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There are two main reasons for the absence of a practical theory of stripping to resonance states that
could be used by experimental groups: The numerical problem of the convergence of the distorted-wave Born
approximation (DWBA) matrix element when the full transition operator is included and the ambiguity over
what spectroscopic information can be extracted from the analysis of transfer reactions populating the resonance
states. The purpose of this paper is to address both questions. The theory of the deuteron stripping is developed,
which is based on the post continuum discretized coupled channels (CDCCs) formalism going beyond of the
DWBA and surface integral formulation of the reaction theory [A. S. Kadyrov et al., Ann. Phys. 324, 1516
(2009)]. First, the formalism is developed for the DWBA and then it is extended to the CDCC formalism, which
is the ultimate goal of this work. The CDCC wave function takes into account not only the initial elastic d + A
channel but also its coupling to the deuteron breakup channel p + n + A missing in the DWBA. Stripping to both
bound states and resonances is included. The convergence problem for stripping to resonance states is solved
in the post CDCC formalism. The reaction amplitude is parametrized in terms of the reduced width amplitudes
(asymptotic normalization coefficients), inverse level matrix, boundary condition, and channel radius, which are
the same parameters used in the conventional R-matrix method. For stripping to resonance states, many-level and
one- and two-channel cases are considered. The theory provides a consistent tool to analyze both binary resonant

reactions and deuteron stripping in terms of the same parameters.
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I. INTRODUCTION

Production of unstable nuclei close to proton and neutron
drip lines has become possible in recent years, making
deuteron stripping reactions (d, p) and (d, n) on these nuclei
(in inverse kinematics) not only more and more feasible as
beam intensity increases but also a unique tool to study
unstable nuclei and astrophysical (n, ), (p, ¥), and (p, )
processes. The deuteron stripping reactions populating res-
onance states of final nuclei are important and the most
challenging part of reactions on unstable nuclei. If for
nucleon transfer reactions populating bound states for about
50 years experimentalists used the standard distorted-wave
Born approximation (DWBA), an adequate theory for transfer
reactions to resonance states has yet to be developed. By
standard DWBA I mean the approach in which the one-
step transfer matrix element is evaluated with incoming and
outgoing distorted waves calculated by fitting the deuteron
and proton elastic scattering with local optical potentials. The
transition operator contains finite range effects as well as the
full complex remnant term. The main idea of the DWBA is
that the transition matrix element is so small that one can
use the first-order perturbation theory. Because the nuclear
potential is quite large by itself (~100 MeV), the smallness of
the transition operator can be fulfilled only if the reaction
is peripheral enough that the nondiagonal matrix element,
representing the transfer reaction amplitude, becomes small.
However, because the resonance wave function is large in
the nuclear interior and different channels are coupled in the
nuclear interior, the character of the stripping to resonances
can be quite different from the stripping to bound states.
Nowadays the standard DWBA is gradually being replaced
by more advanced approaches such as continuum discretized
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coupled channels (CDCCs) [1-3], adiabatic distorted wave
(ADWA) [4], coupled reaction channels (CRCs), and the
coupled channels in Born approximation (CCBA) available in
FRESCO code [5]. There are two main reasons for the absence of
the practical theory of stripping to resonance states that could
be used by experimental groups. The first one is the numerical
problem of the convergence of the DWBA matrix element
when the full transition operator is included. However, it is
only a technical problem. The second pure scientific unsolved
problem is what spectroscopic information can be extracted
from the analysis of transfer reactions populating the resonance
states. Besides, because the standard DWBA is deficient than
more advanced methods such as CDCC or ADWA, a new
approach should go beyond DWBA.

The majority of theoretical works devoted to the develop-
ment of the theory of single-nucleon stripping into unbound
states of the residual nucleus were published in the 1970s
[6-21]. Great interest in these reactions at that time stemmed
primarily from the fact that they allow one to extract reliable
information on the properties of nuclear resonant states by
means of the combined analysis of the data on stripping and
elastic resonant scattering of nucleons from the target nucleus
[8,13,15,16]. In most of the cited works the theory of stripping
into resonant states was developed within the standard DWBA
by analogy with usual stripping to bound states. In this case
the expression for the reaction amplitude obtained instead of
the bound-state wave function for the captured nucleon (form
factor) contained a continuum wave function that leads to slow
convergence of the radial integrals or even to their divergence
depending on the choice of this wave function. In Refs. [6,9,11]
the form factor was taken to be a scattering wave function,
which described the resonant scattering of the nucleon from
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the target nucleus. This wave function was calculated using
a single-particle potential whose parameters were adjusted
to give a resonance with the corresponding properties. The
Gamov decaying-state wave function and the Weinberg wave
function, which are regular at the origin and purely outgoing at
infinity, were used in Refs. [10] and [14], respectively. Various
methods were suggested to calculate radial integrals practically
with the above-mentioned form factors: (i) the introduction
of the convergence factor exp(—a«r) into the integrand [6]
(the integral obtained was calculated for various « > 0 and
then its values were extrapolated numerically to the limit of
a = 0); (ii) the method of contour integration in the complex
r plane (complex scaling) [9]; (iii) the method based on the
correct account of the boundary conditions in the three-body
scattering problem [11]; (iv) the Zeldowich-Berggren method
[20] of the regularization of integrals containing the Gamov
function in which the convergence factor exp(—ar?) was
introduced [10]; (v) the pseudo-bound-states method [14].
Methods (ii) and (iii) were most convenient for numerical
calculations. Although the above methods allow one to avoid
formal difficulties, all the methods are rather complicated
because of cumbersome numerical calculations and carry on
the shortcomings of the standard DWBA for stripping to bound
states.

Even if we put aside the technical problem of convergence
of the matrix element for stripping to resonance states, a more
important aspect remains: the spectroscopic information that
can be extracted from analysis of deuteron stripping reactions
(and other transfer reactions) into resonant states. This is really
a crucial question because the answer determines the reason
why we measure nuclear reactions. For more than 50 years
transfer reactions to bound states, and deuteron stripping in
particular, have been used to determine the spectroscopic
factors, which measure the weight of the single-particle
state in the overlap function of the initial and final nuclei.
That is why there was always a temptation to develop a
theory of stripping into resonant states that is fully similar
to stripping to bound states. For example, in Ref. [13] it
was assumed that the spectroscopic factor could be extracted
from deuteron stripping into resonance states. In this case the
spectroscopic factor is the ratio of the observable and single-
particle resonance widths. However, the spectroscopic factor
is not observable and depends on the single-particle potential
used to calculate the single-particle width. In Ref. [22] it
has been shown that spectroscopic factors are not invariant
under finite-range unitary transformations and, hence, in
an exact approach nuclear reactions cannot be a tool to
determine spectroscopic factors. In Ref. [22] it was called
separation of nuclear reactions and spectroscopic factors.
However, there is a model-independent information, which
can be extracted from deuteron-stripping reactions. I mean the
asymptotic normalization coefficients (ANCs), which are the
amplitudes of the tails of the overlap functions [23] and are
invariant under finite-range unitary transformations. The most
model-independent definition of the ANC is that it determines
the residue of the elastic scattering S matrix in the pole
corresponding to bound, virtual, or resonance states. For the
resonance state the ANC and partial resonance widths are
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related [24,25]:

[Ch = (=pfentbamon B p
xA0)jl

Here [ and j are the orbital and total angular momentum of
particle x in the resonance state F = (Ax), {44 is the reduced
mass of x and A, kya()j; is the real part of the resonance
relative momentum of x and A, ¢;;(kc4) is the nonresonant
scattering phase shift, and C /f il and I'y4;; are the ANC and
partial resonance width in the channel x + A with the quantum
numbers/ and j. Equation (1) stands for narrow resonance, that
is, for kxA(I)jI < kxA(())jl, where kxA(I)jl is the imaginary part
of the resonance momentum kya(r)j1 = Kxa©)ji — ikxajis
which determines the location of the resonance pole in the
momentum plane. Owing to relation (1), the resonance width
is also invariant under finite-range unitary transformations and
can be determined from the experiment.

Nowadays, it is quite well understood that the ANCs
can be determined from peripheral transfer reactions (see
Refs. [26-31] and references therein). However, the ANC
method has been applied only for transfer reactions populating
bound states. It is well known that from binary resonance
scattering and reactions using the conventional R-matrix
approach one can determine the resonance partial widths,
which, as we have underscored, are related to the ANCs. The
R-matrix method is one of the most popular tools among
the experimental groups worldwide because the approach
is comparatively simple even for many-body, many-channel
cases and deals with the formal partial resonance widths
determined from the fit to the experimental data. These formal
widths can be easily related with the observable partial widths.
Using the R-matrix approach one can fit simultaneously
data for all available channels. It allows one to control the
consistency of the obtained physical parameters. The question
is whether the theory of stripping to resonance states can be
formulated in terms of the same parameters that are used in
the R-matrix analysis of the binary resonance reactions.

It is the purpose of this paper to deliver a theory of the
deuteron stripping that will solve all the above-mentioned
problems for the deuteron stripping into resonant states. This
theory is based on the post CDCC formalism going beyond
of the DWBA and surface integral formulation of the reaction
theory [32]. The CDCC wave function takes into account not
only the initial elastic d + A channel but also its coupling to the
deuteron breakup channel p + n + A missing in the DWBA.
The convergence problem is also resolved in this formalism.
The reaction amplitude is parametrized in terms of the reduced
width amplitudes (ANCs), inverse level matrix, boundary
condition, and channel radius, that is, the same parameters that
are used in the R-matrix method. Thus, the theory provides a
consistent tool to analyze both binary resonant reactions and
deuteron stripping in terms of the same parameters.

The theory is based on the surface-integral formulation
of nuclear reactions and valid for stripping to both bound
and resonance states. First, just for demonstration of the
formalism, the transformation of the DWBA amplitude for
stripping to the bound state is presented. The reaction matrix
element is split into two parts: internal (over the relative
coordinate between the transferred nucleon and target) and
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external. The idea of such separation is based on the fact that
in the post formalism the main contribution to the stripping
amplitude comes from the nuclear exterior while the prior
form amplitude is dominated by the internal region. It is shown
that the dominant external post (internal prior) amplitude
using Green’s theorem can be written as the dominant surface
integral encircling the internal volume plus a small addition
from the prior external (post internal) part. Thus, both post
and prior forms lead to the same reaction amplitude given
by the sum of small internal post form, small external prior
form, and the dominant surface integral. The contribution
of the post internal part can be minimized by a proper
choice of the final-state optical potential, and the other two
amplitudes are parameterized in terms of the reduced width
amplitudes (ANCs). After that the theory is extended to the
CDCC formalism. Then the theory is applied for stripping to
resonance states. First it is developed for the standard DWBA
and then the post CDCC formalism based on the surface
integrals is developed. One of the most important results of this
paper is that the post CDCC form for stripping into resonant
states can be written as the sum of the small internal (over the
coordinate r, 4) post form and the dominant surface part. The
absence of the diverging (or poor converging) external part
solves the problem of convergence of the matrix element for
stripping to resonance state.

In the developed approach the information about the
resonance subprocess is contained in the scattering wave
function of the fragments formed by resonance decay. This
wave function is written in a standard R-matrix form using
its separation into the internal and external parts. It allows
us to generalize the R-matrix method for binary reactions to
stripping reactions. Because the deuteron stripping into reso-
nant states is a two- to three-particle reaction, the excitation
of the resonance occurs in the subsystem, while the third
particle causes the distortion. The extracted partial resonance
widths can be used for calculation of the (n, y) processes.
If the cross section for (n, ) resonant capture is available,
the simultaneous fit to the deuteron stripping and (n, y)
resonance capture can be done. The method can be also applied
for analysis of the Trojan Horse reactions [33]. Concrete
calculations and the application of the theory for deuteron
stripping and Trojan Horse reactions will be presented in
follow-up papers. In what follows we use the system of units
in which 7 = ¢ = 1. We also neglect the spins of the particles
if not specified otherwise.

II. SURFACE INTEGRAL FORMULATION FOR
DEUTERON STRIPPING TO BOUND STATE

Before the theory of the deuteron stripping to resonant
states is outlined I present a surface integral formulation of
the theory for stripping populating bound states. First, just for
demonstration, I consider the DWBA and then extend it by
including the CDCC wave functions. As has been explained in
Introduction, the transfer reaction matrix element will be split
into two parts in the subspace determining the relative motion
of the transferred nucleon and target: internal and external
parts. After that, replacing the potentials in the transition
operators with the kinetic energy operators and using Green’s
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theorem the matrix element in terms of the surface integral is
obtained.

A. Stripping to bound state: Post form of DWBA

In this section we consider the post form DWBA amplitude,
which we split into the internal and external part in the
subspace over the relative coordinate between the transferred
n and A. Owing to the choice of the transition operator in the
post form, the internal part turns out to be small. The external
part, which is parameterized in terms of the ANC, will be
transformed into the dominant surface integral encircling the
internal volume and small external prior DWBA amplitude.

We start consideration from the exact reaction amplitude
for the deuteron stripping to bound states

d+A— p+F, )

where F' = (An) is the bound state. The post form of the exact
reaction amplitude

M®V(K, ., kgp) = (07 |AV,p|7), 3)

where \IJI.(+) is the exact scattering wave function in the initial

state with the two-body incident wave d + A, d>(]7) = x](,})wp
is the channel wave function in the exit state p + F, ¢; is the
bound-state wave function of nucleus i, Xi(/'+) = X;S;)(l’i ) is
the distorted wave describing the relative motion of particles i
and j with the relative momentum k;;; AV,p = Vpa + V), —
U,r is the transition operator in the post form, V;; is the
microscopic interaction potential between nuclei i and j, U;;
is the optical potential between nuclei i and j; r;; is the radius
vector connecting the center of mass of particles i and j. I
remind the reader that the exact wave function \Ili(” is fully

antisymmetrized but the channel wave function dD(f_) is not
antisymmetrized with respect to exchange of the exiting proton
and nucleons in F'. However, the internal wave function of F,
©F, in CD(f_) is fully antisymmetrized. The reason why we can
drop the antisymmetrization in the channel wave function is the
presence of the fully antisymmetrized exact wave function in
the initial state and fully symmetric transition operator, which
can be seen below when the transition operator is expressed in
terms of the kinetic energy operators.

To obtain the post form of the DWBA from Eq. (3) we
replace \IJI-H') with the channel wave function <I>§+) = Qapax 6(,:)
in the initial d 4 A state:

MK, p, ka) = (07 |AV, 7| (7). )
Then we use approximation
or ~ I ¢, 5)

where /f (r,4) is the overlap function of the bound-state wave
functions of nuclei F and A:

15(ran) = (@alor). (6)

The antisymmetrization factor has been absorbed in the overlap
function. Note that the integration in Eq. (6) is taken over all the
internal coordinates of nucleus A. Then the transition operator
in Eq. (4) takes the form (pa|AV,r|pa) = (@alVpalea) +
Vion — Upr. The potential (@a|V,al@a) is replaced with the
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optical potential U,4 and we obtain a standard post form of
the DWBA amplitude:

MDW(Posl)(ka’ Kyu) = <q)(f_)|AVPF|q>l('+)>’ (7

where AVPF =Upa + Vpu — Upr. Now we transform this
volume integral into the surface one. First, we adopt r,4 and
r,r as Jacobian variables and split the configuration space over
r,4 into the internal and external regions, while the integral
over the second Jacobian variable, r,r, is taken over all the
coordinate space. Splitting the reaction amplitude into internal
and external amplitudes we get

DW (pos
MDW(post)(ka’ kia) = My, (pogt)(ka, Kaa)

+Mey "V pr k), (®)
where the internal amplitude M, " is given by
DW! - -
Mint (POSl)(ka’ de) = <X;F)I£|AVI’F|<pdxt§;)>|r,m<RnA' (9)
Correspondingly, the external amplitude is given by
DW(pos - —
My (pOGt)(ka’ kaa) = (X;F)1£|AVI’F|('0dXt§:)> Fua>Rua”
(10)

Here, R, 4 is the channel radius similar to the one introduced
in the R-matrix approach, which separates the internal and
external regions.

The splitting of the amplitude into the internal and external
parts in the subspace over the Jacobian variable r,, is
natural and evident. The overlap function 7 (r,4) is the only
object in the reaction amplitude that provides spectroscopic
and structure information. In the external region the overlap
function has a standard radial shape given by the spherical
Hankel function (for neutrons) with the amplitude called
the ANC (see below). To determine the behavior of the
overlap function in the nuclear interior, which brings one
of the main uncertainties in the analysis of the deuteron
stripping, microscopic calculations are required [34]. In a
standard approach the internal part of the overlap function is
approximated by the single-particle bound-state wave function
calculated in the adopted mean field. The proportionality
coefficient is the square root of the spectroscopic factor. Owing
to the structure of the transition operator the external matrix

DW(post) .

element M, in the post form is dominant compared to
DW(post)

a small contribution coming from the internal part M,
This simple observation stems from the following.

In the internal matrix element, 7,4 < R,4, owing to
absorption of the protons inside nucleus F, effective rp, ~
Tpa ~ rpr > Rp, where Rp is the radius of nucleus F. For
the protons outside of F and neutrons inside or on the
surface of A each nuclear interaction in the operator AV ,p =
Upa + Vyn — Upr is small. Potential U,r is arbitrary and
often U,r is chosen to compensate for U,s so that the
transition operator reduces to V,,. Because the DWBA is
the first-order perturbation theory, the minimization of the
whole transition operator AV pF provides smaller higher-order
terms and, hence, better serves the theory. This choice is more
preferable in the formalism presented here and we adopt U,

which minimizes AV,,F =Ups+ Vpu —Upr at rya < Rya,
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making the contribution from the internal matrix element small
compared to the external one.
In the external matrix element (r,4 > R,4), Which is

dominant, the overlap function /% can be replaced by its

asymptotic tail. Although MQXV(P“S” can be easily calculated

for stripping to the bound state, here we transform this matrix
element into an alternative form, which has a clear advantage
in the case of stripping to resonance states discussed below,
where convergence becomes a main impediment.

Now we proceed to the transformation of the volume
integral defining the external matrix element in terms of the
dominant surface integral encircling the sphere at r,4 = R,
and a small, owing to the structure of the transition operator
in the prior form [see Eq. (17)], external volume integral in
the prior form. Note that the transformation is exact within the
DWBA formalism.

To transform the external volume integral to the surface
one, we rewrite the transition operator as

AV pr =Ups+ Vou — Upr
=[Vpn +Usal = [Upr]l + (Upa — Uga). (11)

The bracketed operators are the right-hand-side operators in
the Schrodinger equations for the initial and final channel wave
functions in the external region:

(E = T)axyy) = Vou + Us)pax iy (12)
and
(E— DI xS = Upr [ x$p" (13)

To derive Eq. (13) we took into account that at r,4 > R,a
IF satisfies the asymptotic Schrodinger equation (g,4 —
T,a)I 5 = 0, where ¢; ; 18 the binding energy of the bound state
(ij) and T;; is the kinetic energy operator of the relative motion
of i and j. These equations imply the following connection
between the external post form DWBA amplitude and the
matrix element M"Y containing the surface integral

M2 PO, kga) = MV (K, Kga)
+ MOV Kga), (14)

Xt

where

Mo Uy, kan) = (X2 1h | AV anl@ax ), g, (15
and

MSY Ky, kaa) = (XL})IﬂT - ?|‘pdngl;)>|rm>RM' (16)

Here the transition operator in the prior form AV, in the
external region, where the nuclear n-A interaction disappears,
takes the form

AV s = Ups — Uya. (17)
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The overlap function is given by

L= Y,

Jnam j, ymi,
X (JnMyplyamy, | jnam, )
X YlnAmz,,A (fllA)IAjnAl,LA (rna)- (18)

Here (jym jomy|jzms) is the Clebsch-Gordan coefficient, ;4
(my,,) is the orbital angular momentum (its projection) of the
relative motion of n and A, j,4 (m},,) is the total angular
momentum (its projection) of n in the bound state F = (nA),
J;(M;) is the spin (its projection) of nucleus i, I};MW (rpa)is
the radial overlap function, which is a real function [23], ¥;,,,(F)
is the spherical harmonics, and £ = r/r is the unit vector. We
assume that only one value of /,4 contributes to expansion
(18). If the channel radius is taken larger than the range of the
nuclear interaction, the radial overlap function can be replaced
by its asymptotic term,

(JaMajnam;,, | Jr MF)

nA>RnA

liatl
IA]nA]nA(RnA) !

1) ,.
Cajuatal KnAhij(lKnArnA), (19)

where hz (iKn ATna) is the spherical Hankel function of the
first order cF Ajnaln is the ANC of the overlap function, and

Kna = ~/2naEn4 1S the bound-state wave number.

It is also useful to introduce the reduced-width amplitude
used in the R-matrix approach, which can be expressed in
terms of the ANC [25]:

RnA

_ IF

VnAjualia = _2M ] L4, i1, (Rna)
n

Rua 1, F
= EEJIA naChy i i) (na Rua). (20)

Correspondingly, the reduced width is

R
2 nA F
YVaAjualoa = ZMnA[ AjnA]nA(RnA)]

N 2u A( DlnAH . [CA /nAlnAh(l (lKnARnA)]

21

It is worth mentioning that, owing to the presence of the
channel radius R, 4, the reduced width, in contrast to the ANC,
is model-dependent. The dependence on the channel radius
becomes crucial with increasing binding energy. We use also
the boundary condition, which is the logarithmic derivative of
the overlap function at r,4 = Rj4:

1 d[rnAhhlj (iKnArnA)]
hy,, (iknaRna) dr Fua=Roa
. . DW(prior)
Owing to Eq. (19), the amplitude M, can be

parametrized in terms of the ANC. We note that this amplitude
is also small. In the external region, r,4 > R, 4, the nuclear
n-A interaction can be neglected. Besides, in this region the
overlap function exponentially fades away. Also, if the proton
absorption is strong in the internal region of A, the dominant
contribution comes from r,4 > R4, where R, is the radius
of nucleus A. If the adopted radius channel R,, is larger
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than the n-A nuclear interaction radius we can neglect n-A
nuclear interaction in the external region. In this region each
nuclear potential U, 4 and UY, and their difference U, 4 — Uga

are small. The Coulomb part US, — Uy ~ Zae*Rq/(2R},)
where R; is the deuteron size and Z 4 e is the charge of nucleus
A, is also too small compared to the nuclear potential. Thus, the
dominant contribution to the post DWBA amplitude M, EXYV(P"“)
[Eq. (14)] and, hence, to the total post form DWBA amplitude
MPW®sY | comes from the surface integral M5™. Here and in
what follows all the amplitudes with the transition operator
T —T are assigned the subscript S, which is abbreviation
of “surface,” because the volume matrix elements of these
amplitudes can be transformed into the surface ones in the
subspace over variable r,4, while over the second Jacobian
variable r, we always keep the volume integral.

Now we express Mg" in terms of the surface integral
over variable r,4 and the same technique is used throughout
the paper. The kinetic energy operator can be written as
T =Typ + Tya. Ty is a Hermitian operator in the subspace
spanned by the bra and ket states in Eq. (16). It can be proved
if we take into account that at v,y — oo the integrand in this
equation vanishes exponentially owing to the presence of the
bound state wave function ¢,4(rp,) and the overlap function
1F(r,4). Hence, integrating by parts twice the integral over
r,r we obtain

(X])F)]F|$pF - ?pF|(dedA )

Tna>Rna
< o )IF|7PF - ?pFW)dXdA) s Roa — 0. 23)
Then MY reduces to
MY (pr ki) = (XS 15 | Tua = T ualeaxii), e -
(24)

We apply now Green’s theorem to transform the volume
integral into the surface one, which encircles the inner volume
over the coordinate r:

/ drf(o[T — T 1g(r)
r<R

1
=5 dS[g()Vy f(r) — f(r)Virg(r)]
W Jr=r
1 a a
_ _2_sz |:g( ) f(r) ) g(r)} 25
1% ar r=R

Here dS = R?dQ,f, where Q, is the solid angle. Note that
the unit vector  is the normal vector to the sphere directed
outside of the restricted by the surface volume. The integration
in Eq. (24) over r,, 4 is taken over the external volume restricted
by two spherical surfaces: the inner surface with the radius R, 4
and the external surface with the radius R, — oo; that is,

MV (K, r, kia) = SV (Kpr, Kan).

(26)

—MY (Kpr, kaa) + M
RnA

The first term in this equation is the surface integral
encircling the inner surface of the external volume at
s = Ry, while the second term is the surface integral taken
atry,a4 = R,; 4 — 00. A negative sign in front of the first term
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appears because the normal to the surface is directed inward to
the center of the volume, that is, opposite to the normal to the
external surface (at infinitely large radius). The second term

M" (Kpr kan) = =My, (Kpr.Kaa)
1
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vanishes because of the presence of the overlap function 77,
which decreases exponentially at 7,4 — oo. Then for MYV
we get

= —Ry, / dr,rx ) (6pr) f dQ,,

B 2:unA
(+) d
X (pd(rpn)Xde (rdA)

(=)

Here we took into account that yx, (T()

[15r.n]"
8rnA

- [I/I:(rnA)]*

awd(r,,ax.ijj(rdu} o7

Br,,A

rna=Rya

(r) = x P (r). Invoking Eqgs. (18) and (19) we can rewrite M>W in the form explicitl
g Eq S p y

showing parametrization in terms of the reduced width amplitude (ANC) and boundary condition, the quantities used in the

R-matrix approach:

. 1,
MY (Kpr, Kaa) = _ll“A+lKnARnAhgnj(lKnARnA) Z

2'/’LnA

Jnathj, g1, s My

(JAMAjnAmjnA |JFMF><JnMnlnAmInA IjnAmjnA)

X (JpMypJu M| JaMa)Ch, / dr,r xS, (rpp) / Qe Yy, (an)[god(rpn)xlij;(rdA)(BnA -

agod(rpn)xlijA’(rdA)}
nA

31’,“4

_ RnA
B 2H’nA Z

Jnamj, i, My

(28)
TmA=Rna
(JaMy jpam;, NJpMp) (L Myl amy, | juam j, I, Mp My | Ja M) Vi Ajoaloa
. ) dpqa(r n)Xl((-t\)(rdA)
x / drprx3) (e / A, Y, (Fra) [w(rpn)x,ijj(rm(BnA—1)—R,,A ”ar .
n nA
Faa=Rna
(29)

Finally, the total post form DWBA amplitude is given by

DW(pos
MOV p Kga) = Mig Ky, Kaa)
DW(pri
+ Mg " (. Kaa)
+ MV Kk,r kan). (30)
Taking into account that MYV = Me"va‘p‘“” - fo?’(f’“"” we

can rewrite Eq. (30) in a different form:

MPVEI K, Kap)
= ML P&, 5, Kaa) + Moy P (K, Kaa)
MY P K, kaa) — Moy PV (ke kaa)]-

€29

Thus, the main result of this section is that the post

form of the DWBA amplitude can be written as the sum of

the peripheral parts, Me‘)x}’“("“"” + M3V, and small internal

term Mo, " The peripheral part itself consists of the

dominant surface amplitude MgV and small external prior
form ML\ " The peripheral part is parametrized in terms
of the ANC (reduced width amplitude), channel radius R, 4

and the logarithmic boundary condition, that is, in terms of the

parameters used in the R-matrix fitting. The model dependence
of these two peripheral amplitudes is caused by the ambiguity
of the optical potentials and channel radius R, 4. The strongest
model dependence comes from M}?,tW(P(’S‘), because, in addition
to the ambiguity of the optical potentials, to calculate it
one needs to know the behavior of the overlap function in
the internal region. For peripheral reactions contribution of

MY can be neglected.

B. Prior form of DWBA: Stripping to bound state

In Sec. IT A the post form of the DWBA amplitude has been
considered. However, all the results hold also for the prior form

MDW(priOr)(ka , de) — <X1(9}) I: | AVdA |(,0d X;’:))
DW(prior)

= My, Kyr, Kaa)
+ Mk yr Kaa),  (32)
where
DW(prior — 53
My P )(ka, Kia) = (X;F)If|AVdA|(de;X)>|,’M<RM
(33)
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and
Mgcy(pﬁm)(kpﬂ Kia) = ( o )IA |AVdA|¢dX;::)>|r”A>R,,A’
(34)
with the transition operator
AVya = Upp + Vs — Uga. (35)

The n-A interaction potential V,, A = (©alVaalpa) is the
mean-field real potential supporting the bound state (nA). The
splitting of the amplitude into the internal and external terms
in the subspace over the coordinate r,4 helps us to further
transform the prior DWBA amplitude. Owing to the structure

of the transition operator the external matrix element Moy P"°”
in the prior form is small (see the discussion in Sec. IT A) and

the main contribution in the prior form comes from the internal

part Ml]itw(pnor) Because the internal part is given by the
volume integral, its calculation requires the knowledge of the
overlap function in the internal region. The model dependence
of the overlap function in the nuclear interior (r,4 < R,4)
brings one of the main problems and main uncertainty in the
calculation of the internal matrix element. However, using the
surface integral we can redistribute the internal contribution
in terms of the dominant surface term (over variable r,,4) plus
small internal part written in terms of the volume integral in
the post form. With reasonable choice of the channel radius
R, 4 the contribution from the internal volume integral in
the post form can be significantly decreased compared the
surface matrix element. The latter can be expressed in terms
of the R-matrix parameters: the observable reduced width

amplitude (ANC), boundary condition, and channel radius. To
transform ME:N(P”OT) into the surface integral in the subspace
over variable r,4 we rewrite the transition operator in the

internal region as
AVas =Ups + Vs — Uga = [Vya + Uprl
+(UpA + Vpn - UpF) - [Vpn + UdA]~ (36)
The bracketed transition operators are the potential operators in
the Schrodinger equations for the initial and final channel wave
functions. Hence, for the internal prior form of the DWBA we

obtain

DW(pri
M PO, Kga)

= M VK, k) + MYV kan),  (B7)
where
MV & kan) = ~(x LT = T |eaxSy)
= _(XPF)I}”?nA 7nA|(de
= —Mg," &y, Kaa)- (38)

(+)>

Note that here MDW is the surface integral encircling the
border of the 1nternal volume at r,4 = R,4 with the normal
directed outward. Thus we have demonstrated, what should be
expected from the very beginning, that APW®rion — pgDW(posy
Hence, all the equations obtained in the previous Sec. Il A are
also valid in the prior formalism.

Itis worth mentioning that in the post formalism, in contrast
to the prior one, we have obtained two surface integrals (in
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the subspace over r,4) with the radii 7,4 = R,4 and r,4 =
R,; 4 — oo and then proved that the second integral is zero.
From the equality of the post and prior DWBA amplitudes we
could conclude that the surface matrix element over infinitely
large sphere r,4 = R;l 4 —> 00, which appears only in the post
formalism, vanishes.

There is another interesting point to discuss that explains
the advantage of the above outlined formulation of the
stripping. As we have discussed, owing to different structure
of the transition operators in the post and prior forms, the
main contribution to the post (prior) form comes from the
external (internal) part (in the subspace over variable r,4).
Because both forms give identical amplitudes, that is, describe
the same reaction mechanism and the same physics, such
redistribution of the main contribution is possible only if
the main contribution to each form comes from the border
between external and internal parts. In the post (prior) form
this border attributed to the external (internal) form and can
be expressed in term of the surface integral. Let us rewrite
equality MPW®Erion — prDW(post in the following form:

DW(pri DW(pri
Mint (prlor)(ka’ de) + M (prlor)(kpp’ de)

ext
= ML PV K, 5, Kaa) + Moy PV, r, Kaa).  (39)

In this form the dominant terms are Mp," *"°” oxt

while the remaining two terms, fo}’“(p "0 and MEtW ®osh) o
smaller. From Eq. (39) we get

and MDW(post)

DW (pri
MY PO, Ky a)

DW (post
My, (pos)(ka, Ki4)

MDW(post)(kp 7 de) _

ext

= M ™, kaa) -

nt

= MV (kyr kan) = —Mg, (Kpr.kaa).  (40)

Thus, the difference between the post and prior external
amplitudes (or the prior and post internal ones) is the surface
integral in the subspace over r,, 4.

There is one more point left to discuss. When deriving
the post form of the DWBA amplitude from Eq. (4) we used
approximation ¢r ~ I ¢, neglecting the contribution from
the channels n + A,, n > 0, where A, is the excited state of
A. However, I show now that the surface integral formulation
does not require this approximation. To this end let us split
M® into the internal and external parts in the subspace over
variable r,4. In the internal part we use a standard DWBA
approximation ¢r ~ If ¢, to arrive to the standard internal
post DWBA amplitude. In the external part we rewrite the
transition operator as

AVpF = VpA + Vpn - UpF =—[Va+ UpF]
+[Von + Va+Uaal + (Vpa — Uga).  (41)

The bracketed operators are the right-hand-side operators of
the Schrodinger equations

(E=T)O" = (V, + Vi + Uga)®" (42)
and

(E—T)0" = (Vo + Upp) @7 (43)
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Hence, the external part of M®° reduces to

ME (K, r, ka) = MseoKpr. Kaa) + MK, kaa),

(44)
where
ME Ky kan) = (@7 | Voa — Uaa| D), . (45)
and
MsexoKpr. Kan) = (0| T = T |07, kL (6

In the matrix element Mé,'f?or) we can use a standard DWBA
approximation g ~ I¥ ¢, which leads to the standard exter-
nal prior DWBA amplitude. The matrix element M.« can be

rewritten as

Wsien®pr Kan) = (@ T s = T ua|@f")

aa>Rya
= (X7 0r| T s = T waleawaxsy)|
( F)IF|?11A _?nA|(de(+)> Fua>Roun

= _MS (ka7 de)- (47)
Rna

Tna>Rya

We took into account that (@5:”?[,[7 — 7pp + ?A -

T |d>(+) ) = 0, where T} is the internal motion kinetic energy
operator of nucleus A, and T,404 = @aT,4. Thus, Ms(ext)
can be transformed to the surface integral over variable
r,4 encircling the inner volume with the radius r,4 = R4
without invoking approximation ¢r ~ IFp,. It means that,
when deriving the post form of the DWBA amplitude, the
approximation ¢y ~ I ¢, is required only to obtain two small

terms, MEtW ® and Me"va‘f’"‘“’ but not the dominant surface

term —Mg" . In thlS sense the surface integral formalism is
an 1mprovement of the DWBA.

C. Deuteron stripping to bound states: Post CDCC formalism

In the previous sections we succeeded in parametrizing the

DWBA amplitude in terms of the ANC except for a small

term, Mllstw ®) The most serious shortcoming of the DWBA

is that it neglects the coupling to open reaction and breakup
channels. This coupling can be taken into account if an exact
wave function in the initial or final states is used. However, the
exact wave functions are not yet available (if they would be
available in the whole configuration space, we do not need to
calculate the matrix element because the asymptotic terms of
the exact wave functions provide the reaction amplitudes in all
the open channels). Here we use the CDCC formalism, which
takes into account the elastic d + A and the deuteron breakup
channel p + n + A in the initial state.

In this section the surface integral formulation of the
reaction theory is applied to the post form of the CDCC
amplitude for deuteron stripping to bound states. It allows
us to parametrize the stripping amplitude in the CDCC
approach in terms of the R-matrix parameters: the reduced
width amplitude, boundary condition, and channel radius. To
obtain the CDCC wave function describing the initial state of
the stripping reaction, first the exact initial scattering wave
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function \lli(+) is replaced by the three-body wave function
\1113 BH which takes into account the coupling of the initial
channel d 4+ A and the deuteron breakup channel p +n 4+ A
[1-3] and satisfies the Schrodinger equation (in the three-body

p + n + A model space),

(E—=T —Upp — Upa — V)PP =0, (48)

with the outgoing waves in the elastic channel d + A and
the breakup channel p +n 4 A. A general solution of this
equation with the d 4+ A incident wave has outgoing waves
in the elastic, breakup, and two rearrangement channels, n +
(pA) and p + (nA). To damp rearrangement channels in the
asymptotic behavior of the wave function \113 ) the optical
potentials Up4 and U, with strong imaginary terms can be

used [35]. \IJ?B(JF) is given by
P4, 1) = a1t (Fan)
/ 4D VO (Fan). (49)

Here ¢4(r,,) is the deuteron bound-state wave function,
wpp)(r o) the p-n scatterlng wave function with the relative
momentum p,,, xde (rd 4) and XP(ppn)(rd 4) are the expansion

coefficients, and Egq — epp = Pz/(Z/LdA) + plzm/(Z;L,,,,).

In practical application the wave function W; B i replaced

by the CDCC wave function, which is a solutlon of the
projected Schrodinger equation:
(E—T— U(Ppn) ym _

n

Vo)W, P = 0. (50)

A

Here Uz = P,,U;p P, and

Jmax
pn prz

Pu= Y Y [0 GV, ) 6D

Lpn=0m; = ~lpn

is the projection operator, which truncates the number of
the spherical harmonics Yi,mi,, (f,,) in the coordinate r,.
Application of this operator to the three-body wave function
suppresses the rearrangement channels in the asymptotic wave
function. The CDCC wave function is taken in the form

Nmax

\IJiCDCC(H(l'pna rga) = Ppn Z 1p(n)(rpn)szx_H(rdA) (52)

where w(o)(r[m) = @q(r,,) is the deuteron bound-state wave
function, w(")(rpn) n > 1, is the nth discretized continuum
state of the p-n pair obtained by averaging continuous breakup
states in the nth bin, and Xi(")(+)(rdA) are the functions
that describe the relative motion of the center of mass of
the p-n pair in the nth state and A. Note that Xi(o)(+)(rdA)
asymptotically behaves as the incident Coulomb distorted d-A
plane wave plus outgoing scattered wave, while X(”)(H(r A)
forn > 0 asymptotically do not contain any plane wave having
only the outgoing scattered wave.

To derive the post form of the CDCC amplitude from
the exact one, first we replace the initial exact scattering

: ) 3B(+) 3B(+) -

wave function W; "’ with ¢, W;"""". Note that W; is the
three-body model (p +n + A) wave function which treats
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nucleus A as a constituent particle leaving its internal degrees
of freedom intact. That is why the wave function \IJ[H) is
approximated by the product of the bound-state wave function
@4 and \lJi3 B, Correspondingly, the transition operator
AV, = Vpa + Vp, — Upr is replaced with AV,,F =Ups+
Vpn — Upp. This replacement of the microscopic potential
V,4 in the exact post form amplitude by U,, is evident
because the p-A interaction potential in the transition operator
should be the same as the one in the Schrodinger equation
for the initial scattering wave function \Il? B Potential Vin
remains the same when we approximate the initial exact
scattering wave function with the three-body one. The final-
state optical potential U,r is arbitrary and we discuss the
optimal choice of this potential later. These approximations
lead to the expression for the post form stripping amplitude in
the three-body model in the initial state:

M0, kaa) = (x5 7 0F |AV pr|@a W)
= (P 1AV pr [ 97). - (53)

Thus, even if we treat the d + A collision in the initial
channel in the three-body approach, the final state contains
the overlap function, which is essentially a many-body object.
Equation (53) is impractical to use because it requires
the knowledge of the three-body wave function \IJ3B(+)
[Eq. (49)], whrch contains unknown expansion coefﬁcrents
Xk, (Taa) and XP(p )(rdA) In practical applications the \IJ3B(+)

is approximated by the CDCC wave function WCDCCH)

which requires the knowledge of the finite number of the
expansion coefficients. They can be found from the cgupled
equations. Correspondingly, the transition operator AV ’ F=

UpA + Vpy —Upr in Eq. (53) is replaced with AV ""
U ”” + Vp, — Upr. Note that only the potential U ,,A(rp A)s
Where r,a =rga+ 1/2r,, is affected by the projector ISP,,.
Then the expression for the post form of the CDCC amplitude
takes the form

MCDCC(pOSt)(ka de) — <X - IF’AV n CDCC(+)>
’ p

(54)

MCPCC into the internal and external parts in the

Now we split
subspace r,4:

MLy kga) = My~ P (e k)
CDCC(pos
+ Moy P (e, kaa)- (55)
The internal amplitude Mﬁ?cc(posr) is given by
CDCC(pos
MR, k) = (x5 15| AV S [
(56)
Correspondingly, the external amplitude is
€DCC
Mext (POSl)(ka7 de) - < F)IF‘AV I CDCC(+)) Faa>Rya”
(57)

I remind the reader that the integral over the second Jacobian
variable, r,r, is taken over all the coordinate space. Similarly
to the DWBA case, the internal part is small if the channel
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radius R, 4 is not too large. Owing to the strong absorption
of the proton inside A, which is controlled by the imaginary

. . Py . .

part of the optical potential U, 4, the effective distances are

rpa > R. Besides, in the internal region, r,4 < R4, and
Ppn

large 4, where rpq ~ rpy = IFpa — Tpal, Upz + V,n can be

well approximated by a properly chosen optical potential U , ¢

pn

minimizing AV 7 and the internal matrix element. The next
step is to transform the external matrix element to the surface
one. To this end we rewrite the transition operator in the form

AV ’;:”—U ””—|—Vpn—UpF=[—U Fl+ [U P”+VI’”]'

(58)

The bracketed operators in Eq. (58) are the right-hand-side
potential operators in the Schrodinger equations in the external
regionr,4 > R, 4, where the nuclear n-A interaction vanishes:

(E — T)qjCDCC(+) (pr,&n + Vp”)qJCDCCH—) (59)

and
(B =Tty I = Uprxye 11" (60)
Note that the second equation follows from

(—na — To)If = (@alVualor). (61)

In the external region, r,4 > R, 4, the source term on the
right-hand side disappears and Eq. (60) becomes evident.
Taking into account Egs. (59) and (60) we get

M&?Cc(poso(kpﬂ ki) = MSDCC(pOSO(kp yKaa)
< (= )IF|<7 7|\IICDCC(+)>

9
rna>Rya

(62)

where T = T,r + T,4. Here as in the previous section, for
the surface integral we use the subscript “S”. Because the
CDCC wave function does not propagate into the final state
(its asymptotic terms have only elastic and breakup terms) the
operator T, is Hermitian; that is,

I T e = T e US0),

LT =T WP 0 6
It can be also shown explicitly taking into account that the
volume integral over r,r can be transformed into the surface
integral over the sphere with the radius r,r = R,r — o0.
Because the overlap function decays exponentially at r,4 —
00, the integration over r,4 is limited. Hence, at 7,y — 00
using Egs. (B5) and (B6) we get that 744 ~ rp,r — 00 and
Tpn ~ rpr — 00. The first term of the CDCC wave function
decays exponentially at r, — 00 because of the presence of
the deuteron bound-state wave function. The terms withn > 1
decay as 1/ r137 7 [36]. The distorted wave X](,})*(p pr) decays as
1/r,F [see Eq. (B14)]. Hence, the surface integral vanishes at
Ryp — o0 as Ry /Ry — 0.
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Then MSCDCC(pOS[) takes the form

CDCC t
MG (K, kga)

<XpF Iy |?M ?"A |\piCDCC(+))|r,,A>R,,A

= — Mg Pk, Kga) + Mg Pk, kaa). (64)

Ry

Thus, the volume integral at r,4 > R, 4 in the matrix element
M?DCC(POSD can be written as the sum of two surface integrals
encircling the external volume, the sphere with the radius
ua = Rya and the sphere with 7,4 = R, , — oo. Note that

the integral over r,r is taken over all the coordinate space.

CDCCi t
MG Ky a)

2
MCDCC(post) (k

SRnA

oF Kia) =

MnA
2

R cpee
= Loa / drpex ) (pr) / aQ,, [wi" Oty 1)

2ﬂnA

Natural Jacobian variables for \-I/CDCC(“

into account Eqgs. (18) and (19) we get

CDCC(post) CDCC(post)
Mg (k Mg, (k

pF 5de)__

/ dr,rx %) (@pr) / A, Fua [15 )] (Ve = Vi, ) 9P wm mn)]|,
[ A(rnA)]

pF Kaa) =

PHYSICAL REVIEW C 84, 044616 (2011)

Evidently, the integral over the infinitely large sphere vanishes
because the overlap function If exponentially decreases.
Hence,

M;ZDCC(post)(kp - de) _ M;Z]zCC(pmt)(kp - de) (65)
The negative sign in front of the inner surface integral appears
because the normal vector to the inner surface is directed to
the center, that is, opposite to the direction of the normal
to the external surface at r,4 = R;q 4 — 00. Now we can
use equations from Sec. II A replacing the initial channel
wave function with the CDCC one. For MCDCC(pOSt) we
get

nA

LD )
—[1E @] — Ll "]

8rnA

arnA rma=Rua

(66)

are rg4 and r,,, but here we use another set of Jacobian variables, r,r and r, 4. Taking

RnA
2/1*nA Z

Jnamy, ymi, My

(JaMy jpam;j, | Jp MF)

XMy sy, osit [ 90X, @0r) [ 40,37, Gun)

x |:qjiCDCC(+)(rva rnA)(BnA - 1) - RnA L

Note that the CDCC wave function itself also depends on
quantum numbers of p-n and d-A subsystems, which we do
not specify here. It will be done in the follow-up paper, where
concrete calculations will be presented.

Thus, we have obtained a remarkable result: The post form
of the CDCC amplitude, in contrast to the DWBA one, is given
by the sum of only two terms:

CDCC(post)
oF> Kaa) = My,

(Kpr, Kaa)
—Ms, T r, kan),  (68)

MCDCC(posl) (k

where the first term, which is the internal post form of the
CDCC amplitude, can be minimized by a proper choice of U,
and the channel radius R, 4, while the second term, which is
dominant, represents the surface integral with the radius R, 4,
which encircles the internal volume in the subspace over the
coordinate r, 4. If the channel radius is larger than the n-A
nuclear interaction radius the second term is parametrized in
terms of the reduced width amplitude (ANC of the projection
of the bound-state wave function of F on the two-body
state n + A) and the boundary condition at r,4 = R, 4. If

CDCC(+)
A r,r, T

5 (pF nA)] (67)

Tna rna=Rya
[
MEPECP is small enough,

CDCC(pos
MO, kga) & =M, " (K, kaa). (69)

Thus, we succeeded in parametrizing the post form of

the CDCC amplitude in terms of the R-matrix parameters.
Equation (68) and the parametrization of the surface term of
the post CDCC amplitude in terms of the R-matrix parameters

[Eq. (67)] are among of the main results of this paper.
Although it is assumed that Mﬁ? CCPo) can be minimized
so that the second term in Eq. (68) becomes dominant, I would
like to present a different form for Moy “**(K,r, kya),
which leads to a different form for the whole amplitude

MEPECEosH (K 1 Kky4). To this end, let us rewrite the transition
— Py
operator AV i in Mﬁ?cc(poso(kp F,>Kga) as

_Ppn Ppn pn pn
AVpF = UpA +Von —Upr = [UpA +U,4 + Vpn]

— Vs + Uppl + Vua = U (70)

Here V4 is the mean-field potential supporting the bound state
(nA) while U, { P is the projected optical potential describing
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the n-A interaction in the initial state of the reaction and
entering the Schrodinger equation for the projected CDCC
wave function in the initial state. The bracketed potential
operators are the right-hand-side operators of the Schrodinger
equations in the internal region, r,4 < R4,

(E T)\IJCDCC(Jr) (Up/p\n + Un Ppn + Vp”) CDCC(+) (71)

and
(E = DS 1 = Vaa + Upp)x S 15 (72)
Replacing the bracketed potential operators [U,y Pon ”” +
Vynl and [(Vaa + U,r] with E — T and E — ?, correspond-
ingly, we get for Mo “** a new form:
M P K, kan) = Mgy P K, k)
+ MOk kan),  (73)
CDCC(pos -) n CDCC(+)
MERCCPO (K, Kya) = (x 7 1L |AV W, <k,
74
AV =V, — Ul (75)

Then the total post form of the CDCC amplitude can be written
as

MCDCC(pOSl)(k I de)

CDCC t CDCC t
Mmt (pos )(kp F> de) - (pos )(ka, de)
CDCC t) CDCC t
= Mg Pk, Kaa) — “’“)(ka, Kya)

+MCDCC(pOSI)(k s de) — MCDCC(POSt)(ka’ de)

= (XIS [V — Uy [P0 (76)

l

TnAS<Rpa”

Thus, we obtained another important result. The CDCC
amplitude in the post form is equal to the inner volume integral

over variable r,, 4 with the transition operator Voa—U f A" This
transition operator is the difference between the bound-state
potential V, 4 supporting the final bound state (nA) and the
projected optical potential describing the n-A interaction in
the initial state. It is worth mentioning that Eqgs. (68) and (76)
are exact within the CDCC approach. If Mﬁ?cc(poso is small
enough, then

CDCC
Mk, kaa) & =M, " (K, kaa). (T7)

However, I prefer Eq. (68) rather than Eq. (76). To calculate
MEDCCPSY (e needs to know the overlap function in the
internal region, where the overlap function is model dependent
and requires microscopic calculations. In contrast, in Eq. (68)
the dominant part is the surface integral, which is parametrized
in terms of the reduced width amplitude (ANC). The model
dependence of the surface part is related to the ambiguity
of the optical potentials and the value of the cutoff orbital
angular momentum in the p-n subsystem in the CDCC
approach. Comparison with experiment allows one to extract
the reduced width amplitude. The model-dependent internal
part in Eq. (68) is small. Equations (68) and (76) are a

PHYSICAL REVIEW C 84, 044616 (2011)

prelude to the theory of the stripping to resonance, where
the convergence problem of the external part is one of the
main issues. As we have demonstrated in the post CDCC
formalism the external part does not appear at all. It resolves
the convergence problem related to the external part.

D. Deuteron stripping to bound states: Prior CDCC formalism

A priori, the amplitudes in the post and prior forms of the
CDCC formalism are not equal. That is why the obtained
equations using the surface integrals are expected to be
different in both formalisms. The prior form of the CDCC
stripping amplitude is

M0 kyp) = (WO AV gax), (78)
where

AV = Uit + Vaa = Uaa. (79)
The projected CDCC wave function in the final state is a
solution of the three-body Schrodinger equation

(E=T —UR = Vaa — VEWEPCT = 0. (80)

f
Here

max
Lia

33

lha=0m, A:_lnA

/ 40, Yy, Fa) YV} (o) (8D)

is the projection operator, which truncates the number of the
spherical harmonics Y,nAmlnA (f,4) in the coordinate 1, 4.

Now, as usually, we split the amplitude M “PCEPrion jnto the
internal and external parts in the subspace over variable r, 4:

1\,ICDCC(prior)(kpr Kys) = MSPCC(prior)(ka, Kia)
+ Mo 0 Kaa), (82)
where
MEPCCEiON (e - k1) = (W ?DCC( )|Up/"aA Vo,
—Uaal@axgd), <. (83)
and
MEPCCED G = (S yCPeco)| U
— UaalpaxSy) )|r,,,,>R”A- (84)

The external part of the prior amplitude (see discussion in
Sec. II B), owing to the structure of the transition operator, is
small and the dominant contribution comes from the internal
amplitude. We rewrite this amplitude singling out the surface
integral over variable r,4. To do it we rewrite the transition
operator:

Ppa

AV =U, P Voa — Uga = [U WA Vaa + V]
- [Vpn + UdA]- + ( VP”A)~ (85)

pn

The bracketed operators are the right-hand-side operators of
the Schrodinger equations

(E — YW = (UM + Voa + VI WP (86)
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and
(E = T)¢axas = Von + Uaa)oaxgy - (87
Taking into account these equations we can rewrite
MﬁPCC(Pmr)(k pF» Kqa) in the form

CDCC(pri CDCC(pri
MEEPO U Kgp) = MSPCCPV (K g, Kya)
+ MEPCCPiN (K 1 kga),  (88)
where

CDCC(pri
MR P (K p . Kaa)

= (U = Vi 0axil ), <., ®
and
MgDCC(prior)(ka’ de)
= (WP ONT = Tloaxgi ), cr,. 0

Here the kinetic energy operator T =T, + T,4. In

CDCC(pri .
Mg ®rio) the volume integral over r,r can be transformed

into the surface one taken over the sphere with the infinitely
large radius: r,r = R,r — 00. For r,4 < R,4, owing to
the presence of the deuteron bound-state wave function, the
integrand goes to zero exponentially; that is, this surface
integral vanishes. Hence, only the surface integral encircling
the inner volume with the radius 7,4 = R,4:

M;IDCC(prior)(ka’ de)
= —<\I’?DCC(_)| ?nA - 7nA|(dez§j‘;)>|

A< Rna
CDCC(post
= —Mg Pk, Kya). 1)
Rna
CDCC(post) - . CDCC(pri )
St o i given by Eq. (67). Mgm ™ (kpr, kga) is an

auxiliary internal part, which is small because at r,4 < R4
and r,r > Rp owing to the proton absorption in the nuclear
interior, p-n nuclear interaction is significantly depleted, and
so the difference V), — V4. Then

MCDCC(prior) (kp F de )

CDCC(pri CDCC(post)
= My "k pr, Kaa) = Mg, P (Kpr Kaa)

(k,r, Kaa). 92)

Thus, the total prior form CDCC amplitude consists of three
terms: the small auxiliary internal part, the small external prior
form, and the dominant surface term. We can see that post and
prior CDCC formalisms are not equivalent. In the approach
used in the paper the configuration space over variable r, 4 was
split into the internal and external parts. As it was discussed
in Introduction, such a splitting is natural because the main
object of interest in the analysis of deuteron stripping is the
overlap function 71 of the bound-state wave functions of the
target A and final nucleus F. Its external part (r,4 > R,4)
is parametrized in terms of the observable ANC while the
internal part is model-dependent.

In the post formalism the external part is dominant.
Invoking the post CDCC formalism allows us to rewrite the
external CDCC matrix element in the form of the surface
integral over variable r, 4, which can be parametrized in terms

CDCC(prior)
+M ext
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of the parameters used in the R-matrix method for binary
reactions, while the model-dependent internal part gives small
contribution. Thus, the volume part of the matrix element
over variable r,4 is transformed to the surface integral. For
transfer to bound states such a transformation does not bring
any significant advantages because the volume matrix element
converges. However, for stripping to resonance states (see
Sec. IIIC) this transformation provides a decisive benefit
because it solves the convergence problem of the matrix
element. Here the transformation of the post CDCC matrix
element has been presented mostly for demonstration but
the results will be used below in Sec. III C for stripping to
resonance states.

The prior CDCC formalism would be preferable if we split
the matrix element into the internal and external parts over
variable r, to separate the internal and peripheral parts of
the deuteron bound-state wave function. However, this wave
function is well known and is not an object of study. That is
why below, when considering the stripping to resonance states,
we use only the post CDCC formalism.

III. DEUTERON STRIPPING INTO RESONANCE STATES

Now we proceed to the main goal of this paper, the
formulation of the deuteron stripping into resonance states
using the surface integrals that will lead us to the generalized
R-matrix approach for the stripping into resonance states. Let
us consider the deuteron stripping

d+A— p+b+B. 93)

We assume that the resonance formed inthe system F' = A +n
can decay into channel B + b, which can be different from the
entry channel A 4 n. We start from the post form and transform
it to the surface integral following the method applied for
the stripping to bound states. Now the application of the
R-matrix approach looks natural. Although we consider the
deuteron stripping leading to a specific final channel d + A —
p + b+ B, there can be a few open channels coupled to the
channel n + A, which is formed after a neutron is transferred
to the target A. As in the previous sections, we follow the
R-matrix approach; we split the integration region over r,
into two regions: internal and external. The internal region is
determined as the one where all open channels are coupled
with each other, so that the transition from one channel to
another can occur only in the internal region. The external
region is the one where all the channels are decoupled. We
obtain new forms for the DWBA and then for the post form
of the CDCC amplitude. For the DWBA both the post and the
prior approach will lead to the same final expression. In the
standard approach the post form of the DWBA amplitude is
mainly contributed by the external part in the subspace r,,4,
where the convergence question of the DWBA matrix element,
which contains the integration over r,r and r, 4, becomes a
main issue. In the prior form the main contribution to the
DWBA matrix element mainly comes from the internal region
in the subspace r,, 4, where a strong coupling between different
open channels becomes an issue. In a new approach formulated
below the DWBA amplitude (in the post and prior forms) is
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written as the sum of three amplitudes: small internal post
and external prior forms and the dominant surface integral
in the subspace over r,, 4. This surface term is parametrized in
terms of the reduced width amplitudes, resonance energies, and
boundary condition, that is, the quantities used in a standard
R-matrix approach. In the post CDCC approach the amplitude
is given by the sum of the small internal post form and the
dominant surface term; that is, in contrast to the DWBA, no
external prior form appears in the CDCC method. This resolves
the issue of the convergence for stripping into resonant states.

A. Stripping to resonance states: Post form of DWBA

The post form of the DWBA amplitude can be obtained
by generalizing the corresponding equation for the deuteron
stripping to the bound state. As a starting point, we use Eq. (7)
in which, to get the amplitude for the deuteron stripping to
resonance states, we should replace the overlap function /7
with the exact scattering wave function \IJZ(];) with the incident
wave in the channel b + B:

MPVESH(p k) = (X;;-)\I/}(,i;l)(i)|AVpF|¢d(pAX(E’;))’ O

where AV,,F =Ups + Vpy — Upr and
=) —_ g, ()%
\IJbB = \Ijkm; = \Il*khu' ©5)

Because we consider the stripping to the resonance state,
which decays into two fragments b and B, there are three
particles, p, b, and B, in the final state. Hence, the kinematics
of the final state of the reaction depends on two Jacobian
momenta, for which we adopt the relative momentum of two
fragments b and B and by the momentum corresponding to
the relative motion of the exiting proton and the center of mass
of the system b + B. Thus, the deuteron stripping reaction
amplitude depends on the momentum P = {k,Fr, k;g}, which
is the six-dimensional momentum conjugated to the Jacobian
coordinates of the system p +b+ BY = {r,r, rpp}.

Then repeating the steps used in derivation of the expression
for the post form of the DWBA amplitude for deuteron
stripping to the bound state we get
MOVPO(P kga) = Min P (P Kaa) + Moy ™" (P, Kaa)

int ext

+ MGV (P, kan). (96)

Here internal post amplitude Mi]iyv(pOSt)(P, k,4) and external
prior amplitude ng(p“or)(P ,kg4) are given by

DW I UEIAY
M (pOSt)(P, Kia) = (X;F)T;?Xo( )|AVPF}¢dX15:)>

int A< Rua
CH)
and
DW (pri — — 52
Mext (PﬂOF)(P’ de) = (X;F)TIE:([)( )|AVdA |(/7dX;::)> Fpa>Rua"
(98)

int)(— int)(— t(—
Here 13" 7 (rua) = (palWs" ™) and Y4, =

(alWy5" ).
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The last term of Eq. (96), which will be transformed to the
surface integral, is

MPV(P kan) = (P XSO T = T |oaxsy)

Fna>Rua”

99)

Let us discuss the advantage of this new form of the DWBA
amplitude for the deuteron stripping to resonance state(s).
Because the internal part Mpy ** is given by the volume
integral, its calculation requires the knowledge of \D}(,‘;t)(f) in
the internal region. The model dependence of this function
in the nuclear interior (r,4 < R,4), where different coupled
channels do contribute, brings one of the main problems and
main uncertainty in the calculation of the internal matrix
element. However, as discussed in Sec. Il A, this matrix
element gives a small contribution to the total post form
amplitude MPWV®*Y owing to the structure of the transition
operator AVP r and constraint 7,4 < R, 4. These arguments
are also valid when considering the stripping into resonance
states. A proper choice of the optical potential U,r and the
channel radius R, 4 may significantly reduce the contribution
from the internal post form DWBA amplitude. Owing to the
structure of the transition operator AVd A, also discussed in

Sec. 11 A, the external matrix element Moy *"* in the prior
form is also small and in some cases, with reasonable choice
of the channel radius R4, even can be neglected. Note that,
to keep Mi]ilw (post) small, the channel radius R,4 cannot be too
large and, to keep MS(}V(pnor) small, cannot be too small.

Thus, with an optimal choice of the channel radius the
dominant part is the surface part MS", which contains only
one volume integral over r, r. Equation (96), which presents a
new form of the DWBA amplitude for stripping to resonance
states, is quite important for analysis of the stripping to
resonance.

Using the R-matrix representation of the scattering wave
function \D,(,;)* we are able to express the total DWBA
amplitude in terms of the reduced width amplitudes, level
matrix, boundary condition, and the channel radius, that is,
parameters used in a standard R-matrix method to analyze bi-
nary resonant reactions n + A — b + B. Because the reaction
under consideration is the deuteron stripping, the presence of
the deuteron in the initial state and exiting proton causes the
distortions. That is why the reaction amplitude, in addition
to the R-matrix parameters describing the binary subprocess,
contains additional factors: distorted waves in the initial and
the final states. That is why we can call the obtained expression
for the DWBA amplitude a generalized R-matrix for deuteron
stripping to resonance states.

Now we proceed to the derivation of the expressions for
each amplitude in the right-hand side of Eq. (96) and the
total post form DWBA amplitude. Because the stripping
into resonance states can lead to rearrangement, the exit
channel b + B may differ from the entry channel n 4+ A. To
proceed further, we now use the equations for \IJ,(;;) obtained
in Appendix A. Taking into account Egs. (95) and (Al) we
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get

k s N
MEYE(p k) = 2T Ko 7 (smylmy|JpMp)(Jy My J, My | JaMy)e™ il V7, (—Kyp)

k
bB \ MbB Ir My I M,

N
<Y (Copsstse (Epp)] P IA 1o (X S7 BN | AV poax(y)

v,t=1

(100)

A< Rpa”

In this equation we assume that the channel spin s and its projection m; in the exit channel ¢ = b + B are fixed.! Jr is the
resonance spin (M its projection) in the subsystem F =n + A = b + B and [ is the b + B orbital angular momentum in the
resonance state. The sum over Jr and / assumes that a few resonances with different spins may contribute to the reaction. The
subscript ¢ used in Appendix A for the channel b 4 B is replaced here with bB. Also Ef;AMF = (pa|X/FMr) is a projection
of X/*Mr introduced in Appendix A on the bound-state ¢4. The bound-state-like wave function X/7Mr describes the system
F =n+ A = b+ B in the internal region. A priori, it can be calculated using, for example, the shell model approach [37]. In

Appendix A X/7Mr is written as a nonorthogonal sum of coupled channels [see Eq. (A4)]. If we neglect the contribution from

the channel c, then "‘fﬁff F can be approximated by the internal part of the overlap function [see Eq. (18)]. Taking into account

this equation (rewritten in LS-coupling scheme) we get

ka . ’
Mi (P kg4 )—k— —= > i' (smylmy| T Mp) (s'mol'mp| Jp Mp)(Jy My JAMals'my) (1, My T, M| Jy M)
bB 'bLbB JpMps’ll’mx/mlm,/M,,
N
_;ghs ~ _ _ n —
e Yy (—Kop) Y [Topnetse (Epp)*IA™ Vo X7 Y, Bat) L g, n )| AV |0a x5, p -
v, =1
(101)

Here we added the sum over the channel spin s’ (its projection my /) in the entry channel ¢’ = n + A of the resonant subreaction
n+ A — F — b+ B and over the n + A orbital angular momentum [’. The sum over M, and s’ (my) appears because

the transferred neutron is intermediate (virtual). It is important that with a proper choice of the optical potential U,r the
DW(post)

matrix element M can be minimized so that its model dependence would not have impact on the total matrix element
MDW(post).
. . DW(prior) (ext)(—) : 3
To obtain the expression for M., we use for the external part W, *, which can be obtained from Eq. (A31),

assuming that the resonance contribution to this wave function is dominant. In the sum over Jr in Eq. (A31) we keep
only those total angular momenta at which resonances contributing to the reaction occur. Let us consider two possible
cases.

(i) The exit channel ¢ = b 4+ B in the resonant subprocess n + A — b + B is different from channel ¢’ = n + A. In this
case the external resonant wave function is given by Eq. (A36) and its projection on the bound state £, = ¢4 is determined by

Eq. (A37). Then M2V P reduces to
i v,
MEYEO () = —i 2 [V i Imysmy | T Mp) (U'mps'myg | Jp Mp)(Jy My J s Mals'my)
ko A M '11 M,
FMFS mgrmymp
A 0 ’(k AT A) A X7
x <JnM,1JpMp|Jde>Y;:n,(—kb3>s;gs,;,,m/l/<x;;’:—"Yﬁml,m) AVaa|paxyy (102)
nA Tna>Rua

Here V44 is given by Eq. (35). In the external region V,4 = 0 and Vg4 = U,s — Uga. Also has been added the sum over
the orbital angular momentum [ and its projection m; (I’ and my) in the exit (entry) channel ¢ = b + B (¢’ = n + A) of the
resonant subreaction n + A — b + B, the sum over the channel spin s’ and its projection my in the entry channel ¢’ =n + A
of the resonance subprocess n + A — b+ B and the sum over M, because the neutron is the transferred particle. The
projections of the spins of the incident deuteron M, the exiting proton M,, the channel spin s and its projection m, of the exiting

particles b and B are fixed. We also use the symmetry of the S matrix: S sest = Ses 1 - The matrix element SbJ Bslnasy 18 glvenby

'Note that when considering the wave function in Appendix A the channel ¢ = b + B was the entry channel. However, when considering the
deuteron stripping reaction amplitude, this channel is the exit channel while the channel ¢’ = n 4+ A becomes the entry channel in the resonant
subreactionn + A — b + B.

044616-14



THEORY OF DEUTERON STRIPPING: FROM SURFACE ... PHYSICAL REVIEW C 84, 044616 (2011)

Eq. (A45). Substituting it into Eq. (102) gives

MEY PV (P Kkyp) = k— L <lm,sms|JFMF><l’m1fs/msf|JFMF><JnMnJAMA|s’ms/><JnMnJ,,Mp|Jde>
bB Una Jr MFv’ll/m rmymy M,
N Op(kpa, Rya)
_ishs _ U'\RpnA, I\pA
x Y, (—Kpp)e e ™% 3" Do, (Epp)] A MoelTenasirse (Ena)l'? ——— ===
nA
v,7=1
) Op(kuas Tna) Rya —
(=) Yr\tn 1 n * ~ +)
x X . Vi (Ena)| AV aa|@ax (103)
< PF 'nA 01/(knA7 Rua) bm 4 Fua>Rua
Now we take into account that
(k JRz)
Oitke. Re) = | F2(kz. Re) + Gthe. Re)e e ™™ @0t = [F2(kz. Re) + Gthe. Re)e™, (104)
which for the channel ¢ = ¢/ = n + A and [ = [ takes the form
i arctan Fyrky - R,,A) . ohs
Or ks Run) =\ FAun. Run) + Gilhon Ruade ™" @it = |2k, Run) + Gilkoa. Rua)e®se, (105

where in the absence of the Coulomb interaction Fy(p) = (wp/2)"/?Ji41,2(p) and Gi(p) = (=) (mp/2) 2 I_q112(p),
J+i+1/2)(p) are Bessel functions.
Then using Egs. (A41) and (105) we get

; 2
MO PP kgp) = 2 [N i s | T M) (Umy s m | T M) (Mo Ja Mals'my)
moskps R, M
FMps'll'mgmmy M,

N
A __;shs —
X (S My Ty M| JaMa) Y, (—Kpg)e ™5y " (Dot s, (Epp)] 1A Lo Venas s,

v, =1

AV s (106)

 Oikpa, rna) Rua
< Lt Y, (Faa)

rE Ina Oi(knAa RnA)

2 Xd A >
Tna>Rya
(ii) If ¢ = ¢/, thatis b = n and B = A. Here two cases are possible: nondiagonal transition, for which s # s” or/and [ # [’, and
diagonal transition, with [ =/’ and s = s’. The amplitude for the nondiagonal transition can be obtained from Eq. (102). Here
we present the expression for the diagonal transition (elastic scattering) amplitude, which can be obtained taking into account
[Eq. (A33)]:

: 2w

DWi . .

My PP (P Kga) = o~ d° ilmysmg Jp M) (Impsmy | T M) (Jy My Jy M| JaMa)(Jy My Ja M |smy)
nAfnA JeMplmgmmy M,

) Of (kna, rna) Rua
X Y (—ka)[1 = S25 o as ] Onas Ran)( X7
lm/( A)[ nAsl,nAsl] l( A A)<XPF nA Ol*(knA, RnA)

Yltn,r (f.nA)

X AV wxf,:)> (107)
rna>Rya
Substituting the expression for the elastic scattering S-matrix element A wasinAst 21ven by Eq. (A43) we obtain
i . 2m .
Moy ™ (P Kga) = i S iMmyusmg|Tp M) (Impsmy| Je Me)(Ju My J, M| JaMa) (Ju My JaM s |sm)

ext
kyaR
nA ftna JEMplmgmmy M,

N
X Yy, (—Kua) [1 — 7% <1 +iy, [FMAWF(E,lA)]‘/z[A—‘]w[FMWF(EW]‘”” Oy(kna. Rua)

v,t=1

AV s (108)

(=) Ol*(knAv rnA) RnA
X XpF

Y: (f,
Faa 07 (kna, Run) imy (Fna)

wxéﬁ{)>

na>Rua
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DW(prior)

The one-level, one-channel case is the simplest one for which M, (P, kg4) boils down to
rior’ .\ 27 .
Mo (P Kan) = i S° il musmgl JpMp) (mpsmg | Jp M) (Ju My dy My | JaMa) {3y My Ja Malsmg)
nAfnA

JeMplmgmmy M,

* A —2ishs i oy (knAv rnA) RnA
e o
nA 1 \FnA, nA

Y;m,, (f.nA)

X AV(]A , (109)

rna>Rya

+
(de;A)>

where

IﬂnAleF (EnA)
2(Enaysisy — Ena)’

Snasiy, = arctan Ena0)s17, > Ena, (110)

is the resonant phase shift and E, 4, is the real part of the complex resonance energy of the resonance with the quantum
numbers s/Jr in the channel n + A. Now we derive the equation for Mg" by transforming it into the surface integrals over
variable r, 4. We can repeat the discussion in Sec. I A. The integration in Eq. (99) over r, 4 is taken over the external volume
restricted by two spherical surfaces: the inner surface with the radius R, 4 and the external surface with the radius R;l 4 — 00.As
has been shown in Appendix B after regularization the integral over the infinitely large sphere vanishes [see Eq. (B20)] and

o[ )]’

MZ¥(P kan) = =My (P, Kap) = ,1A2 / dr,r f <, [god(rpn)xk,,f(rdA)x“) (rpr) o
MnA nA

— x5, [0 T ()]

, 3¢d(rpn)x£d+,f(rm)] (a1

ar,,A

rna=Rya

Here —M DW is the surface integral encircling the inner surface of the external volume at r,4 = R,4. A negative sign appears
because the ‘normal vector to the surface is directed to the center of the volume, that is, opposite to the normal vector to the
external surface (at infinitely large radius). For simplicity, we dropped the quantum numbers in Eq. (111) but they are recovered
below. Note that Eq. (111) can be obtained from Eq. (27) by substituting T(w)( )(r,l 4) for the overlap function [ f (rya).

For the exit channel ¢ = b + B in the resonant subprocessn + A — b+ B dlfferent from channel ¢’ = n + A using Eq. (A37)
we get

2m [vpp 1 .
MNP Kga) = =MQY (Pkan) = —i— [ RL e 30 i mism | T M) ('mys'me | T M)
bB U”A MHA JFMFIl’m,ml/s’mx/Mn

X LM M 1) My M MY (o) S [ o3, e

Op (kna,Tna) +)
. : Op(knas rna) 004(Cpn) Xy, (Taa)
X /ernAYl’m,/(rnA) (pd(rp,,)xlﬁ:)(rdA)# — X(T()p( pF) n n P AKgq
A 0rpa r Tna rnaA
FaA=Rna
2m [vpp 1 y , , )
= _lk_ 2 l (lmlsmY|JFM)(l mps m‘v’|JFMF><JnMnJAMA|S ms/)
bB Y UnA <HnA JeMpll'mpmys'mg M,
X (T My dy Myl TuMa) Y (—K3)S35 101 O Gena, Run) / drpex 3 pr) / A0, Vi (Brs)
dq(r )Xk (rga)
x [¢d<rpn>x,ijj(rdA><BnA —1) = Ryp— (112)
8rnA
rna=Rna
Here
90y (kna,Tna)
Arya —R
B A= R A TnA=KuA (113)
! "t Op(kna, Rua)

is the boundary condition. The sum over M, is a formal because M, and M, are fixed. The coefficient (J,M,J,M,|J;Mz)
appears from the vertex d — p + n and the product (I'mys'my|JpMg){J, M, JaM4|s'my) from the vertex n + A — F. The
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matrix element Slfgsl;n Asr 18 given by Eq. (A45). Substituting it into Eq. (112) gives

T [v 1 . ’
MV (P Kya) = —MEY (P, kgp) = — | == > i' (tmysm| Je Mp) (U'mps'my | Jr M)

k v
bB nA Hna JeMpll's'mmymg M,

X (Ju My Ja MalS'mg) (1 My Ty My | JaMa) Y, (=K )™ e =100

N
x Z [Toosstsy (Evp)1 2 IA™ e [Tonasi s, (Ena)lY? Op(kna, RnA)/drpFXET()pF(rpF)/ernAYZ’m,r(f'nA)

v, =1
30a(Cp) X (Tan)
x [w(rpn)xlijj(rdAXBnA — 1) = Ry (114)
nA rnA=Rna
Taking into account Egs. (A41) and (104) we arrive at the final form for MSDW(k pF Kaa):
DW DW 2R"A )
MV (P kya) = —MRY (P kgp) = [ 20— > i' (lmysmy | Je M)
HoBHRAKDB st 10 smmymy M,
< (U'mys'my | T Mp)(Jy My JaMals'mo ) (Jy My T, My | JaMa) Y, (—Kyg)e ™%
N
X Y Cusm Eve) 1A Dy, [ drprx S, e [ @, Yo o)
v, 7=1
30a(Cp) Xy (Fan)
x [wd(rpn)xlij ) (Bua = 1) = Ryp = (115)
nA
rnA=Rna

Now let us consider the diagonal transition ¢sl — c¢sl, where ¢ = ¢/ = n + A. To get M?W once again we start from Eq. (111).

Now in this equation Y4 should be replaced with chy’lfz‘lgi(]);s + TCJY‘}S??(Y;,)% given by Egs. (A30) and (A33). Then the

equation for the surface matrix element for the diagonal transition takes the form

MOV (P, kgp) = i i'(Imysmy | Jp Mg ) (Impsmgr | Jp Mp) (Jy My Ja Mg smign) (Jy My, J, M | Ja M )
/“LnAknA JrMrl M
FMptmymynmgr My

N
x Yjr, (—Kua) [1 — ek (1 +iy [rmASUF(EnAn”Z[AIJWFM.WF(EM>]1/2)} Oi(kya, Rua)

v,7=1

x / dr,rx S (6pr) / S, Yimy, (Fra) [wd(r,,mx.ijj(rm(BnA —1) = Rua

34T p) X! (Faa)
8)’,,,4

rna=Rua

(116)

Summing up all three amplitudes My PV (P, Kga), Moy ™" (P, Kq4), and MPV(P, kyp) = —M gyi (P, kg4) we get the total
post DWBA for the (d, p) stripping.

(i) Resonant reaction n + A — b + B, that is, c = b+ B # ¢/ = n + A. Then the total post form of the DWBA deuteron
stripping amplitude is

1
MPVCOO(P, Kkyp) =27 > i (smlmy| Jp Mp) (s ml'my| Jp M) (Jy My Ja Mo ls'my ) (Jy My T, My | Ja M)
HoBKoB ) i M,
FMESIUmgmpmy My
N

—ishs N - - 7
x e Yy (—kps) Y [Coppots, (Ep)] (A7 e {(x;ﬂ};,,/,,,. |AV pr|@axiy)

v,t=1

2,bLnA (=) O;(knA’ rnA) RnA
Ty i Y, (&
RnA YenAs'l'Jp XpF P Oﬁ(knA, RnA) [ml,( nA)

x [aruens, wom [ 4, 2o, (an)[sod(rp,z)x.i*)(rdp(BnA — )= Rus

Tna<Rya

RnA
+ 2_yrnAs’l’JF
Tna>Rya HnA
rma=Rna ]

(117)

AV s

Pa xﬂ)>

dA

30a(Cp) Xy (Fan)
Br,,A
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Assuming in this equation » = n and B = A, thatis, ¢ = ¢/ but/ # I’ and/or s # s’ we get the expression for the DWBA deuteron
stripping for the nondiagonal transition in the resonant subprocess (n + A);; — F — (n + A)py.

Equation (117) is very instructive for understanding the difference between the stripping to resonance states and on-shell
binary resonant reactions. As we can see, the transfer reaction amplitude contains the resonance factors determining the
resonant subprocess n + A — b + B, the partial width amplitude [T"; a5, (E, )12 of the level v for the decay to the exit
channel b + B, the matrix elements of the inverse R-matrix level matrix [A~'],, and the reduced width amplitude y;,a7J,
of the level 7 for the entry channel n + A rather than the corresponding partial width amplitude which would present if we
consider the corresponding on-shell binary resonant reaction n + A — b 4 B. The difference is crucial because the partial
width amplitude [I";, a5 7, (Ey 4)1'/? contains the penetrability factor [see Eq. (A41)], which does not present in the reduced
width amplitude yr,asr7. and, hence, in Eq. (117). The lower the energy of the resonance, the stronger is its suppression
owing to the barrier penetrability in the entrance channel in the on-shell binary resonant reaction n + A — b + B. Besides,
if a few resonances do contribute with the different I, then the higher the I, the stronger its suppression. However, it is not
the case if one tries to populate low-energy resonances with different /' using transfer reaction. The missing penetrability
factor in the entry channel of the subresonance reaction n + A — b + B in the transfer amplitude makes it possible to
populate low-lying resonances. Moreover, for the same reason, the resonances with higher !’ are not suppressed in the
stripping. Hence, when a few resonances are populated in the transfer reaction, the measured experimental spectrum of the
fragments b and B can be quite different from the one measured using the on-shell binary resonant reaction. The missing
penetrability factor in the entry channel n + A of the resonant subreaction n + A — b + B in the transfer reaction explains
the power of the Trojan Horse method as an indirect technique in nuclear astrophysics (see Refs. [33,38] and references
therein).

(ii) Diagonal transition in the resonant subprocess (n + A);;, — F — (n + A)y, that is,c = ¢’,1 =1', s = s'. The total post
form of the deuteron stripping DWBA amplitude is

MPYEOOP k) =2 Y il smylm|Tp ME)(smylmp | T M) (u My JaMalsmye) (Mo J, Myl JaMa)
JeMplmgrmpmun M,

1

/’LnAknA

N
> Cunast e End)V A Ve (X0 2 L, a)| AV b 0ax(y)

v,t=1

TnAS<Rua

- ohs A
e~ Y[';,,,(—knA):

N
+i |:1 — 7 (1 +iy, [FvnAsIJp(EnA)]l/z[A_l]errnAsZJF(EnA)]l/2> :| Oi(kna, Rua)

v, =1

AV ,p

1 — 0* kl‘l »'n Rl‘l A
X( <(> /' (Knas Tna) Ay G

knA RnA PF nA Ol*(knA9 RnA)
L
2':LLnAknA

@ xfﬁ/;)>

Tna>Rya

) } (118)
rma=Rua

[ aroen Qo [ a8, Yin )

a(pd(rpn)X]S_A)(rdA)]

x [sod(rpn>xl£jj<rdA)<BnA —1) = Rua ™

B. Stripping to resonance states: Prior form of DWBA with

Here we show that starting from the prior form we are able MEL"V(PriOF)( P k) = < X(;)T(i:t)(f) | AV 4 | Qax ;X)M
to obtain the generalized DWBA R-matrix amplitude for the ' pE

deuteron stripping to resonance states [Eq. (96)] much easier

than from the post form. The prior of the DWBA amplitude and

for deuteron stripping to resonance states is

rna<Rya

(121)

MDW(prior)(P, de)

ext

MPYPIO(P Kya) = (x ,(,_p) Tod |[AVaalgaxyy).  (119) = <X,(9}) T AV alaxy)

(122)

rna>Rna

The splitting of the amplitude into the internal and external
where AV 44 is defined by Eq. (35) and Tr(j = (p AI‘I’ég)). As parts in the subspace over the coordinate r, is necessary
usual, we split the amplitude into internal and external parts to rewrite the prior DWBA amplitude in the generalized
R-matrix approach for stripping to resonance states. As we
have discussed in Secs. Il A and IIT A, the external matrix
element M2V P in the prior form is small and in some

. ext
+ MQYV“’“"“(P, k;4), (120)  cases, with reasonable choice of the channel radius R, 4, even

MPWEioN(p gy — M.Dw(prior)(P, Kia)

nt
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can be neglected. It is important for analysis of the stripping
to resonance states because the external part in the post form
does not converge. In this sense the usage of the prior form in
the external part has clear benefit. The main contribution to the
prior form amplitude MPWV®i) comes from the internal part

Mi]iyv(prior). Because the internal part is given by the volume in-

tegral, its calculation requires the knowledge of TSXO(_) in the
internal region. The model dependence of this function in the
nuclear interior (r,4 < R, 4), where different coupled channels
do contribute, brings one of the main problems and main
uncertainty in the calculation of the internal matrix element.
Using the surface integral we can rewrite the volume integral
of the internal matrix element in terms of the volume integral
in the post form and dominant surface integral taken over the
sphere at r,4 = R,4. With reasonable choice of the channel
radius R, 4 the contribution from the internal volume integral
in the post form can be minimized to make it significantly
smaller than the surface matrix element. The latter can be
expressed in terms of the R-matrix parameters: the observable
reduced width amplitude (ANC), boundary condition, and
channel radius. Repeating the steps outlined in Sec. II B we get

M (P k) = Mt " (P k) + MYV (P, Kas),
(123)
Here, M ™ has been previously considered and is given

by Egs. (100) and (101) while M2" takes the form

MV (P Kya) = —{x AT T = T |gaxSy)|

Tna<Rya’

(124)

where T — (w9 1)1y The fact that the volume
integral in this equation is the internal one makes
transformation of this volume matrix element to the
surface one much easier than for the post form. The transition
operator T = T,r + T,4. Because r,4 < Ryq at rpp — 00
the integrand in Eq. (99) vanishes exponentially owing to the
presence of ¢;. Hence, the operator 7, is Hermitian; that is,
applying the integration by parts over r,r twice we get

(G O T o = T prleaxas)

Tna<Rua
= (X;})Tfijl)(7)|?pF - 72p1v|§04)(0(,£)) pocr, =0 (125
Thus, MY reduces to
MY (P. kys)
=~ N Toa = Tualoaxid), en,- - (126)

Using Green’s theorem we can transform this volume integral
into the surface one. Note that the volume integral over r, 4 is
constrained by the sphere with the radius r,4 = R, 4. Hence,
only one surface integral appears with r,4 = R, 4. Here we
see an important advantage of using the prior form versus
the post one. In the post form transformation of the external
volume integral to the surface one led to two surface integrals
at r,a = R4 and 1,y = R;L 4 — 00. It required an elaborate
proof, which included regularization, to demonstrate that
the surface integral at r,4 = R,; 4 — 00 vanishes. After

PHYSICAL REVIEW C 84, 044616 (2011)

transformation to the surface integral we get

MGV (P, kga) = =M™ (P, Kgp). (127)
nA

Equations (111), (112), and (115) determine this surface

integral.

C. Stripping to resonance states: Post CDCC formalism

The CDCC approach for stripping to resonance states,
which takes into account the deuteron breakup in the initial
channel, definitely has an advantage compared to a standard
DWBA. The application of the surface formulation of the
reaction theory for the DWBA has been done mainly for
demonstration, but our main goal is the CDCC.

Here we present the derivation of the post form CDCC am-
plitude using the surface integral formulation. This amplitude
is

MCDCC(post)(P’ Kya) = <X,(,})T,(,Z)|AV,}:}” ‘LIJFDCC(+)>.
(128)

This equation is an extension of the post CDCC amplitude
for stripping to bound states [see Eq. (54)] obtained using

0y P .

replacement [} — T,(l A). AV i is defined by Eq. (70). Now,
as usual, we split MCPCCPOY into the internal and external
parts in the subspace rj,4:

MCDCC(pOSt)(P , de)

CDCC(post) MCDCC(posl)

= My (P, Kaa) + Mgy (P, kga). (129)

CDCC(post)

The internal amplitude M, is given by

— i — Py,
MCDCC(post)(P7 de) — <X;F)T(mt)( )|AVP;F

int nA
« \LIJ.CDCC(-H)
1

(130)

FnaS<Rpa”

Correspondingly, the external amplitude is

MCDCC(posl)(P’ de)

ext

— <X[();)Tr(li(t)(f) ’ AVII:;” ’LIJ[CDCC(+))| (131)

rna>Rya

Now we repeat the steps outlined in Sec. II C. Taking into
account Egs. (58)—(60) we arrive at

MCDCC(pOSt)(P, Kyu) = MgDCC(pOSt)(P, ki)

ext

g | T = )

where T =T,r + T,4. It is shown in Appendix C that
MCDCC(posl)
S

(132)

,
Tna>Rya

can be reduced to

CDCC(post CDCC(post.
MS (pos )(P,de) — _MSR”A (POS)(P’ de)

= X T = T 0

This integral can be directly transformed into the surface
integral with r,4 = R, 4 encircling the internal volume, while
the integral over r,r is taken over all the coordinate space.
Thus, we have shown that the post CDCC amplitude for
stripping to resonance states is given by the difference of two

(133)

Fna>Rua
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terms, internal post CDCC amplitude and the surface integral:

MCDCC(post)(P de) — MCDCC(POst)(P de)

nt

CDCC(post)

— MOk k). (134)

The internal amplitude M{ " can be minimized by a
proper choice of U,r and the channel radius R, 4, while the
surface integral is dominant. If the channel radius is larger
than the n-A nuclear interaction radius the second term is
parametrized in terms of the reduced width amplitude and
the boundary condition at r,4 = R, 4. Thus, we succeeded to

PHYSICAL REVIEW C 84, 044616 (2011)

the R-matrix parameters. It is one of the main results of this
paper. Equation (134) is the most important result of this paper.
Owing to the absence of the external term, which is present
in the DWBA and which causes the convergence issue, the
convergence problem in the post CDCC approach is resolved:
The integration in the surface matrix element is performed
over the full coordinate space only over one coordinate r,r

rather than over two coordinates, r,r and r, 4.

. CDCC(post :
Expression for M, ®S9" for different cases can be

obtained from Eq. (101) by replacing the initial channel wave

. + . CDCC(+
function <pd(r,,,,)xlit[:(rdA) with W, ( )(r,,p, Iua):

parametrize the post form of the CDCC amplitude in terms of

. 2 [ kpp
M PP k= [ S

i (smglmy| Jp Mp) (s'mol'mp| Jp Mp)(Ju My JaM|s'mg)e™ Y (—kpp)
kpp\ WpB

JEMps'llmgmimy M,

N
X > [Cupsstse (Eps) P IA™ e (X s 2 ) Y, Bt £, )| AV e [P 5100

v,7=1

raa<Rya

(135)

Note that the CDCC wave function itself also depends on quantum numbers of p-n and d-A subsystems, which we
do not specify here. It will be done in the follow-up paper where concrete calculations will be presented. Natural
Jacobian variables for \Illc DECEH) are rga and r,,, but we use here another set of Jacobian variables, r,r and r,4.

To write explicitly MSSACC(p OSI)(P, kgs4) in terms of the surface integral we can use Eq. (111) replacing the initial channel
wave function by the CDCC one:

R2
CDCC CDCC
MS (pOSt)(P, de) — _MS (POS[)(ka’ de) — 21:“4 /drpFXSK)pF(rpF) / ernA

R
nA nA

(136)

aT(ext)(—)*(r ) 3\I‘-CDCC(+)(I‘ r )

CDCC(+ A (— FsThA

X \IJ,' ( )(rpF» rnA)u - T,S: X )*(rnA) : u ‘
0Fpa 0rya

rna=Rya

We can extend corresponding equations from Sec. III A by replacing the initial channel wave function by the CDCC one. In
particular, for the nodiagonal transition in the resonant subreaction ¢’s’l’ — csl, where c = b + B and ¢/ = n 4+ A, we get from
Eq. (115)

i'(Imysmy | Jp M) ('myps'mg | Jp M)

2RnA Z

k
HbBMnAKbE JEMEI's'mimymg M,

N
A _igshs _
X (JnMnJAMA|S/ms’>Y[>:n,(_ka)e B Z [FvstlJp(EhB)]l/z[A l]vryrnAs/l’Jp /drpFXE‘]_(lF(rpF)

v, 7=1

CDCC(post CDCC(post.
MS (PO?)(P’de) — _MSRnA (PO@)(P’de):n

W EPCEH) (p , T,
x / 020, Yy )| WO 0 ) (B — 1) — Ryp i 0 T0) (137)
97 rna=Rna
Correspondingly, the surface integral for the diagonal transition c¢s/ — csl can be obtained from Eq. (116):
1W§DCC(post)(P7 de)
bid .
=i— i (Imysmg| Jp Mp) (Imp smg | Je Mp)(Jy My Ty Malsmy) Ve, (—Kua)
MllA nA JFMFlmlm,//mSnMn
N
_ioshs . _
X |:1 — e (1 +i Y [Conasts (En)]'’IA l]vtrrnAlep(EnA)]l/2>j| Oi(knas Rna)
v,7=1
. 0w ey, 1aa)
x f drpex 3, (pr) / dszmnm,,,(rnA>[waCC<+><r,,F, e (138)
nA
rna=Rya
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Summing up two amplitudes Mﬁ?cc(pOSt)(P, ks4)and M?W(P, kya) = —M?;V (P, ky4) we get the total post CDCC amplitude

for the (d, p) stripping.

(i) Resonant reactionn + A — b + B, thatis,c = b+ B # ¢’ = n + A. The total post form of the CDCC deuteron stripping

amplitude can be obtained from Eq. (117):

MCDCC(pOS[)(P’ de) — 27_[

wyBkyB

JeMps'll'mgmmy M,

N

Yo ismidmlJrME)(s'mgl'mp| T ME)(Jy My JaMals'my)

—i hs * A _ — -
x e iy (—Kpp) Y [Cupssts, (Epp)]*[A™ e {(xgﬁlfs,,,,,,(rmAV,,F

v,7=1

R
CDCC(+) | Kna &) .
X ‘\yi (rPF’ r”A)Hr,,AgR,,A + m%mﬂ’h '/drpFX_ka(rpF)/ernA Yl/m,/ (rnA)

X |:\I’1'CDCC(+)(rpF’ rnA)(BnA - 1) - RnA !

B\II.CDCC(+)(rpF, r,,A):| (139)

rna=Rya }

arnA

Assuming in this equation b =n and B = A, that is ¢ =¢' but [ #1' and/or s #s’, we get the expression for the
post CDCC deuteron stripping for the nondiagonal transition in the resonant subprocess (n + A);; — F — (n + A)py.
(i1) Diagonal transition, c = ¢’,1 =1', s = s’. The total post form of the CDCC amplitude is

MCDCC(post)(P’ de) =2 Z

JeMplmgrmpmum M,

. __ishs A
i'(smglmy|Jp M) (smglmp | Jp Mp)(Jy My JaMy|smgye Y (—kya)

N
1 _ _ - CcDCC
X { Y Z [FvnAsZJF(EnA)]l/z[A 1]UT<X1()F)I£leF(rnA)|AV])F|\II[ (Jr)(rva r"A)>|r,lA§R,A
nAknA '

v,t=1

N
+i |:1 - e—i25;’i\, (1 +1i Z [FvnAleF(EnA)]I/Z[A_l]vr FrnAxl],.-(EnA)]l/2> :|

v,t=1

1 ) o
Xm / drpFX,ka(rpF) er,,A Yll‘ﬂ,// (rnA)

x |:\I]iCDCC(+)(rst rnA)(BnA - 1) - RnA !

Equations (139) and (140) are the final main results of this
paper. Both matrix elements consist of only two terms, the
internal post CDCC and the surface term. The internal term
contains the integration over r, 4 in the internal volume r,, 4 <
Rq4. Hence, at r,r — 00 variables ry4 ~ r,r — 00 and

CDCC(+) -3
rpn ~ rpr — 00. However, then Y, (rpr, Tha) ~ FoF
[36] and the integral over r ,  does converge. The same conclu-
sion is true for the surface integral in whichr,4 = R, 4. Hence,
in this matrix element also \IliCDCC(+)(r,,F, r,a) ~ r;; and
integral over r, converges. Both amplitudes are parametrized
in terms of the parameters used in the conventional R-matrix
approach and allows us to analyze the stripping into resonance
states using generalized R-matrix approach. Finally, both
amplitudes [Eqgs. (139) and (140)] do not have penetration
factor in the entry channel n 4+ A of the resonance formation
in the resonant subreactions n + A — b+ B and n + A —
n + A. That is why stripping to resonant states provides a
powerful tool to measure resonances in the subsystem n + A
very close to the threshold, which can be suppressed in the

JwePCH rnA)} (140)

Ina=Rna }

on-shell binary resonance reactions but not in the stripping to
resonance states.

3rnA

IV. SUMMARY

The theory of the deuteron stripping populating bound and
resonance states based on the surface integral formalism is
presented. To demonstrate the theory I first develop it for
the DWBA. Because the DWBA is outdated and, definitely,
deficient compared to the CDCC, the theory is extended to
the CDCC formalism. The theory is applied for stripping to
bound and resonance states. The eventual goal of this paper
is to deliver the theory of the deuteron stripping to resonance
states within the CDCC formalism using the surface integral
formulation of the reaction theory [32]. Transformation of the
volume matrix element to the surface one (in the subspace
over r,4) and R-matrix representation of the scattering wave
function of the fragments formed by the resonance decay
allows one to parametrize the reaction amplitude in terms of
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the R-matrix parameters used in the analysis of the binary
resonant reactions. Because the reaction under consideration
is the deuteron stripping, the presence of the deuteron in
the initial state and exiting proton causes the distortions.
That is why the reaction amplitude, in addition to the R-
matrix parameters describing the binary subprocess, contains
additional factors: CDCC wave function describing the d-A
scattering in the initial channel (coupled to the deuteron
breakup channel) and the proton distorted wave in the final
state. Hence, the approach can be called a generalized R
matrix for the stripping to resonance states. The advantage
of the approach is that the reaction amplitude for stripping to
resonance states in the post CDCC formalism does not have a
convergence problem and is parametrized in terms of the same
observables as binary resonant reactions. Hence, the formalism
provides experimentalists a consistent tool to analyze binary
resonant reactions and stripping reactions populating resonant
states extracting the same observable parameters, namely,
reduced widths (ANCs). The power of the method has been
demonstrated in the analysis of the Trojan Horse reaction
F(d, na)'®0 [33]. The numerical application of the method
will be demonstrated in the follow-up papers.
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APPENDIX A: b + B SCATTERING WAVE
FUNCTION W

In this appendix we consider the representation of the
scattering \1/,5? wave function used in the R-matrix approach
for binary resonance processes [39,40].

1. Internal scattering wave function \Il:);)

A general equation for the internal wave function contains
the sum over total angular momentum Jp and its projection
M . Because we are interested in a wave function \IJI(;E) describ-
ing aresonance in the system F = b 4+ B, we consider only the
internal wave function at given JF, at which resonance occurs.
In the internal region in the state with the total momentum
Jr, channel spin s (its projection mi) in the initial channel
¢ = b + B the wave function \IJ,(;;) can be written as [39]

. 2 [k, Chs
Wlrino®) — —— = Z e i (smylmy| Jr M)
' kC He Mlim,;
N
<Y (Ke) Y [Cocsts, (B IAT ], X7
v, 7=1

(AD)

Here E. = Epp and k. = K,p are the relative energy and
momentum of particles b and B, p. = tpp, I'vesisp (E¢) is the
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formal (R-matrix) partial resonance width of the level v in
the channel ¢slJr, c = b + B, A is the R-matrix level matrix,
N is the number of the levels included, 8"} is the hard-sphere
scattering phase shift in the channel ¢ given by

Fi(ke, R.)
Gl(kc‘a Rc)’

where Fj(k.,r.) and Gy(k;, r.) are regular and singular
Coulomb solutions of the radial Schrodinger equation,

8 = —w, + arctan (A2)

l
Ne
We] = Op — Oy = E arctan —,
n

n=1

(A3)

o, is the Coulomb scattering phase shift in the channel ¢ and
in the partial wave [, and 5. is the Coulomb parameter for the
scattering of the fragments in the channel c.

We consider only two coupled channels: ¢ = b + B and
¢’ =n+ A. Also X/ is an eigenfunction of the Hamilto-
nian describing the compound system F =n+ A =b+ B
in the internal region excited to the discrete level T with
the total angular momentum Jr and its projection Mp.> A
separable form for W/ (" reflects the fact that we consider
the b + B interaction proceeding through resonance states.
The entry channel of this scattering is the channel ¢ = b + B.
The inverse level matrix contains contribution from all N
resonance levels. In a simple one-level case it reduces to
the well-known Breit-Wigner resonance propagator. All the
open channels coupled to ¢ contribute to X/*M* and determine
possible exit channel contributions into resonance scattering.
Hence, in the internal region, where different open channels
are coupled, X { *Mr can be written as a nonorthogonal sum of
these channels [39]:

1 Fe o IrM
Z ;erjA {‘§E¢C~.§Fl‘m:u5§l~hj b

c

xIrMr — (Ad)

&8lm; j
where &; is the product of the internal bound-state wave func-
tions of the fragments in the channel ¢, & = ¢, ¢; ugy, (1)
is a set of the radial wave functions of the relative motion of
the fragments in the channel ¢ with the channel spin §, orbital
angular momentum / and total angular momentum J in some

adopted potential; ¢’7M7 is the channel spin-angular wave

cslms
function (in LS-coupling); m; is the projection of §. Also
A is the antisymmetrization operator between the nucleons
of the fragments in the channel é. We consider only two
coupled channels,c = b + B and ¢’ = n + A. Thus, the initial
channel ¢ can propagate into two final channels ¢ and ¢’
via the intermediate resonances. Although Eq. (A4) contains
the sum over all channel spins § and its projections in each
open channel, in what follows I consider the contribution to
X!rMr only from the channel with fixed channel spin and its
projection.
First, let us consider the contribution of the channel cs”m»
into X/*Mr In this channel &, = @,@p and
Bl = D" ml M| Je ME) Yy, R)esrmys  (AS)

my

It is shown in Ref. [37] how to calculate X/ in the shell-model
approach.
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Gesrmy = Y (oM JgMpls"me) Vs, Wiym,. (A6

MyMp

Here ¢csm,, is the channel spin-wave function in the channel
cs"mgr, Wy, is the spin-wave function of particle i, I” (m;»)
is the relative orbital angular momentum (its projection) of
the fragments in the channel ¢, and r. = rpp is the radius-
vector connecting b and the center-of-mass of B. We adopt the
channel radius R, large enough to neglect antisymmetrization
between nucleons of b and B at r. = R,; that is,

N JrM
=R, Ne&ePogn Uesii gy j |rc=R(.’
(A7)

A JrM
Agelnitr, uesr i},

b+B)!
where N, = ((;!'B!) y-12,

Assuming that the overlap of the channel ¢ at the channel
radius R, with the channel ¢ is negligible we get for the

component of x’r projected on &, = @ppp atr. = R, [39]

Tcs” m "

r—«J, M,
b

(Rcfo) = (g X0 )

T8 mgn

re=R.

1 JrMpg
= R_ Z ¢C:”1'm /,uTCY”l”JF(RC)s

c o

(A8)

; - 2
Jr(int)(+) A Jr(int)(+)
TcsFm-;cs”m .n(RCrC) = <§C|\I1csFm-;cs”m ./r) =
s s K s k R - ;
Filmy
H./FMF A
X & J(R.fe) =21
Sres'my kCR

N

XY [Cocstsp (N IA™ o Veesr 1, Yrmy @) Pesrm, -
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where
Uzes"l” I (rc) = Nc Z wrc‘jucs”l”Jpj(rc)~ (A9)
J
Atr, = R, by definition [39]
urcs”l”Jp(Rc) = 2/J/c RCJ/rcs”l”Jp s (AIO)

where y;c517 g, 1s the reduced width amplitude of the level t
in the channel c¢s”l” Jp. I remind the reader that the system
of units # = ¢ = 1 is being used throughout the paper if not
specified otherwise. Then

glrllr (Rt =

TCS ITI s

§ JrMF
Zluc cYres"l" Jr ¢cs”l”m o

C 1"

(Al1)

Thus, we can express the component Tgs 'm,,(Fe) taken
at the channel radius r. = Rc in terms of the sum of the
reduced width amplitudes, where the sum is taken over
all allowed in the channel ¢ partial waves [” at given
Jp and s”. Then the component of W/r@™) in the exit
channel cs”mg» projected onto €. = @p@p atr. = R, takes the

form

N

Z e~i% i (smglmy|Jr Mp)Y;,, (k.) Z Tyestry (EO1? A,

v,7=1

_ishs |
e 1! (smslm1|JpMp)(s”msnl”mln JFMF> Zm’(kL)

c
Mg " mpmpn

(A12)

Here s” is any channel spin value in the channel ¢ = b + B allowed by the spin and angular momentum conservation law. In

particular, s” may coincide with s; that is, s” = s.

The diagonal component, [” = [ and s” = s, which is needed to determine the elastic scattering amplitude (see below) is

/D)

'y 2 —ishs .1
cslmx;cslmx/,(Rcrc) =2 | ——e O

k. R.

N

X Z [F\)CSIJF(EC)]I/Z[A71]VTV‘[CSIJFYlm[’/(i:c)¢€.fm$//'

v, =1

A similar consideration can be applied when we consider
the contribution of the channel ¢’s'my, where ¢’ = n + A, into
X!rMr n this channel &+ = ¢4 and

Bl = DS ml'mu\ T ME) Y, Godbesim, s (Al4)
my
¢c’s’ms/ = Z <JnMn]AMA|S/mS’>WJnMnwJAMA' (AlS)

My My

Here ¢y, is the channel spin-wave function in the channel
¢’ with the channel spin s’ and its projection my, I’ (my)

Y Asmlmy| Jp M) (smolmy| Jp ME) Y, (k)

Mpmlm]/r

(A13)

is the relative orbital angular momentum (its projection) of
the fragments in the channel ¢/, ro = r,, is the radius-vector
connecting n and the center-of-mass of A. We adopt the
channel radius R large enough to neglect antisymmetrization
between n and nucleons of A at r., = R.; that is,

{éc(p f[/;l,ucs’ljfj}‘rl_,zk, ’\’N §c¢ sl ucs’lJp/‘r,zR,

(A16)

where No = (Y5712 = (A 4+ 1)71/2,
Assuming that the overlap of the channel ¢’ at the channel
radius R with the channel c is negligible, we get for the
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component of X7’ projected onto & = @4 atry = Ry

TCS"I s

Bl (Re rc)—(¢A|X’FMF )

TCSm/ TS mg

re=Ry

=— ZW%@ Jresrip(Re), (A7)
where
eewrs, (re) = Noo Y Weejitagr g, j(re).  (A18)
J
Atry = Ry
eewr s, (Re) = /210 ReVeesiia, (A19)

IR (b 21

csmg csm/ kR
Mplm,

=2 MLkR Z

< Mpll'mpmy
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where (Lo = tna, Vs, 1S the reduced width amplitude of
the level T in the channel ¢’s’l’ Jr. Then

BirE (Roby) =

Src's'mg Z \Y, zﬂc Ve s’l’Jp

’l’m ,,

(A20)

that is, it can be expressed in terms of the sum of the reduced
widths amplitudes in all allowed partial waves !’ in the channel
¢ at given Jp and s’. Then the component W CJSF ”(,m?(:r,:, . projected
on &, = @4 at re = R takes the form B

N

Z it (s Imy| T Mp) Y (k) Y [Docstsp (BT, EZME (Rote)

v,7=1

dl (smslmy| Jr Mg)(s'mgl'myp| Jr MF)

X Yltn[(];c) Z [F\)CA‘IJF(EC)]I/Z [Ail]vr Yee's'l Jp Yl’m,/ (Fc’)‘pc/s’ms/ . (A21)
v, t=1
The component Ti*lf,;':t)c(jgms(Rc i) is given by
(i n 2/1, ! __ishs
Tt (Rete) = 27 [===eme il 37 (smsdmi| T M) s my 'y | T Me) Y, (k)
’ Mpmpmy
N
XY [Cuestsp (B PIA Yo veerwr e Yomy @) Persim, - (A22)

1

v, T

2. External scattering wave function \Il,(,;)

Now we proceed to the expression for the W™ in the
external region, where r. > R. or ro > R.. In the external
region the wave function W™ with fixed channel spin and
its projection in the 1n01dent channel ¢ can be written as

\y(eXt)(+) — \p(eXT)(O) + \p(eXT)(-‘r) (A23)

csmg csmy csmgir

where the first term is the incident wave and the second term
is the sum of the outgoing waves in all the open channels. The
incident term is

WO g, 3 3 il

smglm|JpMrp) (smgrlm|

JFMF IWL[mS//
* iw, Fl(k67rc) A
X JEMp) Y, (Ke)e ‘ITYlml(rc)Cﬁcsmw

(A24)

where the subscript ¢ means that the incident wave is in the
channel c. The sum over m,~ is a formal because

> (smglmy| T Mp) (smydmy | Jp M) =
][:MF

(A25)

6m:m:u .

Note that here we use the incident wave with the unit
amplitude rather than with the unit flux density. The component

\Ilcjf,ﬁsmgﬁ(&r, which corresponds to the exit channel csim,» and

fixed JF, projected on &, reduces to

e, () = 47 iMsmlmy | T M) (smyrlmy | Jr M)
MFM1
* iw.,Fl(kc’rc) A
X Ylml (kc)e ‘ k—Ylml (rc)(pcsmx//-
(A26)
Now we take into account that

ide kCa - 7ia)r11 k s I'e

File, rey = SOt =€ o) )

2i

Here Oy(k., r.) and I;(k., r.) are the Coulomb Jost singular
solution of the Schrodinger equation with outgoing and
ingoing asymptotic behavior (we follow the definitions used
in Eq. [39]):

re—00
Ol(kc‘a rC) o e[[kcrr*nc ln(2krrr)7lﬂ/2+‘7r01’ (A28)
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and

re—>00 .
Litke, re) = e*l[kd’c*ﬂc InQkcre),—lm/2+0] ) (A29)

Then we can rewrite T2 Y? i the form

cslmgseslmgn

2w
Y, (€)= i——i' " (smylmy| Jp MF) (smyrlm|

cslmgseslmgn k
cle
Mpm

x JpMp)Ye, (R (ke, ) — €

X Ol(kc’ rc)] Ylm,(fc)(ﬁcsmw . (A30)
Thus, the incident wave is the pure Coulomb scattering
wave function in the incident channel c. The second term

in Eq. (A23) is given by the sum of the outgoing waves in the
open channels [40]:

2 ve 1
(exO)(+) _ ¢
Vo =i s 2
c K clc

JFMplimlWll'

i'(smylmy| Jp M)

X Y}, (k)€ 808567 — S

&sliesl

x (§mslmi| g MF) Yy, (B2)esm, -

]Oi(kc-, re)
(A31)

Here &; is the product of the bound-state wave functions in
the channel ¢ = ¢, ¢ and S!&m is the S-matrix element for
transition cs/ — &51. Note that we consider the outgoing waves
in the channel with given total angular momentum J, initial
channel spin s (its projection my), and final channel spin §
(its projection my). Because only two open channels, ¢ and ¢/,
are taken into account here, we write explicitly the outgoing
waves in both channels. First consider the elastic scattering,
that is, the outgoing channel ¢ = ¢ = b + B and the channel
spin and orbital angular momentum coincide with the incident
channel values; thatis, § = s and [ = [. The component of the
outgoing elastic scattered wave (csl — csl) is

(ext)(+) . 27 %_
c

eslmgseslmgr = l
s kere

> (smylmy|Je M)

JrMpmymn
X (smglmp| Jp Mp)i'Y, (Ko)[e — 87 ]

csliesl
X 01 (kcv rc)Ylm,w (f‘c)¢csm5n . (A32)

Hence, the projection of ‘lfc(,f’l‘:,)liﬂlm on &, leads to
(ex0(+) 2

cslmT;cslmxm( =i k Z (smylm;|Jp MF)
clfc

JrMpmymy
X <SmS”lml”|JFMF)ilY,fm(lA(C)[e"2“’L"
- Scjsl};cxl] Oi(kes re)Yim,, (f'c)(z’csmx// . (A33)

Correspondingly, for the inelastic scattering, ¢ = ¢ but either
§ # s or [ # [ or both differ from the entry values, we get

0 _ 2= Y
cslmgies""mgn — c
’ s kcrc

(smylm;|JpMr)
./[:Mpmlm,//
X (s"mgl"mp | Je Mp)i'Yy, (k)ST

cs”l”esl
X Ol” (km I‘C)Y "myn (f'c)‘pcx”msu . (A34)

PHYSICAL REVIEW C 84, 044616 (2011)

(ex)(+)

cslmgses” " mgn

Then the projection of W on &, is

(ex(+) _ 2
TcslmA ses” U mgn (rC) =1 k.r
cle ;.

> (smolmy|Je M)

Mgmymn

x (8" mgl"mp | JpMp)i'Y:, (ko)S
s Z”' F F)l lm,( C) cs”l”;cesl

X Ol” (km rc)Yl”m,v (f‘c)¢cs”mxm .

(A35)
Finally, for the outgoing scattered wave in the reaction channel
¢ =c¢ =n+ A we have

W EX0H)  2m

. = —1
eslmgic's'l'mg

Ue .l
- ‘i:c/ l

Vo Z (smglm;|JrMp)

JrMpmymy
i J
x (s'mgl'my|JrMF) Vi (RS
X Ol/(kc’ ’ rc’)Yl’m,r (f'c’)(bc’s’m&r .

It leads to its projection on &.:

T(eXt)(+) (r ,) _ _l 2” Ve il
cslmgic's'l'mg \" €/ k r v
cre o

R
X (8" mgl'my| Jp Mp) Yy, (K)S oo
X Op(ke s 1) Yim, (B )Persm, - (A37)
Now we can derive the expression for the matrix elements

of the S matrix. Because the wave function W™ is continuous
using Egs. (A13), (A30), and (A33) we get the equality

(A36)

> (smylmy|JrMp)

JEMpmpmy

Jr (int) A
Tcslmx seslmn (RCrC)
— ~/r(ext)(0) o (ext)(+) .
- TCSlms;Cﬂmw(RCrC) + TCle:;CSlﬂ‘lsn(RCrC)’
(A38)

which boils down to

N
_ishs -
e S [Pcstsy (BT A e /2K ReVeests,

v,t=1

= i[I(ke, Ro) — SJF. . Oulke, R (A39)
Taking into account that [39]
Il(kc'y Rc) — Gl(kc'7 RL) - l:FI(kC, Rc) 2w :e_zisf; (A40)
O[(kCﬂ Rc) Gl(km Rc) + lFl(kc» Rc)
and
Trestip(Ee) = 2Pa(Ecs R)Y g, - (A41)
where
keR.
Py(Ec, R.) = (A42)

F(ke, Re) + Gi(ke, R,)

is the Coulomb-centrifugal barrier penetrability, we get the
elastic scattering S-matrix element:

N
Sevrest = €2 <1 +i 3 Pty (ETPIA ],

v,7=1

X [qu,.(ECnW). (A43)
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From equality of Eqgs. (A22) and (A37) at given Jr and rp =
R

Jr(int o Jp(ext)(+) .
Tc;llgirz;)ﬁ"x/l’insr (RC/rC/) = Tcxlh(;:;cfx/l’ms, (Rc’rc/) (A44)
we obtain the reaction matrix element
N
J o100 pidl 1/2
ScsFl;c’s’l’ =ie e e Z [FvcsIJF(Ec)] /
v,7=1
x [A7"],. [T (E)]'? (A45)
vl /sl Jp c .

Both obtained matrix elements coincide with the correspond-
ing matrix elements from Ref. [40]. The only difference is
in the definition of the solid scattering phase shifts. The
obtained matrix elements of the S matrix confirm that the
relative normalization of the internal and external wave

PHYSICAL REVIEW C 84, 044616 (2011)

parts of lIJl(,? are correct and we can use them to calculate
the reaction amplitude of the deuteron stripping proceeding
through resonance states.

APPENDIX B: MATRIX ELEMENT MPW

Let us consider the DWBA surface (in the subspace over
r,4) matrix element, which appears in the post form (see
Sec. [ITA):

MV (P kan) = (P0G ONT = T loax(D), o,
= MW, (P, kga) + MOV, (K,pr.Kaa). (B1)

where TV = (g, | WSV,

MGy (P, Kaa) = / dr,,4 f drp xS )Y @ T pr = T prlpapm)x S van) (B2)
Tna>Rya
and
DW k _ d d (=)* T(eXt)(_)* ? _ 7 +) B3
MS(nA)(Pv dA) — rpF rnAXpF (rpF) nA (rnA)[ nA nA](pd(rpn)XdA (rdA)- ( )
rna>Rya
M?(‘;’F) can be written as
MY, (P kya) = / dr,a / ar XS @Y ) T — T prloatrpx )
- / dr, . f ar XS @) T e DT e — T el 1 )
A< Ry
= / dr,. / drp xS TS DT or = T prleapm) X (tan). (B4)

We took into account that for any finite volume r,4 < R, the matrix element containing T pF — T pr vanishes, as has been
discussed in Sec. I A for deuteron stripping to bound states. To estimate M ?(‘[’,VF) we need equations connecting different variables:

rga = 1/2r,, + 1,4, (B5)
Ipr = A/(A+ Drya + Cpn. (Bo)

Replacing the variable r,, with r,, and transforming the integral over r,r to the surface integral we get for for the matrix

element
(—=)*
A+1Y)° 1 IXpp (Fpr) L (A+1
DW _ . 2 p (ext)(—)*
MS(pF)(P, de) - ( A ) R,,IFHE}OO RpF ZMpF |:/ dQl‘,;[: a_rpF /drpnﬁﬂd(l'pn)TnA A [rpF - rpn]

A+1 A+2 N
X((l-g) ( A rpF - 2A r/’”) _/erpFX;F) (rPF)

o [(A+1 A+2
XXdA A rPF_ 2A rpn

A+ 1
/drpn(pd(rpn)T,(lZ“)( ) ( A [rpF _rpn]>

(B7)

8rpF

rpr=R,p—>00

Owing to the presence of the deuteron bound-state wave
function the integration over r,, is limited. At r,r — oo and
rpn < 00 we can replace the distorted waves in the initial and
final channels with their leading asymptotic terms:

X;’:)(rdA) Taa >0 e'KanTaatinaaIn(kaaraa—KaaTaa) (B8)
and
X(;“)* r,,,:;oo e*ika'f,;FJriTI[;Flﬂ(kaprJrka'l‘pF) (B9)
p '

Here 7;; is the Coulomb parameter of particles i and j in the

. A+l A+2
continuum. Note that rgy = #-r,p — 5%r,,, and at r,p —
oo and rp, < 00144 — o0. Then

Je'KaaTaatinaa n(kaaraa—Kaa-raa)

8rpp

rpp—oo A+ 1
— 1

de ' i\'pF

x eide (A r, e — A2y ) Finga In(kaaraa—Kaa Taa)

(B10)
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and

deikpr Tprtingr nkyrrpr+KprTpF)

8I’pp
rpF—>00

~ —ika . f-pFe_ikl)F'rpF+in]7F In(kp,rrpr+KprTpr)

(B11)
For Tﬁ“)(_)*(%[rlj F — Tpn]) We can take only the external
part, which contains the resonant S matrix element [see
Eq. (A37)]. Neglecting all the spin-dependent and angular
parts and leaving only its radial part, which is O, 4(r,4)/Fna,
we get for its leading asymptotic term

OnA(knA’ rnA) rpF—>0 A 1

- —

—_— e
nA A+1rpF

x e tlma ln(anA'”nA)‘HuAT[/z_‘TuAO]' (B12)

- A+l . .
i 5 (knarpr—knafppTpn)

The leading term of its derivative at 7, — 00 is

8()nA(knA7 rnA)/rnA Fpp—>00 | 1
—  dky,a—e
or,F I'pF

C At o
i S (knarpr—knafpr T pn)

—i[0ua InQ A kyarpp)+Hua /2= 04 40)

(B13)

xXe

We also need the asymptotic behavior of the plane wave,
rpFp—>00 21
—_

iqrpF

eiq.r,,p [eiqr,,p(s(q _ f'pF) _ e*iqr,,F(g(q + f'pF)]»

(B14)

where q = 2 k4 — k7. Then the matrix element reduces
to

Mgy (P Kaa) ~ Tim [fi(Ryp)e™ ™ + fr(Ryp)e” 457,

pF—>00

(B15)

MEY(P, kap) = — lim R’

R, ,—00 MnA 8rnA

a
— [ A, Y,
[ 420, T g

Here the Jacobian variable r,r is replaced with r,,. Owing
to the presence of the deuteron bound-state wave function
the integration over rp, is limited. Hence, r,r — 00 and
rqsa —> 00 at ryp — 00. At r,4 — o0 and r,, < 00 we can
replace the distorted waves in the initial and final channels
by their leading asymptotic terms. The disappearance of the
matrix element (B18) can be proved similarly to the proof of
the disappearance of M?(‘;’F). Replacing the distorted waves
with their leading asymptotic terms (B8) and (B9), singling
out the plane wave containing r,4 and using the asymptotic
representation of this plane wave [see Eq. (B14)], integrating

_ A 1
/drpnw(rpn))(,(,p)* (A n 1rnA + l'pn> X[(,Jg) <§rpn + rm)]
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Thus, MR‘;’F) has no limit at R,y — oo but regularization
of this matrix element by integrating the matrix element
over an infinitesimal bin in the momentum plane leads to
disappearance of Mg :

1

q+e€
oo [ damE P ki)
q—e€

sin(eR,r) [e
EXpF

— lim
Ryr—>00

“aRor £1(RpF)

—e MR £ (R,p)] =0, (B16)

where € K q.

Similarly, we can estimate M, Sooa) given by Eq. (B3).
Because the integral over r,4 is taken over external volume
with 7,4 > R, 4 the transformation of the volume integral into
the surface one leads to two surface integrals:

MEY, (P, Kaa) = =M™ (P, Kygp) + MEY(P, Kqy).
(B17)

The first term is the surface integral encircling the inner surface
of the external volume at r,4 = R, 4, while the second term
is the surface integral taken at r,4 = R;l 4 — 00. A negative
sign in front of the first term appears because the normal to the
surface is directed inward to the center of the volume, which is
opposite to the normal to the external surface (at infinitely large
radius). The surface integral over the infinitely large sphere in
the subspace over r, 4 is

! OTya () (A o (]
5 |:/ erM— / drpn¢d(l'pn)pr* (A—_HrnA + rp}’l) Xaa (Erpn + l'nA)

’
rma=R, ,—00

(B18)

over €2, we eventually arrive at

MGV (P kg) ~ lim [¢Fmg (R, 1) + e Frgy(R, ).

R, ,—00

(B19)

Regularization of this matrix element by integrating it over
an infinitesimal bin in the momentum plane ¢’ leads to
disappearance of M?g", that is

Mga (P kaa) = _M?,X(P, Kia). (B20)
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APPENDIX C: MATRIX ELEMENT M C“?**(p K, ,)

CDCC(post) . CDCC(post)

Here we show how to transform M can be written as

MNP = [

n

into the surface integral over the coordinate r, 4. M

- CDCC
drnA / drpFXET(LF(rpF)Ty(lZ(l)( )*(rnA)[? - ?]qj, (+)(rva l“nA)
A>Rya

= Mg (P, Kaa) = Mgn (P, kaa), 1)

where
MSPCE(P, K drya [ drpex Y T — T 1w P C2
Stot ( dA) - Fna rprfka(rpF) nA (rnA)[ ] i (rva rnA) ( )

and

MEPCC(P kya) = /

In

dr, / dr,r x5 ) Y T DT = T I, 510, (C3)
ASRA

Note that in the matrix element MSDCC the integration is carried over r,z and r,, 4 in all the coordinate space while in MGDCC the

external region in the subspace over r, 4 is excluded. Let us first consider M$OCC. The CDCC wave function is given by Eq. (52).
If we substitute the first term, » = 0, which contains the deuteron bound-state wave function, the transformation leads to the
surface integrals with 7, = R,r — 00 and 1,4 = R,4 — 00. Both surface integrals vanish and the proof is similar to the one
presented in the previous section. For the rest of the CDCC wave function corresponding to the sum with n > 0, which we call

\II-C.DCC(H, transformation to the surface integrals gives

sctgtCC(C)(P k A) = /drllA/drpFX(+) (rpF)T,E » (rnA)[TpF _?pF]\IJCDCC(+)(rpF9 rnA)+/drnA/drpFXf|r()pF(rpF)

- cpce
X T,(,A)*(rnA)[?nA - ?nA]lIJ,'C (Jr)(rpF’ rnA) =— lim /er;zF/drnA
Rpp—00 /’LpF
ax L (rpr) P
- cpee —k,r\Ip ; rpF, Tha)
x | Cd @)W e, m ) —— = X ) Y () —LS pr
3}”1,1: 3}”1,1:
. 4G d ( )\IJCDCC(Jr)( )3T,E;)*(rnA)
— lim r r ryp, Fyy)—t — 227
RA‘_)OO 2tinn I pF X kF pF pFsTnA 3
CDCC(+)
v (rpr,Tpa)
X0 (0" ) 1 (C4)
'nA

Let us first consider the first term, in which R, — oo. Let us divide the integration region over r, 4 into the region 7,4 /R,r — 0
and the region where r,4 2 R,r — 00. In the first region we get that r44 ~ R,r — 00 and rp, ~ R,p — o0. Taking into
account the asymptotic behavior of \IJCDCC(+)(r pFaTna) ™~ r;; and Eq. (B14) we get that the first term goes to zero as R;ﬁ — 0.
In the remaining region r,4 ~ R,r — 00 and we consider it later. The second term of Eq. (C4), in which R,4 — o0, we also

separate into two regions: r,,F/RnA —Oandr,r 2 2 R, — o0. In the first region Tpn ~ Rya — o0 and rgq ~ R,a — 00 and

lI!iCCDCCH)(r pF>Tha) ~ 1, A . Hence, the matrix element goes to zero as Rn_j — 0. To consider the behavior of the first and second

terms of Eq. (C4) in the second regions, where 7,4, ¥, — 00, it is more convenient to introduce the hyperspherical coordinates
in the six-dimensional hyperspace:

m m
P_\/MnA . +M1)F 129Fs Tpa =P sin Ipp = p,[——C0OSq, O<asm/2 (©3)
m MnA I’LPF

Here m is the scaling mass parameter, for example, the nucleon mass. Then Mg]glcc in the region where 1,4, r,r — 00 can be

written as the integral over the hypersphere encircling the volume integral with the radius of the hypersphere p — oo [32]:

1 m?
sCthC(P Kya) = E(MnA,LLpF)B/Z pll)néop /drpF/dr,,A/ da sin® o cos®

CDCC CDCC -
[x;;*(r,,pwnx*(rnn Owpr. ran) — ¥ <+)(r,,F,rnA>apx,‘,;*<r,,p>T,EA>*<rnA>] (C6)

Here hyper-radius p is the parameter going to infinity. The integrand contains highly oscillating (actually infinitely oscillating)
functions. The behavior of the integral at p — oo depends on the asymptotic behavior of the integrand. The integration over
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df,r can be performed directly using the asymptotic form of x ;})*(r pr)- Itis given by the Coulomb distorted plane wave, but for
simplicity, what does not affect the final result, we neglect, as in the previous section, the Coulomb effects. Then the asymptotic
form of the plane wave is given by Eq. (B14) and, hence, integration over f,r using é functions is trivial, leading to £, = +k pF-
After performing the integration over df, only two integrals are left. From Eqgs. (B5), (B6), and (C5) we get for

22Arr+A22 mo A i m.2+A2m.2 ©h
Von = r —_ n —7 = — COS“ X — | — [ —ZSIn LX — — SIN“ &
P PP A AT A A T TAT I eV tta (A+1D? tna

and

1, N A+42 +(A+2)2 5
rga = .| =r ————— T, pr, —r
PN P2 A+ ) P T aAa A
1 A+2 A+2)?
=p —lcoszoz:i:# . /izsinZa—}—(;)zisinza. (C8)
4 ppr AA+ DY uprV taa 4A +1)* uaa
Here z = #,4 - k. We recall also that in Eq. (52) atn > 0 w;,';)(r on) at rp, — 00 contains the asymptotic terms ei‘:';"rp" , while

. n
xi(”)(”(rd a) ~ e'kfd;“, where we, for simplicity, neglected the Coulomb distortion. Then after integration over df,r the leading
asymptotic form of the integrand with omitted Coulomb effects is a product of highly oscillating at p — oo exponents:

Likprrpr piknatua pEikpnrpn pikaaraa
¢ e e e ez L giosta), (C9)
TpE TwA  Th,  Taa P>
Thus, we need to estimate a highly oscillatory integral:
1 w/2 ‘
Ji ~ lim dz da sin® & cos? a8, (C10)
P00 1 0

Evidently, this integral and, hence, Mggtcc(P, k;4) vanish at p — oo, whether a stationary phase point does exist or not, because

the integration brings p to the denominator.

Now we proceed to MSPCC(P, k). We rewrite it as

MEPEE(P k) = /

nAS< Rua

- int)(— CDCC
drnA/drpFXl(,F)*(rpF)T,(,IXt)( )*(rnA)[TpF - ?pF]"Il,‘ H—)(rpFa l.nA)

+ f dru / drpr xS @) T DT wa = T aal¥" D@, 100). (C1D)
A< Ry

Let us first consider the first matrix element containing 7, r. It is easy to show that this matrix element vanishes. After transforming
it into the surface integral over r,r we get

- int)(— CDCC
/ drnA / drpFX,(;F)*(rpF)Ty(,lgt)( )*(rnA)[?pF - ?pF]\I/i (+)(rva rnA)
TnaSRya
xS (rpr)
87‘[,]:

1 . - CDCC
- 2UpF R lFll’_I)loo RIZ’F / erpp / “x dr,a T,5,4)*(rnA) |:\I/,' (Jr)(rpF’ rua)
p P T'nAS Rna

CDCC(+
a\pi ( )(rpFa rnA):|

8}"[,1:

—XpP () (C12)

rpp=R,F

The matrix element containing n = 0 term of the CDCC wave function vanishes because in the subspace 7,4 < R4 atr,p — 00
the deuteron bound-state wave function exponentially fades away. The terms of the CDCC wave function with n > 1 also
produce a vanishing matrix element because the CDCC wave function corresponding to these terms in the subspace r,4 < R4
atr,r — oo decays as 1/ rZ > that is, the matrix element (C12) vanishes as lime,,HOO Rf) r/ Rf) r — 0. Thus, we arrive at

MEDCC(post)(P’ de)

= —MSDCC(P, kgn) = — f

A< Rya

- int)(— CDCCi
drnA f drpFXI(,F)*(rpF)T,?X[)( )*(rnA)[?nA - 7nA]\I"i (+)(r[)Fa rnA)

1
2:u’nA

_ _ _ d
R2, / dr,,Fx;F)*a,,F)[\IffDCC”’(r,,F,rm T,ix*(rm)—ﬂ;*(rm)—ar wf"“(”(rﬂ,rm)}

arnA nA

rna=Rna

(C13)
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