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Understanding the detailed production and hadronization mechanisms for heavy quarkonia and their
modification in a nuclear environment presents one of the major challenges in QCD. Calculations including
nuclear-modified parton distribution functions (nPDFs) and the fitting of breakup cross sections (σbr ) as
parameters have been successful at describing many features of J/ψ modifications in proton (deuteron)-nucleus
collisions. In this paper, we extend these calculations to explore different geometric dependencies of the
modifications and confront them with new experimental results from the PHENIX experiment. We find that
no combination of nPDFs and σbr , regardless of the nPDF parameter set and the assumed geometric dependence,
can simultaneously describe the entire rapidity and centrality dependence of J/ψ modifications in d + Au
collisions at

√
s

NN
= 200 GeV. We extend these calculations to incorporate initial-state parton energy loss,

which results in an improved description of the experimental data. Finally, we compare the data with previously
published calculations, including coherence effects, and find them unable to describe the full rapidity and
centrality dependence.
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I. INTRODUCTION

There are numerous theoretical approaches for calculating
the modification of heavy quarkonia yields in collisions of
protons (deuterons) on nuclear targets. In this paper, we
explore in detail whether one of these approaches, i.e., the
use of nuclear-modified parton distribution functions (nPDFs)
together with a fitted breakup cross section to account for
collisions with nucleons, is able to describe recently published
PHENIX data on J/ψ production in d + Au collisions at√

s
NN

= 200 GeV [1]. The high-statistics data were measured
as a function of collision geometry and over a broad range of
rapidities and thus provide stringent model constraints. We also
extend this model to incorporate additional effects from initial-
state parton energy loss. Finally, we compare the data with
two published calculations that use quite different approaches
to calculate the modification in a nuclear environment: a
gluon saturation model and a model where J/ψ production
is determined by coherence and color-transparency effects.

In deuteron-nucleus collisions at the Relativistic Heavy Ion
Collider (RHIC), the nucleus is extremely Lorentz contracted
and thus the entire interaction and traversal of the nuclear
target takes place on a time scale of the order of 0.1 fm/c.
Thus, one expects coherence effects to play a significant role
in the physics of particle production and hadronization. When
studying heavy quarkonium states, one can postulate that the
initial hard production of a cc pair can be factorized from the
later traversal of that pair through the remainder of the nucleus.
Many calculations have utilized this factorized approach in
trying to understand the nuclear modification of J/ψ yields in
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proton (deuteron)-nucleus reactions (for example, see [2–5]).
In this factorized framework, the modification of the initial
cc pair production is obtained from nPDFs. Following the
initial pair production, the effect of the disassociation of
charm pairs by collisions with nucleons is accounted for by
a simple breakup cross section (σbr ). We extend this simple
calculational framework in a way that allows an investigation
of some of the key underlying assumptions and whether
the experimental data requires additional physical effects,
including coherence effects and initial-state parton energy loss.

In Sec. II, we describe each of the elements that go
into the calculation of the nuclear-modification factors. In
Sec. III, we present the results of calculations made with
a shadowing plus σbr model and compare them with recent
rapidity- and centrality-dependent PHENIX data. In Sec. IV,
we show that the shadowing plus σbr model is incapable
of describing the rapidity and centrality dependence of the
data with any combination of parameters. In Sec. V, we
explore whether the addition of initial-state energy loss to
the shadowing plus σbr calculation allows one to improve the
agreement with the data. In Sec. VI, we describe the results
of additional calculations using modifications from a gluon
saturation model, and a coherence and color-transparency
model. Finally, we summarize our results in Sec. VII.

II. CALCULATION DETAILS

In this section, we describe the inputs required for the
calculation of the nuclear-modification factors (RpA or RdA)
for various nuclear targets and centrality selections. First,
the density of partons in the nucleus is modified relative
to the parton distribution function (PDF) for free nucleons,
resulting in a modified number of hard scatterings that create
cc pairs from g + g, q + g, and q + q interactions. This effect
is included in the calculations presented here by using the
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FIG. 1. (Color online) The gluon nuclear modification RG for the
Au nucleus at the scale Q2 = 9 GeV2 is shown for the EPS09 central
value (labeled set 1) and for all 30 error sets. The shaded (yellow)
area is the overall uncertainty band calculated from the error sets,
representing a 90% C.L. uncertainty.

state-of-the-art EPS09 nPDF parameter set, with uncertainties
represented by 31 different Hessian basis parametrizations as
detailed in [6]. Because J/ψ production at high energies is
dominated by interactions between gluons, we will consider
only g + g interactions in the calculations presented in this
paper. Figure 1 shows the EPS09 gluon modification RG at
Q2 = 9 GeV2, which is the appropriate scale for production
of the J/ψ . It can be seen that the nPDFs are not well
constrained by experimental data, particularly the low-x gluon
distributions, which dominate the J/ψ production probability
at forward rapidity at RHIC energies.

The second main effect is that after the cc pair is created
in the initial state (this is frequently referred to as the J/ψ

precursor, since the hadronic state is expected to take of
the order of 0.3 fm/c to form), the pair may break up or
be decorrelated while traversing the remaining portion of the
nucleus. This second effect is often included by assuming a
constant cross section σbr for the breakup of the pair. We note
that this effect is also sometimes termed absorption, though
this nomenclature can be misleading, since the charm pair
still exists but is no longer able to form a final-state J/ψ

meson. Currently there is no fundamental description of the
hadronization process for the J/ψ that agrees with all the
available experimental data [7,8]. The lack of such a theory
for the dynamics of hadronization means one has no ab initio
calculation of this precursor-nucleon cross section and its
dependence on the relative velocity between the pair and the
target nucleons. In most works, the value of σbr is assumed to
be independent of the J/ψ rapidity for a given

√
s

NN
, and is

determined from fits to the experimental data [9].

A. Nuclear geometry

In order to account for the geometric dependence of the
two above-mentioned effects, we employ a Monte Carlo
Glauber model [10]. The nucleons are randomly given spatial
distributions within the deuteron based on the Hulthen wave
function, and within the gold nucleus based on a Woods-Saxon
distribution with parameters R = 6.38 fm and a = 0.54 fm
[3]. Individual d + Au collisions at

√
s

NN
= 200 GeV are

simulated by randomly selecting an event impact parameter
(b) and determining if any pair of nucleons collide using an
inelastic cross section of σ = 42 mb. One example event is
shown in Fig. 2, where the open circles are the positions
of the gold-nucleus nucleons in the transverse plane, the
darker (red) filled circles are the positions of the two nucleons
from the deuteron, and the lighter (green) filled circles are
the gold-nucleus nucleons which suffered a binary collision.
Each binary collision between a deuteron nucleon and a
gold nucleon has a certain probability to produce a cc pair.
This probability is modified from proton-proton collisions
according to the aforementioned nPDFs.

The EPS09 nPDF parametrization, as well as other nPDF
parameterizations, are predominantly determined from deep
inelastic-scattering experiments and minimum-bias p + A

reactions producing Drell-Yan pairs [6]. In such experiments,
there is no measure of the impact parameter or transverse
distance within the nucleus for the interaction and therefore
the geometric dependence of the nPDF modification is not
constrained.

The partons inside the nucleons at low x have wave
functions that are longer in the longitudinal direction than
the size of the Lorentz contracted nucleus. Thus the nPDF

FIG. 2. (Color online) Monte Carlo Glauber event display in the
transverse (x-y) plane. Open circles are the positions of the gold-
nucleus nucleons. Dark (red) filled circles are the positions of the
two nucleons from the deuteron. Light (green) filled circles are the
positions of the gold-nucleus nucleons which suffer at least one binary
collision. The large dashed circle represents the gold-nucleus radius
used in the Woods-Saxon parametrization.
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modification depends on the density of overlapping nucleons,
as shown in the transverse plane in Fig. 2. However, there is
no such Lorentz contraction in the transverse direction, and
the parton wave-function extent in this plane is of the order of
1 fm. Therefore, the largest nuclear effect would be expected
where the density, and thus the longitudinal overlap, is largest,
which is near the center of the nucleus, and should decrease
as one moves out toward the periphery.

In Ref. [11], the nPDF modification is postulated to be
linearly proportional to the density-weighted longitudinal
thickness of the nucleus at the transverse position of the binary
collision,

M(rT) = 1.0 − a�(rT), (1)

where �(rT) = 1
ρ0

∫
dzρ(z, rT) is the density-weighted lon-

gitudinal thickness and ρ0 is the density at the center of
the nucleus. In Fig. 2, each gold nucleon is a transverse
distance rT from the center of the gold nucleus, and the
corresponding average local thickness �(rT) is determined
from the Woods-Saxon parametrization.

Figure 2 shows that there are significant fluctuations in the
thickness �(rT) due to the randomly selected spatial locations
of the nucleons in the gold nucleus at the time of the collision.
In fact, the inclusion of such fluctuations has proven crucial for
modeling the initial conditions in heavy-ion reactions (see, for
example, [12–16]). In order to incorporate these fluctuations,
we calculate the number of target nucleons around the struck
target nucleon within a transverse radius, Rtube = 2 × Rnucleon,
where Rnucleon is taken to be the charge radius of the proton,
which is 0.87 fm [17]. The average number of nucleons within
this cylinder Ntube is πR2

tubeρ0 × �(rT), and the proportionality
constant can be absorbed into the parameter a in Eq. (1). The
exact choice of Rtube is somewhat arbitrary, but reasonable
changes of its value do not significantly change the results
shown in this paper.

Figure 3 shows the two-dimensional (2D) correlation
between Ntube and rT that results from this Monte Carlo (MC)
calculation. The mean value of Ntube as a function of rT is
shown as white points. For collisions in the middle of the
nucleus, the average value of Ntube is ≈20 and the rms is
≈5. An analytic calculation of the average �(rT) from the
Woods-Saxon parametrization times πR2

tubeρ0 yields the solid
red curve. The analytic calculation differs from the mean of
the MC calculation because the MC calculation effectively
averages the density over the tube radius Rtube. If we smear
the analytic calculation around rT by Rtube, we obtain the red
dashed curve, which is in much better agreement with the
average of the MC results.

In our calculations, we take these fluctuations into account
by utilizing Ntube instead of the average value of �(rT):

M(rT) = 1.0 − aNtube(rT). (2)

There is a direct relationship between the parameter a and 〈M〉,
which is the modification averaged over all nuclear geometries,
and this is equivalent to the observable nuclear-modification
factor averaged over the entire collision centrality range. If
the centrality of an event varies between 0% (most central
collision) and 100% (least central collision), the observable
modification averaged over all centrality is represented by
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FIG. 3. (Color online) The Monte Carlo Glauber results for the
Ntube as a function of rT. The mean values of Ntube as a function of
rT are shown as white points. The analytic calculation of the average
value of �(rT) from the Woods-Saxon parametrization, rescaled to the
Ntube value, is shown as the solid (red) curve. Smearing the analytic
calculation around rT by the tube radius Rtube yields the dashed (red)
curve.

RdAu(0–100%). The relationship between a and RdAu(0–
100%) is determined by averaging M over the rT distribution
for unbiased collisions, as determined from the Glauber Monte
Carlo (shown in Fig. 3 of the PHENIX publication [1]). The
results are shown as the solid curve in Fig. 4. We also consider
two other geometric dependencies for the nPDF:

M(rT) = exp[−aNtube(rT)], (3)

M(rT) = 1.0 − a[Ntube(rT)]2, (4)
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FIG. 4. (Color online) The parameter a as a function of RdAu(0–
100%). The curves correspond to linear, exponential, and quadratic
geometric dependence.
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FIG. 5. (Color online) The modification dependencies M(rT) for the three geometry cases (exponential, linear, and quadratic) assuming
four different average RdAu(0–100%) values: 0.8, 0.6, 0.4, 0.2 (from the top to bottom curves in each case). The dot-dashed black line is Ntube

as a function of rT, normalized to unity at rT = 0, which is shown for reference.

which are referred to as exponential and quadratic, respec-
tively. Figure 4 shows the dependence of the parameter a on
RdAu(0–100%) as the dotted (dashed) curve for the exponential
(quadratic) case.

We examine the modification M(rT) for each of these cases.
Figure 5 (left panel) shows M(rT) for the exponential case. The
four curves correspond to geometry-averaged modifications of
〈M〉 = 0.8, 0.6, 0.4, 0.2, from the top to bottom curves. The
dot-dashed black line is the shape of the mean of the Ntube

distribution versus rT, normalized to unity at rT = 0, which is
shown for reference. The middle (right) panel shows the same
results for the linear (quadratic) case. As a consequence of
the linear and quadratic functional forms, M(rT) has negative
values for small rT when the geometry-averaged modification
is less than 0.4 (0.6) for the linear (quadratic) cases. This
unphysical result can be removed by forcing the modification
to be positive definite, and recalculating the corresponding
a parameter. In the analysis presented in this paper, the
modification values from the nPDF do not typically reach these
low values, and thus we did not have to recalculate the results.
However, careful attention to this problem will be crucial for
cases with larger modifications (for example, more forward
rapidity J/ψ measurements or very-low-x measurements at
the Large Hadron Collider in p + A and A + A).

B. Parton kinematics

There are two final ingredients needed to map the nPDF
modifications onto the final-state J/ψ suppression. These are
the distributions of Bjorken x2 and Q2 for the parton-parton
processes that contribute to J/ψ production, and the mixture of
g + g, g + q, and q + q processes. The simplest relationship
between the J/ψ and partonic kinematics arises under the
assumption that the production is a 2 → 1 process, for
example, g + g → J/ψ . By invoking conservation of energy
and momentum, the production of a J/ψ with pT = 0 GeV/c

results in the following relationship between J/ψ rapidity (y)
and the parton momentum fraction (x2):

x2 =
MJ/ψ√

s
NN

e−y. (5)

This 2 → 1 process is actually forbidden by angular momen-
tum conservation, but may approximate the correct kinematics
at low pT, or in a color-evaporation picture where soft gluon
emission does not significantly modify the exact correlation
between x2 and y. It has been pointed out that with a more
detailed understanding of the subprocesses that contribute to
J/ψ production, one can utilize a more exact map of x2 and Q2

to the final J/ψ as a function of rapidity and pT [18–20]. The
authors utilize the following relation between x1 and x2 that
requires a full modeling of the cross-section dependencies:

x2 =
x1

√
p2

T + M2√s
NN

e−y − M2

√
s

NN

(√
s

NN
x1 −

√
p2

T + M2ey
) . (6)

This relation is exact for a 2 → 2 process where one outgoing
particle is an on-shell J/ψ and the other particle is massless.

Figure 6 (upper panel) shows the correlation between
Bjorken x2 and the J/ψ rapidity in the 2 → 1 case. This is
compared with a scatterplot showing calculation results from
PYTHIA 6.416 [21] with the nonrelativistic QCD (NRQCD)
setting for J/ψ production. As expected, the x2 values for
a given J/ψ rapidity are shifted to larger values. Since the
J/ψ 〈pT〉 ≈ 2.2 GeV/c, there must be one or more balancing
particles, which requires larger available energy. Additionally,
the emission of a balancing gluon or gluons smears the rapidity
of the J/ψ relative to the 2 → 1 calculation. Also shown are
the 〈x2〉 values as a function of rapidity for the PYTHIA g + g

color singlet channel, g + g color octet channel, and the q + g

color octet channel. The mean x2 value can be misleading
since it may have a large influence from a small fraction of
high-x events. Thus, in the lower panel, we show the log10(x2)
distribution for the J/ψ rapidity range 2.0 < y < 2.4 for the
three different contributions. The majority of processes for
this rapidity involve x2 ≈ 0.002, but with a more significant
high-x tail in the octet cases. Note that the underlying PYTHIA

production does not obey the 2 → 2 kinematics of Eq. (6),
since there is initial-state kT and many of the octet production
channels involve more than two final-state particles.

We now incorporate all of the following items: (1) Monte
Carlo Glauber, (2) deuteron and gold nuclear geometries,
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FIG. 6. (Color online) Upper panel: The kinematic correlations
between the J/ψ rapidity and Bjorken x2 for the 2 → 1 process
compared with a scatterplot showing calculations from PYTHIA 6.416

with the NRQCD setting for J/ψ production. The 〈x2〉 values are
shown for three different production mechanisms within PYTHIA 6.416.
Lower panel: The x2 distributions for J/ψ produced with rapidity
2.0 < y < 2.4 are shown for the three different PYTHIA production
mechanisms.

(3) EPS09 nPDF parameter set, (4) geometric-dependence
assumption for nPDF (linear, quadratic, exponential), and
(5) kinematic mapping (g, q, q, x2, Q2 → J/ψ y, pT).
We then add the second factorized part of the calculation by
using the cross section σbr to test if the cc pair is broken up
by collisions with those nucleons having znucleon > zbinary that
reside in a tube of radius Rtube around the production point.
Note that although the calculations are factorized, the results

are autocorrelated by the geometry. For example, a binary
collision occurring near rT = 0 has a larger nPDF modification
and also a larger probability of breakup. These autocorrelations
are important to account for, and have been previously explored
in terms of kT kicks broadening the pT distribution [22,23].

Two additional benefits of this Monte Carlo Glauber
approach with full fluctuations are that we can model the exact
PHENIX experimental d + Au centrality selection event by
event, and that we never project onto an averaged quantity
(e.g., the average impact parameter for each centrality class)
and then calculate the modification for that average quantity.

III. CALCULATION RESULTS

Gathering all of these pieces together, we show an example
calculation in Fig. 7 of the J/ψ nuclear modification as
a function of rapidity for the centrality integrated case,
RdAu(0–100%). In this example, we utilize the 2 → 1 exact
process mapping and the linear geometric dependence of the
nPDFs. We show the default EPS09 result with σbr = 4 mb,
all 30 other variations for EPS09 with σbr = 4 mb, and a
calculation assuming no nPDF modification with σbr = 4 mb.
The PHENIX experiment has recently reported high-statistics
nuclear-modification factors from J/ψ d + Au measurements
at

√
s

NN
= 200 GeV as a function of rapidity [1]. The centrality

unbiased data are shown in Fig. 7. The calculation and
experimental data agree within systematic uncertainties.

We emphasize that this calculation utilized the 2 → 1
kinematics. We have performed the same calculation using

 RapidityJ/
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FIG. 7. (Color online) The J/ψ nuclear-modification factor RdAu

for 0–100% interaction centrality as a function of rapidity. The
calculations include the EPS09 nPDFs with the linear geometric
dependence and 2 → 1 kinematics. All 31 EPS09 nPDF variations are
shown. These should not be interpreted as a one-standard-deviation
uncertainty band. The PHENIX experimental data are shown as
points. The vertical lines are the point-to-point uncorrelated uncer-
tainties and the boxes are the point-to-point correlated systematic
uncertainties. Not shown is the additional ±7.8% global scale
uncertainty.
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FIG. 8. (Color online) Comparison of PHENIX data with calcu-
lations (dashed curves) using the 31 EPS09 parameter sets with linear
nuclear-thickness dependence. Each EPS09 parameter set is shown
for its own best fit σbr value to the RCP pattern. The solid (blue) curve
was obtained with EPS09 set 17 and σbr = 3.2 mb. It provides the
best overall fit to the RCP data, despite failing to reproduce the RdAu

patterns.

the various PYTHIA kinematics and find only a very modest
change in the rapidity dependence, which in the calculation
comes entirely from the nPDF dependence on x2 and Q2.
Utilizing the PYTHIA kinematics leads to a slight blurring of
this relation and a general shift to larger x2 values, as expected
from Fig. 6. This in turn leads to a flattening of the calculated
RdAu versus rapidity curve, and to slightly poorer agreement
with the data. However, the uncertainties in the nPDFs do
not allow any conclusion to be drawn about the underlying
production process.

Figure 8 shows the PHENIX experimental nuclear-
modification factors for peripheral events, RdAu(60–88%) (top
panel), for central events, RdAu(0–20%) (middle panel), and
the ratio between them RCP 0–20%/60–88% (lower panel).
Note that the significant systematic uncertainties in the rapidity
dependence of the modification, shown as boxes in the figure,
and referred to by PHENIX as type-B systematics, largely
cancel in the RCP ratio.

We utilize the rT distributions for each centrality class
shown in Fig. 3 of the PHENIX publication [1] to compute the
expected modification in each centrality. There are many dif-
ferent statistical fits one can perform between the experimental
data and our theoretical calculations. In this case, we perform
a modified-χ2 (χ̃2) fit to just the RCP data (which provides by
far the best constraint on the rapidity dependence). The χ̃2-fit
method, which accounts for both statistical and systematic
uncertainties, is detailed in Ref. [24].

We consider the linear, quadratic, and exponential geomet-
ric dependencies for the nPDFs. Figure 8 shows the results for
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FIG. 9. (Color online) Comparison of PHENIX data with cal-
culations (dashed curves) using the 31 EPS09 parameter sets with
quadratic nuclear-thickness dependence. Each EPS09 parameter set
is shown for its own best-fit σbr value to the RCP pattern. The solid
(blue) curve was obtained with EPS09 set 30 and σbr = 3.4 mb.
It provides the best overall fit to the RCP data, despite failing to
reproduce the RdAu patterns.

the linear geometric dependence. Each dashed curve represents
one of the 31 EPS09 nPDF parameter sets and the best fit σbr

value for that parameter set (i.e., minimum χ̃2) to the RCP data.
The corresponding result is also shown for RdAu peripheral
and central in the upper and middle panels, respectively. The
solid curve represents the best fit of all combinations of EPS09
parameter sets and σbr values—corresponding to EPS09 nPDF
parameter set 17 and a σbr = 3.2 mb. However, even this best
fit has a χ̃2 = 41.5, which corresponds to an extremely poor fit
(i.e., probability less than 10−4). The result with the geometric
nPDF exponential case is similar with the best fit from EPS09
nPDF parameter set 17 and σbr = 4.2 mb and a poor χ̃2 =
50.6.

The results for the quadratic geometric dependence are
shown in Fig. 9. The best fit now corresponds to EPS09
parameter set 30 and σbr = 3.4 mb. Again, even this best fit has
a χ̃2 = 46.3, which corresponds to an extremely poor fit. One
notable feature that is counterintuitive is that for some EPS09
nPDF parameter sets, the best fit shown by the dashed curve is
far below the RCP data points. Because the rapidity shape is so
poorly matched, it is possible that a better fit is obtained under
the assumption that the global scale uncertainty of 8.2% has a
three-standard-deviation fluctuation low.

IV. NEW GEOMETRIC CONSTRAINTS

In Ref. [1], the PHENIX collaboration presented a new way
of constraining the geometric dependence of the combined
nuclear effects. By plotting RCP (0–20%/60–88%) versus
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the geometry-averaged nuclear modification RdAu(0–100%),
there are constrained parametric dependencies for the linear,
exponential, and quadratic cases. In Ref. [1], the analytic
parametrization for M(rT) as a function of the average �(rT)
was used to compare the nuclear modification in all centralities
for a given value of parameter a. For a particular geometric
dependence, varying the values of a results in a locus of
points for the constrained relationship between RdAu and RCP.
Figure 10 shows, as dotted, solid, and dashed black lines, the
result of that analytic calculation for the exponential, linear,
and quadratic cases, respectively. To be clear, these curves are
calculated purely from the Monte Carlo Glauber geometry,
the average density-weighted nuclear thickness �(rT), and the
simple geometric-dependence equation (i.e., no specific model
of nPDFs, σbr , etc.). Also shown are the PHENIX experimental
data with the lines as point-to-point uncorrelated uncertainties
and the ellipses as one-standard-deviation contours from the
combined systematic uncertainties. As stated in Ref. [1], this
demonstrates that the forward rapidity J/ψ data cannot be
reconciled with an exponential or linear geometric dependence
for the nuclear modification.

We pursue this test one step further by plotting the
results from our calculations using the EPS09 nPDFs and
σbr model. Figure 10 shows all EPS09 nPDF parameter
sets using the exponential geometric dependence, a range of
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FIG. 10. (Color online) The points are the PHENIX J/ψ RCP

plotted vs RdAu. The ellipses are the one-standard-deviation contours
for the systematic uncertainties. The open circles, closed squares,
and closed circles are from backward, mid, and forward rapidity,
respectively. Analytic calculations are shown that assume a purely
exponential, linear, or quadratic geometric dependence for the nuclear
modification [1]. The full calculation with an exponential thickness
dependence for the shadowing is shown for all EPS09 nPDF
parameter sets with σbr = 0, and also for all EPS09 nPDF parameter
sets with all σbr values.

values of σbr (from 0–18 mb, in 2 mb steps) and the full
range of rapidity values. The subset corresponding to σbr = 0
is shown separately, as the thick line. As expected, since
the nPDF dependence is exponential, the σbr = 0 lines fall
almost perfectly on the analytic pure exponential case. With
a nonzero σbr contribution, which also has an exponential
geometric dependence, we expected that everything would
collapse onto the same line. However, with two competing
effects, RdAu(0–100%) = 1 does not always equate with the
trivial case of no modification, but can also occur if the two
effects average to 1. In the latter case, RCP need not be 1.
Specifically in our case, in the backward rapidity region, the
nPDF leads to an enhancement (antishadowing) and a nonzero
σbr to a suppression. This competition can lead to the case
where RdAu(0–100%) = 1, while the RCP �= 1 (i.e., modest
enhancement in peripheral events due to the nPDF effect and
modest suppression in central events due to the σbr effect).
This effect leads to the slight splitting of the σbr > 0 lines for
values near RdAu = 1.

Figure 11 shows the same quantities for the case of linear
geometric dependence of the nPDF in our calculation. Again,
the case with σbr = 0 leaves only the purely linear nPDF and
thus these lines collapse onto the analytic linear case. The
curves for all σbr > 0 cases result in a geometric dependence
that is part linear and part exponential. Thus, one sees that for
larger suppressions (due to larger σbr values), the curves move
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FIG. 11. (Color online) The points are the PHENIX J/ψ RCP

vs RdAu. The ellipses are the one-standard-deviation contours for the
systematic uncertainties. The open circles, closed squares, and closed
circles are from backward, mid, and forward rapidity, respectively.
Analytic calculations are shown that assume a purely exponential,
linear, or quadratic geometric dependence for the nuclear modifica-
tion [1]. The full calculation with a linear thickness dependence for
the shadowing is shown for all EPS09 nPDF parameter sets with
σbr = 0, and for all EPS09 nPDF parameter sets with all σbr values.
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FIG. 12. (Color online) The points are the PHENIX J/ψ RCP

vs RdAu. The ellipses are the one-standard-deviation contours for the
systematic uncertainties. The open circles, closed squares, and closed
circles are from backward, mid, and forward rapidity, respectively.
Analytic calculations are shown that assume a purely exponential,
linear, or quadratic geometric dependence for the nuclear modifica-
tion [1]. The full calculation with a quadratic thickness dependence
for the shadowing is shown for all EPS09 nPDF parameter sets with
σbr = 0, and for all EPS09 nPDF parameter sets with all σbr values.

between the analytic linear case to the analytic exponential
curve. One again sees some cases where RdAu(0–100%) = 1
while RCP is not equal to one, for the same reason as described
above.

Lastly, Fig. 12 shows the results for the quadratic case.
In this case, the σbr = 0 lines are close to the analytic
quadratic case, but not a perfect match. This disagreement
results from the inclusion of fluctuations in the thickness in
our full calculation. As one increases the value of σbr in
2 mb increments, the lines move to the left as the exponential
geometric dependence from σbr dominates over the quadratic
nPDF effect.

This full suite of curves reveals that even attempting to fit
just the forward rapidity data with a larger and larger σbr will
not successfully capture the full centrality dependence (even
using the quadratic nPDF contribution).

The results of fitting RCP shown in Figs. 8 and 9 demon-
strated that no variation in the model (e.g., EPS09 nPDF
parameter sets, nPDF geometric dependence, single σbr values,
etc.) can be reconciled with the full rapidity and centrality
dependence of the experimental data. It is possible that σbr may
have a rapidity dependence due to the different relative velocity
of the cc pair with respect to the target nucleons. A naı̈ve
expectation is that a shorter time spent in the nucleus should
result in a smaller σbr due to a smaller growth in the physical
size of the cc pair toward that of the final state J/ψ . However,

in order to attempt to describe the data with a rapidity-
dependent σbr , the cross section would need to be much larger
at larger rapidity (as shown in Ref. [25] in section 5.2).

V. INITIAL-STATE ENERGY LOSS

Energy loss in the nucleus of the incoming parton upstream
of the hard process is another effect that may impact J/ψ

yields in deuteron-nucleus collisions. Forward rapidity J/ψ

are produced from a high-x1 parton (from the deuteron) and
a low-x2 parton (from the gold nucleus). If the high-x1 parton
from the deuteron loses energy before the hard scattering, the
result will be a smaller J/ψ production probability and a shift
backward in rapidity for any produced particles (including
the J/ψ). This framework has been used to reproduce lower-
energy Drell-Yan data in p + A collisions (see, for example,
[26,27]). However, the same data have also been interpreted in
terms of nuclear shadowing models without initial-state energy
loss.

More recently, in Ref. [28], a calculation is presented
of initial-state parton energy loss and its impact on Drell-
Yan production with predictions for measurements in p + A

collisions. In the case of initial-state radiative energy loss,
they predict that �E/E ∝ L, where L is the path through
the nucleus prior to the hard scattering. Drell-Yan data
from experiment E906 at Fermilab will directly address this
prediction [29].

We have implemented this energy-loss mechanism in
our calculation (in addition to the nPDF and σbr contribu-
tions). Within the Monte Carlo Glauber, we also calculate
Ntube[before], which is the number of gold-nucleus nucleons
in the tube that have a z location prior to the z position of
the binary collision of interest. We posit that the initial-state
energy loss is proportional to Ntube[before], which is the
same as being proportional to the path L, with the inclusion
of local fluctuations. For this calculation, we have utilized
the PYTHIA production g + g → J/ψ + X kinematics. For
each binary-collision location, we randomly select a PYTHIA

x1, x2 combination and the mean J/ψ rapidity for those
kinematics. We then calculate the expected x1 shift due to
the energy loss corresponding to the particular Ntube[before]
value. From this information, we calculate the decrease in
the probability for these partons to produce a cc pair and the
new (lower) average final-state J/ψ rapidity with the mod-
ified parton kinematics. We have varied the proportionality
constant for the initial-state energy loss in the Ntube[before]
dependence.

Figure 13 (left panel) shows results including only initial-
state parton energy loss (i.e., no nPDF modification and
σbr = 0), with a linear path-length dependence. One observes
a larger suppression at forward rapidity, and in fact a modest
enhancement at backward rapidity. Figure 13 (right panel)
shows the results when a quadratic path-length dependence is
assumed for the energy loss (i.e., �E/E ∝ L2). In this case,
for large values of the proportionality constant, there is large
suppression at all rapidities. For either the L or L2 dependence,
one cannot achieve good agreement with the experimental data
with initial-state parton energy loss alone.
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FIG. 13. (Color online) Left panel: Calculation including initial-state parton energy loss only, and with �E/E ∝ L, where L is taken to
be Ntube[before] to include fluctuations. The curves correspond to coefficients of 0.01, 0.03, 0.05, 0.07, and 0.09/fm (from upper to lower,
respectively, at large rapidity). Right panel: Calculation including initial-state parton energy loss only, and with �E/E ∝ L2, where L2 is taken
to be N 2

tube[before] to include fluctuations. The curves correspond to coefficients of 0.005, 0.015, 0.025, 0.035, and 0.045/fm2 (from upper to
lower, respectively, at large rapidity).

We then include all three nuclear effects (nPDF modifica-
tion, σbr , and initial-state parton energy loss), and vary the
EPS09 nPDF parameter set and fit for the best σbr and energy-
loss coefficient. Figure 14 (left panel) shows the results of
finding the best χ̃2 for fits to the RCP with all EPS09 parameter
sets, assuming a linear path-length dependence for the initial-
state energy loss. The solid curve represents the best fit of all of
the EPS09 parametrizations after optimizing σbr and the initial-
state energy-loss coefficient. The best fit gives a reasonable
description of the RCP. It corresponds to EPS09 parameter

set 23, σbr = 3 mb, and �E/E ≈ 0.05/fm ×L (converting
the average Ntube[before] to a length through normal nuclear-
matter density). The χ̃2 of 20.2 is a better fit than without
the initial-state energy loss, but still gives a probability of less
than 5%. Although the fit to the RCP is reasonable, there is no
global agreement with the data for RdAu in peripheral or central
events.

Figure 14 (right panel) shows the same quantities under
the assumption that the initial-state energy loss is quadratic in
the path or Ntube[before]. In this case, the best fit to RCP has
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FIG. 14. (Color online) Left panel: Best fit to the RCP data including initial-state parton energy loss, assuming the loss is proportional
to Ntube[before]. The solid (blue) curve shows the best fit of all of the EPS09 parameter sets. Right panel: Best fit to the RCP data including
initial-state parton energy loss, assuming the loss is proportional to N2

tube[before]. The solid (blue) curve shows the best fit of all of the EPS09
parameter sets.
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FIG. 15. (Color online) Left panel: The J/ψ nuclear-modification results from the color-glass condensate calculation, including gluon
saturation, from Ref. [31], as a function of event impact parameter in d + Au reactions. Right panel: The results of a coherence and
color-transparency calculation [33] for the J/ψ nuclear modification as a function of event impact parameter in p + Au reactions.

EPS09 parameter set 5, σbr = 4 mb, and the initial-state energy
loss corresponds to approximately �E/E ≈ 0.005/fm2 × L2.
Again, although the RCP fit is reasonable, there is no global
agreement for the RdAu data.

These results are a first attempt at comparing the simplest
initial-state energy-loss calculation to the recent J/ψ data.
We have not included Poisson fluctuations of the radiated
quanta, which are important when one is near the very-
high-x1 limit, as pointed out in Ref. [28]. However, in
their calculation, they have not included fluctuations in the
L value itself, as we have done through utilizing Ntube

[before].

VI. ADDITIONAL MODEL COMPARISONS

Our calculation results presented thus far include no explicit
coherence effects (either initial or final state). In this section,
we discuss two such published calculations and check if they
are able to reproduce the experimental data.

One such proposal incorporates the saturation of strong
gluon fields in the incoming nucleus (nonlinear evolution of the
gluon distributions at low x). In the PHENIX paper [1], the data
were compared with a color-glass condensate calculation [30]
that incorporated suppression at low x from gluon saturation
and enhancement from double-gluon exchange diagrams.
Recent calculations following this framework [31] include
a more accurate treatment of the nuclear geometry and the
dipole-nucleus scattering amplitudes, and are calculated in
a consistent fashion with recent results for nucleus-nucleus
collisions [32]. Figure 15 (left panel) shows the calculated
J/ψ nuclear modification for different rapidities as a function
of the d + Au event impact parameter (b). It is notable that for
large b, there is a 30% nuclear enhancement, even though the
coherence is only in the longitudinal direction and the local
nuclear density for these large-b events is small.

In a second coherence calculation, as presented in
Ref. [33], the J/ψ production is determined by coherence
and color-transparency effects. Figure 15 (right panel) shows
the calculated J/ψ nuclear-modification factor as a function
of event impact parameter in p + Au reactions.
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FIG. 16. (Color online) The PHENIX experimental data for J/ψ

RdAu peripheral (top), RdAu central (middle), and RCP 0–20%/60–88%
(bottom), as a function of rapidity. The solid (green) curve results from
Ref. [33] with coherence effects and color transparency. The dashed
(blue) curve is the color-glass condensate calculation [31]. The dotted
(red) curve is our calculation with nPDF EPS09 default set = 1, with
a linear geometric dependence and σbr = 4 mb.
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In either case, we can fold these dependencies with the d +
Au event impact parameter distributions or the rT distribution
(for the p + Au predictions), and compute the RdAu and
RCP modification factors, as shown in Fig. 16. We show for
comparison the EPS09 nPDF default with linear geometric
dependence and σbr = 4 mb. The calculation from Ref. [33]
yields similar results to the EPS09 nPDF and σbr calculation,
and has insufficient suppression at the most forward rapidity.
The color-glass condensate calculation shows better agreement
at forward rapidity, though the rapidity dependence is not as
steep as that of the RCP experimental data. However, there is
substantial disagreement with the data at mid and backward
rapidities. Note that that calculation assumes coherence over
the entire longitudinal extent of the nucleus, but this coherence
approximation is no longer valid at some higher-x2 values (i.e.,
at mid and backward rapidity). It is also no longer valid for
low densities that occur at large impact parameter values. Thus
the enhanced RdAu calculated in peripheral collisions (shown
in the left panel of Fig. 15) is likely to be in a region outside
the range of validity of the calculation.

VII. SUMMARY

In this paper, we have presented calculations for J/ψ

nuclear modifications including effects of modified parton
distribution functions (nPDFs) and fit parameter σbr . Utilizing
the full set of EPS09 nPDFs and three different postulated
geometric dependencies, we found that the calculations cannot
be reconciled with the full rapidity and centrality dependence
of the PHENIX d + Au J/ψ data. Additionally, comparison
of the calculations with plots of RCP versus RdAu indicate that

even a much larger σbr at forward rapidity cannot reconcile the
calculation with the data, since the σbr contribution always has
an exponential geometric dependence, which is inconsistent
with the trend required by the data. Incorporation of initial-
state parton energy loss yields an improved description of
the J/ψRCP, but without a good simultaneous description of
RdAu. Additional constraints from Drell-Yan and direct photon
observables at forward rapidity and at different

√
sNN energies

may be necessary to help constrain contributions from energy
loss. We also compared two different coherence calculations
to the data and find no agreement across all rapidities and
centralities. Thus, a fully quantitative understanding of J/ψ

modifications remains elusive.
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