by-event hydrodynamics”
for many (hundreds of thousands) initial conditions provided

1Mocsy and Sorensen had also made a popular web page, The Sound
of the “Little Bang”, in which they suggest this sound to be sinusoidal
with certain frequency. As is clear from the present paper, it is not
like this, being instead a single short pulse, such as the boom from a
passing supersonic jet.

by a certain event generator. Clearly, this only makes sense
if one hopes to reproduce certain nontrivial correlations
contained in experiment in a statistically significant way.

Our study in the previous work [1], based on Glauber theory,
had indeed found nontrivial phase correlations between all
odd harmonics m = 1, 3, 5, . . . . We have ascribed those to the
so-called “hot/cold spots” in the initial matter distributions,
which can appear at any angle and are mutually uncorrelated.
We also pointed out the role of the higher correlators and the
“resonance condition” between three (or more) harmonics to
measure the relative phases. Similar studies have also been
done elsewhere; see, for example, Ref. [12] focused on the
resonance between the first and third harmonic with the second
(the reaction plane) and the triangular flow.

Our main aim in this work is to derive the magnitude
of all harmonics of the flow in the same setting. Only then
can one study their coherent sum, the Green’s function, etc.
This goal is achieved (semi) analytically, with separation
of variables and full inclusion of viscosity effects. A new
important phenomenon—the existence of acoustic dips and
peaks in the power spectrum—is suggested, calculated, and
correlated with experimental data.

However, these breakthroughs came with a prize: We
consider (i) only the central collisions, (ii) only conformal EoS
of matter, and (iii) only small perturbations. The reader should
be aware of the fact that our results should capture the quali-
tative behavior rather than produce accurate numbers, directly
related to the experimental data. Corrections to nonconformity
and nonlinearity as well as not-too-large noncentrality can be
also studied, but those will be done elsewhere.

Let us only comment here on the issue of nonlinearity. If (as
we believe) all harmonics add up coherently, the perturbations
are generally not small, O(1), at the initial time. However,
as the perturbation expands and becomes a large sound circle
(with the radius up to the “sound horizon” size comparable
to that of the fireball itself), it quickly becomes small. This
is especially true for higher harmonics (to which this paper is
mostly devoted) because they are additionally suppressed by
viscosity.

Clearly, early time evolution of perturbations is nonlinear,
and releated effects are not captured by our approach. One
practically important issue here is the speed of the waves,
which affects the size of the sound circle at freeze-out, which
subsequently determines positions of the peaks in the correla-
tion function and the power spectrum. Finite amplitude waves
are known to travel faster than sound. We had investigated this
correction and will include it in our subsequent paper. Its effect
is rather modest: For example, a factor 2 matter compression
leads to only 15% increase in speed. Note, that realistic EoS
leads to the speed of sound at late stages of the collision to
be about 20% lower than cs = 1/

√
3 in our conformal liquid:

These two effects to certain degree cancel each other.
Let us further note that at the initial time the pressure and

flow gradients are especially large at local density fluctuations.
Therefore, the applicability conditions of even (viscous) hy-
drodynamics itself should be investigated. Interesting effects,
such as, for example, cavitation, are known to occur in other
hydro applications in similar settings. Theoretically, the issue
is what the sum of all large gradients times corresponding
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dissipative coefficients can actually do if resummed: See a
recent discussion in Ref. [13] on “resummed hydrodynamics”
and its applicability, for AdS/CFT and heavy-ion collisions.

Returning to hydrodynamics, we would like to address
the issues in the case with maximal symmetry: Therefore,
we only discuss the central collisions, which are axially
symmetric (without perturbations). We also would like to
be as transparent as possible, thus using the analytic tools.
Finally, we believe that in this problem, as in many others,
one should look for the Green’s function, the solution with an
elementary δ-function-like source. Once it is found, any type of
initial conditions can be easily included by just a convolution
with the Green’s function. From the physics point of view
it seems to be more important to calculate the effect of the
viscosity on the shape of the angular response, rather than to
include the nonlinear interactions between the harmonics, as
“event-by-event hydrodynamics” does.

The paper is organized as follows. We start by discussing
two approaches which can be used in the case when the
perturbation size is much smaller than the size of the system,
so that the number of excited harmonics is large. One is the
general “geometric acoustics” method, which substitutes the
wave equation by mechanical equations for the propagating
“phonons.” The other uses the standard eikonal representation
of the solution, plus separation of variables. Finally, we focus
on the so-called Gubser flow, the conformal analytic solution
for the fireball expansion [14] with longitudinal and transverse
flows. Significant further development is attributable to Gubser
and Yarom [15], who derived the linearized equations for the
propagation of small perturbations around it. In our paper we
extend their results to sound Green’s function, the coherent
sum of all harmonics describing the propagating sound from
a pointlike hot spot. Our next step is to focus on how the
perturbations modify the freeze-out surfaces and thus observed
spectra and correlators and finally compare the latter to the
data.

A. Relativistic hydrodynamics, the zeroth order

By the “zeroth-order” hydrodynamical evolution of the
system we mean the one in which all possible perturbations
of the “average fireball shape” are not included. Additional
simplifications often used are attributable to (approximate)
symmetries that the problem possesses, for example, rapidity
independence and consideration of only central (axially
symmetric) collisions. If those are assumed, the number of
variables is reduced from four to two, and one may start
thinking about its analytic treatment. Otherwise, the problem
only allows for numerical solutions, which are widely used in
practice but are not discussed in this work.

Our main goal, as we proceed, is to go to the “‘first
approximation,” deriving small perturbations of the zeroth-
order solution. Unlike the zeroth order, the perturbations are
not assumed to have any a priori symmetries. The main
object of the hydrodynamical description, the stress tensor,
is conserved: Thus, the equations to be solved are written as
its zero-covariant divergence,

T μν
;μ = (

T
μν

(0) + δT
μν

(1)

)
;μ = 0, (1.1)

where the zero and one in parentheses are not the indices but
the order of perturbation. The perturbation term is assumed to
be small and treated in the linear approximation.

While it is all very generic, for completeness of the paper
let us describe some details here, starting with the simplest
example of rapidity-independent “Bjorken” flow. Even in this
case, one needs curved coordinates with a nontrivial metric;
thus, covariant derivatives and the nonzero Christoffel symbols
are needed:

T ik
;p = T ik

,p + �i
pmT mk + �k

pmT im. (1.2)

Changing Minkowski coordinates t, x, y, z, with z along the
beam, to the hyperbolic-cylindrical set τ, η, r, φ,

t = τ cosh η, z = τ sinh η, (1.3)

x = r cos φ, y = r sin φ, (1.4)

τ =
√

t2 − z2, η = 1

2
ln

(
t+z

t−z

)
, (1.5)

one finds the metric tensor

gmn =

⎛
⎜⎜⎜⎝

−1 0 0 0

0 τ 2 0 0

0 0 1 0

0 0 0 r2

⎞
⎟⎟⎟⎠ , (1.6)

and the Christoffel symbols, following from standard expres-
sion

�s
ij = (1/2)gks(gik,j + gjk,i − gij,k), (1.7)

have the following nonvanishing components:

�η
ητ = �η

τη = 1

τ
, �τ

ηη = τ,

(1.8)

�
φ
φr = �

φ
rφ = 1

r
, �r

φφ = −r.

Those are inserted into Eq. (1.2) together with the general
expression for relativistic Navier-Stokes stress tensor,

Tμν = (ε + p)uμuν + pgμν − 2ησμν − ζ (uλ
;λ)�μν, (1.9)

where

σμν = �α
μ�β

ν

(
uβ;α + uα;β

2
− gαβ

3
uλ

;λ

)
, (1.10)

�μν = uμuν + gμν. (1.11)

The first two terms of the stress-energy tensor correspond to
“ideal hydrodynamics,” while the third and fourth ones are
attributable to shear and bulk viscosity, respectively.

The corresponding analytic solution, known as the Bjorken
flow [16], corresponds to colliding objects being infinite walls
of matter, eliminating the transverse flow and any dependence
on the two transverse coordinates x, y or r, φ, as well as
on η. Furthermore, we consider the simplest comoving flow
case, with a trivial four-velocity uμ = (1, 0, 0, 0). Then the
nonviscous stress tensor returns to its generic form,

T μν = diag[ε(τ ), p(τ ), p(τ ), p(τ )], (1.12)

in the medium rest frame, depending on the proper time
τ . The resulting 00 and 11 equations, together with the
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thermodynamic identity relating the differentials of these
quantities,

∂με

ε + p
= ∂μs

s
, (1.13)

can be put into the final form of one single “entropy production
equation,”

ds

dτ
= s

ε + p

dε

dτ
= − s

τ

(
1 − (4/3)η + ξ

(ε + p)τ

)
. (1.14)

Note that if both viscosities are zero, the solution is just sτ =
const, which implies simply the total entropy conservation.

II. SOUND PROPAGATION IN THE SHORT-WAVELENGTH
APPROXIMATION

A. The geometric acoustics

If the wavelength of the perturbation is small compared to
the size of the system, one can describe sound propagation in
the “geometric acoustics” approximation (see textbooks such
as Ref. [17]). The reason we can use such an approximation
in our problem is the assumed locality of the initial hot spots
(and thus the initial width of the propagating circular wave).
All we need is that their size be much smaller than the fireball
dimensions:

l � R. (2.1)

The derivation of the approximation is based on the
analogy between the Hamilton-Jacobi equation for the particle
propagation and the wave equation for the sound, deriving
the Hamilton equations of motion for the “sound particles”
(“phonons”). The resulting equations of motion for them are

d�r
dt

= ∂ω(�k, �r)

∂ �k , (2.2)

d�k
dt

= −∂ω(�k, �r)

∂�r , (2.3)

driven by the (position dependent) dispersion relation ω(�k, �r).
Let us start with the simplest nonrelativistic case, with small

velocity of the flow, u � 1. In this case the dispersion relation
is obtained from that in the fluid at rest by a local Galilean
transformation, so that for flow �u(�r),

ω(�k, �r) = csk + [�k �u(�r)]. (2.4)

As a simple yet relevant example, let us use the (generalized)
Hubble flow in which the velocity profile is linear,

ui(r) = Hij rj , (2.5)

with some constant (time and coordinate independent) Hubble
tensor. Equation (2.3) now reads as “rotation” of the phonon
momentum:

dki

dt
= −Hijkj . (2.6)

If the Hubble tensor is symmetric, it can be diagonalized with
three real eigenvalues, H1,H2,H3, so the general solution in
its eigenframe is the exponential change of the corresponding

momentum components ki(t) = exp(−Hit)ki(0). Note that if
all three eigenvalues are the same, the unit vector of the
direction �n�k would be time independent. Furthermore, if the
Hubble tensor contains an antisymmetric part, the direction
vector would be rotating around the vector εijkHjk .

Let us now come to the first Eq. (2.2),

dri

dt
= csn

i
�k(t) + Hij rj (t), (2.7)

with the first term on the right-hand side containing a unit
vector along �k. The simplest case is when the Hubble matrix
is proportional to the unit matrix and the first term is time
independent: Then the solution is simply a linear addition of
the sound motion and the Hubble expansion,

�r(t) = cst �n�k + �r(0)exp(+Ht). (2.8)

This approximation is enough to explain the deformations
which the zeroth-order flow induces on the basic geometric
shapes of the sound fronts—the cylinders, spheres, or cones—
appearing in a nonfloating medium. (We will use it for this
purpose elsewhere [18].) It is, however, not so useful for
predicting the corresponding amplitudes of the wave, which
we discuss in the next section.

B. Wave equations with separable variables

Let us explain the idea in the simplest setting, assuming that
there are only time and one relevant space coordinate, x. Let
us also assume that one can eliminate the velocity and write
the hydrodynamic equations as a closed second-order linear
equation for the temperature perturbation δ(t, x),

∂2δ

∂t2
− C1(t, x)

∂2δ

∂x2
+ C2(t, x)

∂δ

∂t

+ C3(t, x)
∂δ

∂x
+ C4(t, x)δ = 0, (2.9)

where C1, . . . , C4 are some functions.
The idea is similar to the semiclassical approximation in

quantum mechanics, which uses for the wave function a form
ψ(t, x) ∼ A(t, x)exp[iF (t, x)/h̄], with some amplitude and
the phase, assuming that the phase is parametrically large
F/h̄ 	 1. If so, one can find a solution satisfying subsequently
parts of the equation of the same magnitude.

Let us show how it works for the generic two-dimensional
(2D) equation at hand. One also introduces the amplitude and
the phase,

δ(t, x) ∼ A(t, x)exp[iφ(t, x)/ε], (2.10)

with the h̄ substituted by a dimensionless abstract small
parameter ε. Its substitution into the equation above yields
three types of terms:

1

ε2
[−φ̇2 + C1(φ′)2]

+ i

ε

[
2
Ȧφ̇

A
+ φ̈ + C2φ̇ − 2C1

A′φ′

A
− C1φ

′′ + C3φ
′
]

+
[
Ä

A
− C1

A′′

A
+ C2

Ȧ

A
+ C3

A′

A
+ C4

]
= 0. (2.11)
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For small ε one starts from the first square bracket. If the first
coefficient can be factored into functions of both variables,
C1 = C1t (t)C1x(x) it can readily be solved, yielding

φ(t, x) = k

(∫ t √
C1t (t1)dt1 ±

∫ x dx1√
C1x(x1)

)
, (2.12)

where the separation of variables constant k, the “wave vector,”
is assumed to be large. When C1x = 1

√
C1t = cs = const we

have a function of x − cst , the usual propagating wave.
The amplitude A should be found from the second ap-

proximation, the terms of the order 1/ε. One may again
get an explicit solution assuming the variables can be sep-
arated. Looking for the amplitude in a factorizable form
A = At (t)Ax(x) one can see that the first three terms can be
only dependent on t , provided C2 depends on time only. The
last three O(1/ε) terms would be factorizable into C1t (t) times
a function of x if C3 = C1t (t) ∗ C3x(x). If so, the solutions for
both parts of the amplitudes are

At (t) = exp
∫ t

0
dt1

[
α
√

C1t (t1) − Ċ1t (t1)

4C1t (t1)
− C2t (t1)/2

]
,

Ax(x) = exp
∫ x

0
dx1

[
− α√

C1x(x1)
+ C ′

1x(x1)

4C1x(x1)
+ C3x(x1)

2C1x(x1)

]
.

(2.13)

A new separation-of-variable constant α formally appears
here, but it does not generate anything new in respect to what
was already included in the phase, so it can safely be put to
zero.

Familiar examples of waves are, for example, the spherical
and conical waves, in which case the variables can be
separated. Indeed, when the spatial part of the equation is
d-dimensional Laplacian, one has

C1 = 1

c2
s

, C2 = 0, C3 = d − 1

x

1

c2
s

, (2.14)

and the corresponding amplitude decays with distance as

A ∼ 1

x
d−1

2

, (2.15)

which is well known for spherical (d = 3) and cylindrical
(d = 2) waves.

As the reader will see later, the sound on top of Gubser’s
flow can also be shown to have an amplitude depending on new
variables ρ, θ in a factorizable way, which was not the case in
the original coordinates, the proper time τ and r . Therefore,
without introduction of these coordinates, one would not be
able to solve the equation for the amplitude in such a simple
factorized form.

III. PERTURBATIONS ON TOP OF THE GUBSER FLOW

A. Summary of the Gubser flow

The Gubser flow [14,15] is a solution that keeps the
boost invariance and the axial symmetry in the transverse
plane of the Bjorken flow, but replaces the translational
invariance in the transverse plane by symmetry under a special
conformal transformation. Therefore, the matter is required to

be conformal, with the equation of state (EOS)

ε = 3p ∼ T 4 (3.1)

and the speed of sound cs = 1/
√

3. The solution has 1D
parameter q via which the finite size of the nuclei is introduced.

Working in the (τ, η, r, φ) coordinates with the metric

ds2 = −dτ 2 + τ 2dη2 + dr2 + r2dφ2, (3.2)

and assuming no dependence on the rapidity η and azimuthal
angle φ, the four-velocity can be parameterized by only one
function:

uμ = [− cosh κ(τ, r), 0, sinh κ(τ, r), 0]. (3.3)

Omitting the details from [14], the solution for the velocity
and the energy density is

v⊥ = tanh κ(τ, r) =
(

2q2τr

1 + q2τ 2 + q2r2

)
, (3.4)

ε = ε̂0(2q)8/3

τ 4/3
[
1 + 2q2(τ 2 + r2) + q4(τ 2 − r2)2

]4/3 , (3.5)

where ε̂0 is some normalization parameter.
In Ref. [15] Gubser and Yarom rederived the same solution

by going into the comoving frame. To do so they rescaled the
metric

ds2 = τ 2dŝ2 (3.6)

and performed a coordinate transformation from the τ, r to a
new set ρ, θ given by

sinh ρ = −1 − q2τ 2 + q2r2

2qτ
, (3.7)

tan θ = 2qr

1 + q2τ 2 − q2r2
. (3.8)

In the new coordinates the rescaled metric reads

dŝ2 = −dρ2 + cosh2 ρ(dθ2 + sin2 θdφ2) + dη2 (3.9)

and we use ρ as the “new time” coordinate and θ as a new
“radial” coordinate. In the new coordinates the fluid is at rest,
so the velocity field has only nonzero uρ .

The relation between the velocity in Minkowski space in
the (τ, r, φ, η) coordinates and the one in the rescaled metric
in (ρ, θ, φ, η) coordinates corresponds to

uμ = τ
∂x̂ν

∂x̂μ
ûν, (3.10)

while the energy density transforms as ε = τ−4ε̂.
The temperature (in the rescaled frame, T̂ = τf

1/4
∗ T , with

f∗ = ε/T 4 = 11 as in Ref. [14]) is now dependent only on the
new time ρ, and in the case with nonzero viscosity the solution
is

T̂ = T̂0

(cosh ρ)2/3
+ H0 sinh3 ρ

9(cosh ρ)2/3 2F1

(
3

2
,

7

6
;

5

2
,− sinh2 ρ

)
,

(3.11)

where H0 is a dimensionless constant made out of the shear
viscosity and the temperature, η = H0T

3, and 2F1 is the
hypergeometric function. In the inviscid case the solution is
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just the first term of expression (3.11), and, of course, it also
conserves the entropy in this case. The picture of the explosion
is obtained by transforming this expression back to the τ, r

coordinates and performing the appropriate rescaling.

B. Perturbations of the Gubser flow

Small perturbations to the Gubser flow obey linearized
equations which have also been derived in Ref. [15]. We
start with the zero-viscosity case, so that the background
temperature (now to be called Tb) is given by just the first term
in Eq. (3.11). The perturbations over the previous solution are
defined by

T̂ = T̂b(1 + δ), (3.12)

ûμ = û0 μ + û1μ, (3.13)

with

û0 μ = (−1, 0, 0, 0), (3.14)

û1μ = [0, uθ (ρ, θ, φ), uφ(ρ, θ, φ), 0], (3.15)

δ = δ(ρ, θ, φ). (3.16)

The careful reader will notice here that, although general
perturbations should not have any symmetries of the zeroth
solution, we have not listed rapidity among the variables.
Indeed, we only consider the perturbations that are rapidity
independent. The reason for that is that the initial state
perturbations are initiated in the transverse plane but rapidity
independent, so that the waves they induce also propagate in
the transverse plane only.

Plugging expressions (3.12) and (3.13) into the hydro-
dynamic equations and only keeping linear terms in the
perturbation, one can get a system of coupled first-order
differential equations. Furthermore, if one ignores the viscosity
terms, one may exclude velocity and get the following (second
order) closed equation for the temperature perturbation:

∂2δ

∂ρ2
− 1

3 cosh2 ρ

(
∂2δ

∂θ2
+ 1

tan θ

∂δ

∂θ
+ 1

sin2 θ

∂2δ

∂φ2

)

+ 4

3
tanh ρ

∂δ

∂ρ
= 0. (3.17)

As we will show, it has a number of remarkable properties.

C. The short-wavelength approximation for the sound waves on
top of the Gubser flow

Before we proceed to the exact solution of this equation, let
us follow the procedure described in Sec. II B and study the
solution to Eq. (3.17) in the short-wavelength approximation.
We start by looking for a factorized solution of the form

δ = ei[fρ (ρ)−fθ (θ)−fφ (φ)]Fρ(ρ)Fθ (θ )Fφ(φ), (3.18)

where fi 	 1, such that the derivatives taken over the
exponential are dominant. In this way, we study the equation
separating it in different equations depending on which power
of the derivatives over the exponent they have. The first step
is to look only at the second derivatives, because they produce

terms of second order in the exponent, they are the leading
ones. In this way we find

fρ(ρ) = ± 2√
3
k arctan eρ + A, (3.19)

fθ (θ ) = ±
∫

dθ

√
k2 − m2

sin2 θ
+ B, (3.20)

fφ(φ) = ±mφ + C. (3.21)

The integral in (3.20) can be solved, but it gives a cumbersome
result. So in what follows (of this section) we assume no φ

dependence just to get an idea of the result. When we do this,
the functions in the exponent reduce to

fρ(ρ) = ± 2√
3
k arctan eρ + A, (3.22)

fθ (θ ) = ±kθ + B. (3.23)

(3.24)

The function fρ(ρ) is almost linear in ρ in the region that we
are interested in studying (−2 � ρ � 1), so we find the phase
of the solution to be ∼kρ, which means that we indeed expect
to find solutions in the form of the sound wave propagation (in
this region).

Now that we have found the functions in the exponent we
look for the wave amplitude by canceling among themselves
the terms with the first power of the large exponent: By doing
this we find the amplitudes to be

Fρ(ρ) ∼ 1

(cosh ρ)1/6
, (3.25)

Fθ (θ ) ∼ 1√
sin ρ

. (3.26)

D. The exact separation of variables for the perturbation

We have seen that in the short wavelength approximation
we found a separable wavelike solution to Eq. (3.17), and now
we would like to see if the exact solution can be found by using
variable separation δ(ρ, θ, φ) = δ(ρ)�(θ )�(θ ). It is indeed so.
In the nonviscous case, which we are now discussing, each of
the three equations

δ′′(ρ) + 4

3
tanh ρδ′(ρ) + λ

3 cosh2 ρ
δ(ρ) = 0, (3.27)

�′′(θ ) + 1

tan θ
�′(θ ) +

(
λ − m2

sin2 θ

)
�(θ ) = 0, (3.28)

�′(φ) + m2�(φ) = 0, (3.29)

is analytically solvable, with the result

δ(ρ) =
C1P

2/3
− 1

2 + 1
6

√
12λ+1

(tanh ρ)+C2Q
2/3
− 1

2 + 1
6

√
12λ+1

(tanh ρ)

(cosh ρ)2/3
,

�(θ ) = C3P
m
l (cos θ ) + C4Q

m
l (cos θ ),

�(φ) = C5e
imφ + C6e

−imφ, (3.30)

where λ = l(l + 1) and P and Q are associated Legendre
polynomials. The part of the solution depending on θ and φ can
be combined to form spherical harmonics Ylm(θ, φ), such that
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δ(ρ, θ, φ) ∝ δl(ρ)Ylm(θ, φ). This property should have been
anticipated, as one of the main ideas of Gubser has been to
introduce a coordinate which together with φ make a map on
a 2D sphere.

The implications of that for the physics we discuss are as
follows. While we project the spectra and correlation function
to the azimuthal angle φ and its Fourier components, we focus
on the quantum number m conjugated to it. In particular, the
community is very much focused on the “triangular flow”
with m = 3. In principle, however, this is produced by many
l harmonics, providing the obvious condition l � m holds.
Harmonics with different l have obviously different radial
dependence. (We mention this point because there was some
controversy about the powers of r , especially for various
definitions of the “dipole flows” with m = 1.)

Let us explore the asymptotic behavior of the Legendre
functions when l 	 1 that is given by Ref. [19]:

P m
l (cos θ ) = 2√

π

�(l + m + 1)

�(l + 3/2)

cos [(l + 1/2)θ − π
4 + mπ

2 ]√
2 sin θ

,

Qm
l (cos θ ) = √

π
�(l + m + 1)

�(l + 3/2)

cos [(l + 1/2)θ + π
4 + mπ

2 ]√
2 sin θ

.

(3.31)

These expressions show that for large l the solution presents
oscillatory behavior in θ with an amplitude given by 1√

sin θ
. It

is gratifying to see that this is the same as we obtained in the
short-wavelength approximation for Fθ (θ ) [Eq. (3.26)] in the
previous section.

Now let us look into the ρ-dependent part of the solution.
In the large l limit the Legendre polynomials as a function of
tanh ρ correspond to

P m
l (tanh ρ) =

√
2

π

�(l + m + 1)

�(l + 3/2)

√
cosh ρ

× cos

[(
l + 1

2

)
arccos (tanh ρ) − π

4
+ mπ

2

]
,

Qm
l (tanh ρ) =

√
π

2

�(l + m + 1)

�(l + 3/2)

√
cosh ρ

× cos

[(
l + 1

2

)
arccos (tanh ρ) + π

4
+ mπ

2

]
.

(3.32)

Again we see an oscillatory behavior and a wave amplitude. In
this case the amplitude is given by

√
cosh ρ and if we divide

this by (cosh ρ)2/3 as we have in the exact solution (3.30) we get
an amplitude for the wave of 1

(cosh ρ)1/6 , which is the same as we
got in the preceding section (3.25) using the short-wavelength
approximation.

So we have checked that for large l δ(ρ, θ, φ), and
therefore the temperature perturbation in the rescaled frame,
T̂1(ρ, θ, φ) = T̂b(ρ)δ(ρ, θ, φ), does behave like a sound
wave.

E. Propagation of the local initial-state perturbation

Let us study the propagation of the hydrodynamical
response induced by an initial perturbation on top of the
background at some initial “time” ρ0, given by a Gaussian-
shaped initial hot spot:

T̂1(ρ0, θ, φ) ∝ e
− θ2+θ2

0 −2θθ0 cos (φ−φ0)

2s2 . (3.33)

We further assume that at the initial time there is no flow
(momentum), only extra energy, so another initial condition
is

ûθ (ρ0) = 0,

ûφ(ρ0) = 0, (3.34)

which define the initial derivative of the temperature perturba-
tion, because [15]

ûl i = vl(ρ)∂iYlm(θ, φ),

vl(ρ) = 3 cosh2 ρ

l(l + 1)

dδl

dρ
, (3.35)

where i = θ, φ. Thus, we require

∂δl

∂ρ

∣∣∣∣
ρ=ρ0

= 0. (3.36)

The general solution for linear perturbations is

T̂1(ρ, θ, φ) =
∑

l

m=l∑
m=−l

clmRl(ρ)Ylm(θ, φ), (3.37)

û1 i(ρ, θ, φ) =
∑

l

m=l∑
m=−l

clmvl(ρ)∂iYlm(θ, φ), (3.38)

with

Rl(ρ) =
AlP

2/3
− 1

2 + 1
6

√
12l(l+1)+1

(tanh ρ) + BlQ
2/3
− 1

2 + 1
6

√
12l(l+1)+1

(tanh ρ)

(cosh ρ)4/3
, (3.39)

where clm, Al , and Bl are constants that can be determined
using the initial conditions (3.33) and (3.36). With Al and Bl

determined, the ρ-dependent part of the temperature is

Rl(ρ) =
(

cosh ρ0

cosh ρ

)2/3

δl(ρ), (3.40)

δl(ρ) =
dql

dρ

∣∣
ρ0

pl(ρ) − dpl

dρ

∣∣
ρ0

ql(ρ)
dql

dρ

∣∣
ρ0

pl(ρ0) − dpl

dρ

∣∣
ρ0

ql(ρ0)
, (3.41)

with

pl(ρ) =
P

2/3
− 1

2 + 1
6

√
12l(l+1)+1

(tanh ρ)

(cosh ρ)2/3
, (3.42)
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ql(ρ) =
Q

2/3
− 1

2 + 1
6

√
12l(l+1)+1

(tanh ρ)

(cosh ρ)2/3
, (3.43)

which, together with the Ylm(θ, φ), finally provides the
complete solution for δ(ρ, θ, φ) in Eq. (3.17). The denominator
of the right term of Rl(ρ) is the so-called Wronskian of the
functions pl(ρ) and ql(ρ) evaluated at the initial “time” ρ0.
Because the Legendre polynomials P and Q are linearly
independent, the Wronskian is always nonzero, so we are
guaranteed that the function Rl(ρ) is always finite.

The first ten harmonics for Rl and vl are plotted in Fig. 1,
showing how the amplitude varies as a function of time ρ. One
can see how the initial deformation (the top plot, set to one
for each l for comparison) is transferred into the flow velocity
(the bottom plot). One can also see that while for the lower
harmonics it happens in a more or less linear way, higher
harmonics show oscillating behavior, as expected for sound
waves. Indeed, one should see a transition from potential to
kinetic energy happening with higher and higher rate, as the
harmonic number grows.

2.0 1.5 1.0 0.5 0.0 0.5 1.0

3

2

1

0

1

2

3

ρ

R
l

2.0 1.5 1.0 0.5 0.0 0.5 1.0

0.4

0.3

0.2

0.1

0.0

0.1

0.2

ρ

v l
ρ

ρ

FIG. 1. (Color online) (Top) Rl(ρ) defined in Eq. (3.40) for
harmonic number l from 1 to 10 (from less to more oscillating ones).
All curves are arbitrarily normalized to 1 at ρ = −2.07. (Bottom) The
corresponding harmonics of the velocity vl(ρ), defined in Eq. (3.35),
also for l from 1 to 10. Note its oscillatory behavior for larger l and
later times.

The clm coefficients are calculated using the orthogonality
of the Legendre polynomials, and are given by

clm =
∫ 2π

0

∫ π

0
T̂1(ρ0, θ, φ)Y ∗

lm(θ, φ) sin θdθdφ.

(3.44)

Once we find all the constants, we can study the evolution of
the perturbation given by expression (3.37). In Fig. 2 we show
three frames from a movielike evolution in τ of a perturbation
T̂1(τ, r, φ) produced by a local hot spot which was calculated
for a Gaussian centered in θ = 1.5 with a small size s = 0.1,
which corresponds to a perturbation localized at r = 4.1 fm
and with a width of 0.4 fm. Notice that while the perturbation
is in the rescaled frame, we are using the regular coordinates
τ, r .

We have used 30 harmonics for this movie, and it is nice
to see that they all add up coherently into a consistent picture
of a sound-wave propagation. While it does correspond to
a qualitative picture of a circle from a stone thrown into the
pond, with which we had started this work, it is, in fact, an exact
solution, riding on the zeroth-order explosion picture, which
is by itself rather complex. To find the analytical expressions
for the perturbation on top of the fireball it was necessary to
invent the ρ and θ coordinates, so that all of the expressions
can be factorized in terms of these coordinates. A lot of correct
thinking was needed to make this movie possible.

F. The viscous effects

In the second paper of this series [1] we introduced
the viscosity-based scale, which all structures produced by
pointlike perturbations would obtain at freeze-out. Without
going into detail, let us just remind the reader that while the
width of the circle grows with time as τ 1/2, its radius grows
as τ , and therefore the relative contrast (the former divided by
the latter) is improving as τ−1/2. As far as the amplitude of the
wave is concerned, in a short-plain-wavelength approximation
the stress tensor harmonics with momentum k are attenuated
by a factor

δTμν(t, k) = exp

(
−2

3

η

s

k2t

T

)
δTμν(0, k) (3.45)

known from textbooks on sound, sometimes called “the
viscous filter.” Note that its exponent contains the momentum
squared, owing to the extra derivative in the viscous tensor,
and therefore the effect of viscosity for the higher harmonics
is strongly enhanced. Obviously, the same qualitative behavior
is expected for our l, m harmonics.

The basic equations for the ρ-dependent part of the
perturbation, now with viscosity terms, can be written as a
system of coupled first-order equations [15]. We are assuming
rapidity independence; thus, the system of Eqs. (107), (108),
and (109) from the referred paper becomes two coupled
equations, for (the ρ-dependent part of) the temperature and
velocity perturbations,

d �w
dρ

= −� �w , �w =
(

δv

vv

)
, (3.46)
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FIG. 2. (Color online) Evolution of the perturbation in the
rescaled frame but in the regular coordinates T̂1(τ, r, φ) from
Eq. (3.37) using the change of coordinates (3.7) and (3.8). From
top to bottom: τ = 1 fm/c, τ = 4 fm/c, τ = 6 fm/c.

where the index v stands for viscous and the matrix compo-
nents are

�11 = H0 tanh2 ρ

3T̂b

, �12 = l(l + 1)

3T̂b cosh2 ρ
(H0 tanh ρ − T̂b),

�21 = 2H0 tanh ρ

H0 tanh ρ − 2T̂b

+ 1, (3.47)

�22 =
8T̂ 2

b tanh ρ+H0T̂b

(
−4[3l(l+1)−10]

cosh2 ρ
− 16

)
+6H 2

0 tanh3 ρ

6T̂b(H0 tanh ρ − 2T̂b)
.

This system can also be written as a closed second-order
differential equation for δv(ρ):

d2δv

dρ2
− dδv

dρ

(
�11 − 1

�12

d�12

dρ
+ �22

)

− δv

(
d�11

dρ
− �11

�12

d�12

dρ
− �11�22 + �12�21

)
= 0.

(3.48)

Unfortunately, unlike the zero-viscosity case considered
above, the equations one gets after separation of variables
cannot all be solved analytically and thus have to be solved
numerically, which has been done using MATHEMATICA’s
ordinary differential equation solver. The part of the solution
that depends on θ and φ is not affected by viscosity, so it
continues to be given by the spherical harmonics Ylm(θ, φ).

Our results for the nonzero viscosity use either H0 = 0.33
(η/s = 0.134), such as in Ref. [15], or the value H0 = 0.19
[η/s = 1/(4π ) = 0.08], the conjectured lowest value possible
predicted by AdS/CFT in the strong coupling limit.

In Fig. 3 we plot the time dependence δv l(ρ) for several
harmonics and compare them to the inviscid case δl(ρ) for
some l’s. As expected, the viscosity reduces higher harmonics
more, but as far as time dependence is compared to the inviscid
case, we see that viscosity literally kills the contribution at a
certain time, which becomes shorter and shorter for larger l.
As the time is limited by the freeze-out time, we observe that
the contributions of all sufficiently large l > lmax ∼ 10 become
completely negligible.

The ρ-dependent part of the velocity can be calculated once
δv is known:

vv l(ρ) = −δ′
v l + �11δv l

�12
. (3.49)

For the first 10 l, the curves vv l(ρ) are plotted in Fig. 4.
Comparing this to vl(ρ) at zero viscosity (bottom plot of Fig. 1)
we see that the amplitude for the velocity is also damped in
the viscous case for large l and increasing ρ.

IV. APPLICATIONS

A. Matching the Gubser flow with the heavy-ion collisions

With the exact solution to the perturbation equation riding
on top of the Gubser flow at hand, one may go back to the τ

and r coordinates and try to calculate what should happen in
real heavy-ion collisions.

However, before we do so, let us remind the reader once
again that the Gubser flow is by itself an idealization of reality.
The real hadronic matter can only be approximated by the
conformal EOS ε = 3p during its QGP phase, which lasts
about 1/3 of the total time at RHIC and perhaps around
1/2 time at LHC. The rest is the near-Tc domain and the
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FIG. 3. (Color online) Comparison between the magnitude of
harmonics δl(ρ) (3.41) for the ideal case (solid blue lines) and δv l(ρ)
(3.48) for the viscous case with η/s = 0.134 (dashed red lines), for
l = 1, 3, 5, 10, from top to bottom.

hadronic phase, in which the speed of sound changes from
1/

√
3 = 0.577 to about 0.35 and 0.45, respectively. Although

this change is not very large, we do notice that the radial
flow obtained with the Gubser flow is too large. Respectively,
the freeze-out time τFO is indeed somewhat smaller than

2.0 1.5 1.0 0.5 0.0 0.5 1.0

0.4

0.3

0.2

0.1

0.0

0.1

ρ

ρ
v l

FIG. 4. (Color online) The velocity harmonics vv l(ρ) [defined
in Eq. (3.49)] for the first ten values of l, in the viscous case with
η/s = 0.134. To be compared with Fig. 1 (bottom).

that observed in numerical hydrodynamics with correct EOS.
Perhaps some of our results for the perturbation should also
need some adjustment, owing to these facts.

The second similar comment is that Gubser’s solution has
a particular shape, which has no reason to coincide with the
shape of the real Au nuclei. The finite size of the fireball and the
shape of its temperature profile is determined by the parameter
q, which we take equal to (4.3 fm)−1, following Ref. [14]. The
second parameter that we need to fix is the constant T̂0. Again
from Ref. [14] we get the formula for this parameter

T̂0 = 1

f
1/12
∗

(
3

16π

dS

dη

)
, (4.1)

with

f∗ = ε

T 4
= 11,

dS

dη
= 7.5

dNch

dη
. (4.2)

For central (0%–5%) collisions at LHC dNch/dη ∼ 1600 [20],
which gives a value of T̂0 ≈ 7.3. Using these values one gets
a freeze-out time τf o ∼ 6, which is rather a short time that
does not allow for the sufficient evolution of the sound circles.
Because we are interested in studying the propagation of sound
perturbations and the size of the sound horizon depends on
the freeze-out time, we use T̂0 ≈ 10.1, which corresponds to
having about 2.6(dNch/dη)LHC. It is important to note that the
background temperature in the ideal case corresponds to

T = 1

τf∗

T̂0

(cosh ρ)2/3
, (4.3)

so we are using an initial temperature of about 630 MeV.
The parameters we used are such that the size of the fireball at
freeze-out, the radius of the sound circle, and overall transverse
expansion velocities v⊥(r, t ≈ tf ) mimic reality of RHIC/LHC
collisions. The price for that is somewhat too-large initial
temperature and overall entropy.

The hydrodynamical equations should be used only after
some approximate equilibration of hadronic matter is achieved.
While the mechanism of it, as well as precise timing, remain
unknown, we do know its order of magnitude to be a fraction
of fm/c. For our calculations we assume that thermalization
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occurs at the initial time τ = 1 fm/c, and it is at this time
that we define our initial hot spot and start evolving it using
hydrodynamics. One can do so until the final freeze-out is
reached, at which point the interaction between secondaries
becomes ineffective and sound propagation stops. Below
we discuss how the hydrodynamical perturbations should be
translated into the experimental observables.

Let us point out that we study the effect of a single hot spot
on the fireball which we characterize as a Gaussian temperature
perturbation on top of the background temperature. In real
collisions, there are many such perturbations, but because we
solve the problem in the linear approximation, their evolution
is mutually independent. Furthermore, in the experimental
statistical study of small two- or three-particle correlations,
the contribution of the uncorrelated fluctuations is canceled
out automatically.

In Fig. 2 we see that at the time τ = 1 fm/c a Gaussian hot
spot centered at r = 4.13 fm, φ = π corresponds to having
it at time ρ = −2.07 centered at θ = 1.5, φ = π . Of course,
because ρ = ρ(τ, r) at any given time τ , ρ depends on r , so the
initial condition ρ = −2.07 is for the center of the Gaussian.

B. Modification of the freeze-out surface and of the particle
spectra

The standard expression for a spectrum, known as
Cooper-Frye formula [21], is given by

E
dN

d3p
= −

∫
d�μpμf

(
pνuν

T

)
. (4.4)

The overall minus is there because we work using the
mostly plus signature. The function f corresponds to the
thermal distribution inside the fluid cells, boosted by their
hydrodynamical motion at the time of the freeze-out,

f (p) = 1

exp(−pμuμ/T ) ± 1
, (4.5)

for Bose-Fermi particles. (In reality, we are only interested
in the tail, so the Boltzmann approximation will always be
enough.) The minus sign in the exponent is because we are
working in the mostly plus signature.

The temperature and velocity in this formula are supposed
to have a space-time dependence derived from hydrodynamics.
The freeze-out surface �μ that appears in the Cooper-Frye
formula corresponds to a certain kinetic condition, of the
form that the ratio of a particular reaction rate to the matter
expansion rate reaches a particular value. Because there are
many reactions involved in the process, strictly speaking there
are multiple freeze-out surfaces. One usually separates “chem-
ical” and “kinetic” freeze-outs, in which inelastic and elastic
scattering rates are involved. Because different secondaries
(pions, K, nucleons, . . . , J/ψ), in fact, have quite different
elastic cross sections, the kinetic surfaces should, in fact, be
different for each species.

We do not discuss all those complications in this work, and
think of only one type of secondary, the pions. Furthermore,
we use a drastic simplification often used, assuming that the
freeze-out surface is the isotherm T (t, x) = TFO. If so, the

surface can be determined from hydrodynamical output; for
example, its timelike part can be written as

�μ = [τf o(x, y), x, y, η], (4.6)

where τf o is the time at which the fireball reaches the freeze-
out temperature. The Cooper-Fry formula contains the vector
normal to the surface, which is then

d�μ = −√−gεμνλρ

∂�ν

∂x

∂�λ

∂y

∂�ρ

∂η
dxdydη (4.7)

=
(

−1,
∂τf o

∂x
,
∂τf o

∂y
, 0

)
τf odxdydη. (4.8)

Here g is the determinant of the metric and εμνλρ is the Levi-
Civita symbol.

The perturbations affect the spectra in two ways. First, the
flow velocity in the exponent is corrected by the extra terms
of the first order owing to sound. The second effect, related
with the first-order temperature perturbations (1 + δ), are more
subtle. Hotter matter (positive δ) in the event with a hot spot and
perturbation from it imply a production of extra entropy density
[increases by (1 + δ)3] as compared to the zeroth-order fireball.
This means there would be extra secondaries produced, as this
entropy is “hadronized.” By assumption, it happens locally,
delaying a bit the freeze-out according to condition

T0(t, x)[1 + δ(x, t)] = TFO. (4.9)

Thus, delay is absolutely necessary, it provides extra volume
for the extra matter produced, as compared to the zeroth-order
explosion, because by assumption the freeze-out temperature
and thus the matter density at the FO surface are held constant.
The deformation of the FO surface not only increases the
volume, giving place for the extra particles just discussed, but
it also prolongs hydro evolution, providing a bit larger flow.

Let us now discuss another issue: the part of the particle
spectra on which we should focus to see best the effect of the
perturbation. The Cooper-Fry formula has pt of the particle in
the exponent, so it is tempting to take it as large as possible.
Indeed, all hydro effects (such as, e.g., the elliptic or radial
flow) are enhanced by the increase in the particle momentum
pt . There are two practical limits to an increase in pt , however.

(i) One can be understood inside the hydrodynamics itself.
The viscous term has an extra gradient, relative to
the ideal part of the stress tensor. This means that
the relative role of viscous corrections will grow with
pt until at some point it will no longer be small
as compared to ideal term. Obviously, at such pt

hydrodynamics should be substituted by some other
tool, for example, some kinetic theory description.

(ii) In real collisions some secondaries originate from hard
scattering and subsequent jets. In spite of significant
jet quenching, at large-enough pt the hard component
of the spectra supersedes the hydrodynamical spectra.
Obviously, beyond this point one loses ability to follow
the hydrodynamical component.

The transition between the hydrodynamic part of the spec-
trum and the hard QCD tail has been determined to be between
4 and 5 GeV [22,23] so, a bit conservatively, we consider
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FIG. 5. (Color online) Freeze-out surface τ (x, y) for the inviscid
case.

pt = 1 GeV, as a region well inside the hydrodynamical
domain. Even at this pt , its ratio to the kinetic FO temperature
is a large number pt/Tf = O(10), which can be treated as a
large parameter of the problem, residing in the exponent.

Let us work out the first-order corrections appearing from
the perturbation. There are two effects, one from the extra
matter T = Tf + δT and one from extra motion of the matter
in the sound wave. The latter contribution comes simply from
adding the perturbation to the velocity,

uμ → uμ + δuμ, (4.10)

where δuμ is the perturbation, written in Eq. (3.38) as û1

times τ .
The effect owing to the extra matter is included when

calculating the freeze-out surface:

Tf o = Tb(τ, r) + δT (τ, r, φ), (4.11)

where δT = T̂1/τ , with T̂1 from Eq. (3.37). Equation (4.11)
is solved for τ (r, φ), and the result for the inviscid case
is presented in Fig. 5. Because the contribution from the
perturbation is small, we write τ (r, φ) = τb(r) + δτ (r, φ) and
consider terms up to first order in δτ (r, φ). By this we mean
that the exponent will be approximated by

pμuμ(τb + δτ )

Tf

≈ pμub μ(τb)

Tf

+ 1

Tf

d[pμub μ(τb + δτ )]

d(δτ )

∣∣∣∣
δτ=0

δτ

+ pμδuμ(τb)

Tf

. (4.12)

Figure 6 shows δτ for both the inviscid and the viscous case.
In the former case the contribution is much larger than in the
latter, where the viscosity has damped and widened the peaks.

Figure 7 compares the particle distribution for three cases,
(i) the inviscid case, (ii) the minimal viscosity case η/s =
1/(4π ), and (iii) the case where η/s = 0.134. In the ideal
hydro case the two peaks of the angular distributions, owing
to the overlap of the perturbation with the fireball boundary,
are more pronounced than in the cases with nonzero viscosity.
Also, in case (i) one can clearly see high-frequency oscillations
on the curve. Those are an artifact of the arbitrary limit of the

FIG. 6. (Color online) Excess of freeze-out surface δτ (r, φ)
owing to the initial perturbation. (Top) Ideal case, (bottom) viscous
case with η/s = 0.134. Only the half of the surface that is affected
by the presence of the perturbation was plotted.

number of harmonics used to l < lmax = 30. The oscillations
disappear when we take viscosity into account, because, as we
mentioned earlier, viscosity kills all higher harmonics anyway,
with l > lmax ∼ 10. In the presence of viscosity, the peaks
in the particle distribution are weakened, and their angular
separation is a bit more spread than in the inviscid case.

C. Two-particle correlations

Looking at experimental data on normalized two-particle
correlations, such as the one shown in the bottom plot of Fig. 8,
one sees that the peaks are of the order of about 1%. This means
that the perturbations to the background are small, and such
small changes cannot be observed on an event-by-event basis,
but only in a large sample of events. This is why the observables
are the two (or more)-particle correlation functions, in which
the nontrivial correlations are separated from the uncorrelated
background. Note that not only fluctuations in different events
are uncorrelated, but also statistically independent fluctuations
at different locations in the transverse plane in the same event.

In the two-particle correlation functions one measures mean
squares of the perturbations. Therefore, the smallness of the
perturbation appears quadratically, and thus one has to be able
to get to the level between 10−3 and 10−4 or so in the correlation
magnitude. Nevertheless, the large set of the recorded events
(∼109) by RHIC or LHC detector, with ∼103 particles or
∼106 particle pairs per event provides a sufficient statistical
data sample.

044912-12



FATE OF THE INITIAL . . . . III. THE SECOND ACT . . . PHYSICAL REVIEW C 84, 044912 (2011)

0 1 2 3 4 5 6

φ rad

dN
dφ

0 1 2 3 4 5 6

φ rad

dN
d

0 1 2 3 4 5 6

φ rad

dN
d

φ
φ

FIG. 7. (Color online) Single-pion distribution in arbitrary units
as a function of the azimuthal angle φ (rad) for transverse momentum
pT = 1 GeV and rapidity y = 0. From top to bottom, the curves are
for different viscosity-to-entropy ratios, η/s = 0, 1/(4π ), 0.134,

respectively.

Let us now proceed with our theoretical calculation of the
two-body correlation function based on the single-particle
distribution resulting from the Green’s function (pointlike
perturbation). These correlation functions are presented in two
forms, which in fact contain equivalent information: as a func-
tion of the relative azimuthal angle or as a “power spectrum”
of the flow harmonics. Let us start by looking at the former.

To calculate the two-particle distribution one should simply
take a product of two single-particle distributions and perform
the averaging over the random axial position of the initial
perturbation,

dN

d(�φ)
∼

∫
dN

d(φ1 − ψ)

dN

d(φ2 − ψ)
dψ. (4.13)

The averaging reduces the function of two angles into a
function of only one, the azimuthal difference �φ = φ1 − φ2.
(This is only so for central collisions, which are axially
symmetric: Otherwise, the situation is more complicated as the
direction of the impact parameter breaks the axial symmetry.
This is one of the reasons we focus on central collisions in this
work.)

Our results for the two-particle distributions for three
viscosity values are shown in the top three plots of Fig. 8.
Note first their distinctive shape, with a larger peak centered at
�φ = 0 (when both particles belong to the same maximum
of a single-particle distribution) and two smaller peaks at
�φ ∼ ±2, when two particles belong to two different peaks,
connected by some flat region between them. This shape of
the sound Green’s function is, in fact, very similar to what is
observed experimentally, for example, in the bottom plot in
Fig. 8, which corresponds to data from ATLAS [24].

Now comparing the three pictures in more detail, one
observes that the upper plot (for zero viscosity) has more
structure. The upper plot has four distinct “dips” in which
that two-particle distribution is less than average. Their origin
is explained by matter sucked out by the passing sound front
behind it.

The origin of the additional peaks next to the zero-angle one
is the correlation between one of the peaks in the single-particle
distribution with matter inside the circle. These extra peaks are
attenuated when viscosity is used and for η/s = 0.134 they
have already disappeared. This happens because the viscosity
induces cancellations, between the negative “suction regions”
and positive extra matter inside the circle.

There are now many experimental results for the two-
particle correlations in central collisions such as STAR
collaboration data [25] for a centrality of 0%–12% and
data from ATLAS and ALICE in the very central region
0%–1% [24,26]. Now, comparing our calculated two-particle
distributions (Fig. 8) to these data one should be impressed
by a striking similarity between their shapes, especially for
the “realistic viscosity” (the third in Fig. 8). The width of the
main peak is correctly reproduced, provided the viscosity is
correct. Also the “double-hump” structure on the away side,
with the correct shape of the plateau in between is found. (The
peaks are a bit shifted because the sound velocity as well as
the shape/size of the freeze-out surface is not quite realistic in
our analytic approach.)

Let us emphasize that this nontrivial shape comes from the
hydrodynamical calculation itself, with the initial condition
simply being a local (δ-function-like) hot spot. This agreement
of the shape allows us to conclude that the experiments in
question do see the sound waves propagation,-by a distance
comparable to the fireball radius. The angular positions of the
secondary peaks depend entirely on the ratio of the “sound
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FIG. 8. (Color online) The two-pion distribution in arbitrary units
as a function of azimuthal angle difference �φ (rad). From top
to bottom, the three upper plots correspond to calculated shapes,
for values of the viscosity-to-entropy ratios, η/s = 0, 1/4π, 0.134,
respectively. The bottom plot, shown for comparison, was measured
at LHC by ATLAS collaboration [24], for the most central (0%–1%)
collisions. A very similar shape of the correlation function is in fact
observed by all five collaborations at RHIC and LHC.

horizon” to the size of the fireball (the speed of sound and the
freeze-out time).

All our pictures are assumed to be rapidity independent;
thus, the zero-angle peak is nothing else but the so-called
“soft ridge” discussed in literature as a separate phenomenon.
We are pleased to see that its height, with respect to the two
other peaks, is about the same as in the data, especially for the
third case in Fig. 8. The angular width of this main peak is, in
this case, also quite close to the data.

D. The power spectrum and the initial width of the perturbation

We have also calculated the so-called “power spectra” for
the two-particle correlation functions. Those either can be
calculated from the Fourier transform of the correlator as a
function of �φ, Cn, or from the modulus squared of the flow
harmonics in the single-particle spectrum, because Cn = v2

n.
In this last form the expansion of the two-particle correlation
function is

dN

d�φ
= 1 + 2

∑
m

|vm|2cos(m�φ), (4.14)

and thus it carries the same information as the power spectrum
of harmonics, in which |vm|2 are plotted versus m. (Notice that
these vm are the coefficients of the Fourier expansion of the
particle distribution and are not to be confused with the velocity
coefficients vl(ρ) of the perturbation). The main advantage of
studying the power spectrum is that the phenomena associated
with higher harmonics become more visible, which is difficult
to see in the correlation function itself.

The result is shown in Fig. 9 and it presents maxima and
minima. This structure of the power spectrum, with several
“acoustic peaks,” is known also for other oscillations, most
notably for those seen in the power spectrum of the angular
harmonics of the CMB distribution over the sky such as the
famous Fig. 9 of Ref. [2]. In both the Big and the Little Bangs,
the time allocated to the hydrodynamical stage of the evolution
is limited by the so-called “freeze-out time” τf , after which
the collision rates in matter can no longer keep up with the
system’s expansion. At this time the propagation of the elastic
waves stops and each harmonic has at this moment a different
phase of its oscillation.

While the CMB measurements read the temperature per-
turbation δ(f o) directly from the sky, and thus the nodes
of δl(f o) correspond to the minima, in the Little Bang one
has to calculate the specific combination of the temperature
and flow perturbations. This includes the calculation of
how the freeze-out surface is modified, which was done in
preceding sections. It is the nodes/maxima of this “observable”
combination that make the acoustic minima/maxima. Note
that the simple physics behind this argument makes it very
robust. The minima/maxima are easily predictable and rather
insensitive to many details such as dissipation. In fact the only
assumption needed for this idea to be used in practice is that
the initial state perturbations δl(in) do not have an oscillatory
dependence on l of their own.

Before we discuss the results, we need to mention another
important parameter of the problem, namely, the size of
the initial perturbation. In all the discussion above this was
taken as small and thus unimportant: One could think of the
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FIG. 9. (Color online) Spectral plots for three widths of the initial
perturbation, 0.4, 0.7, and 1 fm, from top to bottom. The (magenta)
small-dashed, the (red) dash-dotted, the (green) solid, and (black)
dashed curves are for η/s = 0, 0.08, 0.134, 0.16, respectively. The
data points are preliminary data from ATLAS reported at QM2001
[24]. Similar data (not shown here) have been reported by the
PHENIX [27] and STAR [28] collaborations. All the curves are
arbitrarily normalized to fit the third harmonic.

perturbation as being practically pointlike, and thus the results
being basically the Green’s function of the equations we are
solving. However, as we will see shortly, when one discusses
the magnitude of the higher harmonics, this size does matter.

Figure 9 shows how this works in practice, the three plots
correspond to three different widths of the initial perturbation,
0.4, 0.7, and 1 fm, and as one can see a change in this size
does change significantly the tail of higher harmonics, the
larger the width the smaller the height of the larger harmonics

in the power spectrum. Nevertheless, this does not affect the
location of the acoustics dip and the secondary maximum,
which remain around m = 7 and 9, respectively.

Different curves on the plot correspond to different vis-
cosities (see the caption), and as one can see, they do affect
higher harmonics drastically. This is to be expected, as higher
harmonics of the flow have higher gradients of the flow. One
can also see from these figures that the fit to the viscosity value
must be done together with the fit to the initial size, as they are
very much correlated with each other.

We do not attempt an actual fit here, adding just some
comments about the issues encountered. The physics of the
initial perturbation size should be, first of all, related to the
size of the “gluonic spot” in a nucleon, propagated via pQCD
evolution to appropriate x and scale Q under consideration.
At RHIC, with x ∼ 10−2, Q ∼ 1–2 GeV we know from
DESY experiments (e.g., diffractive J/ψ production) it to
be rather small, of about 0.3 fm. However, then there is some
nonequilibrium stage, before hydro equations become valid,
during which this spot should grow. To define the particular
value one needs to know the nonequilibrium physics at this
stage. Even to define the start of hydro, one needs to know
which version of hydro is used: ideal, viscous, or “resummed”
(for recent discussion of these issues, refer to Ref. [13] and
references therein). One more comment on the plots in Fig. 9
is perhaps in order: As the reader can see, the curves look
shifted toward the larger m from the data points, especially
well seen for m = 4, . . . , 6. Larger m corresponds to smaller
angular size of the sound circles. This happens because we
have not fitted the freeze-out temperature and time τf to these
data: Decreasing the former and increasing the latter one can
certainly get better fit. We have not done so because in any
case our calculation is done for conformal matter with fixed
speed of sound and ε/T 4 and cannot accurately describe the
real collisions anyway.

E. The location of the perturbation

So far we have demonstrated some qualitative features of
the one-body spectrum and two-body correlations resulting
from a local perturbation, selecting one typical location. In
this section we provide further detail on the modifications
of the Green’s function we calculated on the location of the
initial hot spot. Because we only consider central collisions,
by “location” we mean the radial position of the hot spot. As
shown in Fig. 10, changing the location of the spot visibly
affects the quantitative shape of the two-particle correlation as
well as the power spectrum Fig. 11. When the spot is located
near the center of the fireball, the two-particle correlation
presents only one peak located at �φ = 0 and no structure
on the away side. The characteristic two peaks appear when
the initial perturbation is located not too close to the center
(r ∼ 3–5 fm).

Furthermore, as one can see, the amplitude of the modu-
lation decreases in this case. This happens not because of a
change of the hot-spot amplitude (which is the same in all
cases), but because of the (partial) cancellation between hydro
perturbations for velocities of the first type (in the sound wave)
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FIG. 10. (Color online) (Top) The two-pion distribution in arbi-
trary units as a function of azimuthal angle difference �φ (rad), for
r = 2 fm (blue large-dashed line), r = 3 fm (brown dash-dotted line),
and r = 4.1 fm (red solid line). (Bottom) The two-pion distribution
in arbitrary units as a function of azimuthal angle difference �φ

(rad), for r = 4.1 fm (the same red solid line), r = 4.7 fm (green
small-dashed line), and r = 5.5 fm (black dash-dot-dotted line).
All plots are for the same value of the viscosity-to-entropy ratio
η/s = 0.134.

and the second type (extra radial flow stemming from the
modification of the freeze-out surface). As we have discovered,
the very sign of the projection of the former on the radial
direction depends on the initial position of the perturbation. For
perturbations located near the center of the fireball it is positive,
but as the hot spot gets located at larger r , it decreases, becom-
ing negative until it gets as large as the second one and cancels
it, when the hot spot is located at the very edge of the fireball.

In Fig. 11 it is possible to see how the change in the radial
position of the initial perturbation affects the power spectrum.
Its general features remain unaltered, presenting maxima and
minima in all cases, which decrease for larger values of m

owing to viscosity. The figure shows that there is some shift
with r in the position of the maxima and minima.

To compare our results with the experimental data, it
would be necessary to average over different initial pertur-
bations, using probability distributions for their locations and
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FIG. 11. (Color online) The (red) solid, (blue) dashed, (green)
dash-dotted, and (black) dotted curves correspond spectral distribu-
tions obtained for initial perturbations located at r = 3, 4.1, 4.7, and
5.5 fm, respectively, for η/s = 0.134.

amplitudes. Because the minima for the different locations do
not precisely match, in an averaged case a minimum would
still be present, but it would not be as pronounced as in the
case of an individual initial perturbation; the whole shape of
the power spectrum would be smoother, with no sharp dips.
In principle, very precise data can potentially be used to infer
some information about the perturbation distribution in r . Such
averaging is deferred to the subsequent works, because it would
require a particular model for the initial state. It can be the
Glauber model (we discussed in our previous paper) or some
models including the saturation phenomenon.

V. SUMMARY AND FINAL COMMENT

By calling this work “the second act of hydrodynamics”
we emphasize the huge progress made in the field. From
measuring the mean velocity of matter and the mean ellipticity
a decade ago, the first evidences for collective flow, we now
have data providing up to the ninth harmonics of it. With many
theory results, some of them in this work, we also now have
an understanding of how perturbations behave as m grows.
In short, the answer is that they are acoustic oscillations, with
certain m-dependent oscillation frequencies and dampings. We
have found that, such as in the Big Bang, rotating phases
at the freeze-out generate minima and maxima. Remarkably,
experimental data provide the first hints for the minimum and
the second maximum.

The rather intricate shape of the two-particle correlations as
a function of �φ is very similar to the results of our calculation
of the Green’s function from a local source. However, we
would like to mention, as a parting comment, that the following
questions are still unanswered and represent the next challenge
for the field: Do the sound circles exist in reality, or is it just a
mathematical tool? Are different harmonics coherent or not?
A way to figure this out is explained in our previous paper [1]:
One should measure the three-particle correlation functions,
and look for the “resonances” between three harmonics related
by the “triangular” condition m1 + m2 + m3 = 0, or by the
two-particle correlations with respect to reaction plane (for
noncentral collisions).
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