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Role of saddle-to-scission dynamics in fission fragment mass distribution
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The fragment mass distribution from fission of hot nuclei is studied in the framework of two-dimensional
Langevin equations. The mass asymmetry coordinate distribution is obtained from the dynamical calculation
both at the saddle and the scission regions in order to investigate the role of saddle-to-scission dynamics in fission
fragment mass distribution. Statistical model predictions of mass asymmetry distributions at saddle and scission
are also compared with the dynamical model results. Results for a number of nuclei covering a broad range of
saddle-to-scission distances are presented.
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I. INTRODUCTION

Nuclear fission is a unique process in which the shape of
a nearly equilibrated system evolves continuously till it splits
into two fragments. The probability of finding a compound
nucleus (CN) separating into fragments with given masses
depends upon both the statistical and the dynamical properties
of the fissioning system. Fong [1] first developed a statistical
theory for the fission fragment mass distribution where it was
assumed that a complete equilibration among all the degrees
of freedom is established in the fissioning nucleus at every
instant and the relative probability of a given mass partition
is proportional to the density of quantum states at the scission
point. The statistical theory successfully explained the mass
yield in thermal-neutron-induced fission. Nix and Swiatecki
[2] subsequently pointed out that the saddle configuration is a
better static point than the scission one since the latter cannot
be defined in a unique manner. They assumed an equilibrated
distribution at the saddle configuration and the transition
from the saddle to the scission was treated dynamically
without considering any dissipation. This approach gave a
reasonable agreement with experimentally measured fission
fragment mass variances for α-particle-induced fission of
CN up to mass number A = 213 [3]. A dissipative force
was subsequently included in the saddle-to-scission motion
[4,5]. In order to explain the mass variances observed in the
fission of heavier CN, the importance of stochastic dynamics
during the saddle-to-scission transition was latter established
by Adeev and Pashkevich [6]. In recent years, fission fragment
mass and kinetic energy distributions have been calculated
by several authors from full stochastic dynamical treatments
of the evolution of a hot CN from ground state to scission
configuration [7–15].

A suitable model to describe the stochastic dynamics of
a hot compound nucleus is that of a Brownian particle in
a heat bath. In this model, the collective motion involving
the fission degrees of freedom is represented by a Brownian
particle while the remaining intrinsic degrees of freedom of
the CN correspond to the heat bath. In addition to the random
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force experienced by the Brownian particle in the heat bath,
its motion is also controlled by the average nuclear potential.
Fission occurs when the Brownian particle picks up sufficient
kinetic energy from the heat bath in order to overcome the
fission barrier. The dynamics of such a system is dissipative in
nature and is governed by the appropriate Langevin equations
or equivalently by the corresponding Fokker-Planck equation.
An analytical solution for the stationary diffusion rate of
Brownian particles across the barrier was first obtained by
Kramers from the Fokker-Planck equation [16]. The Fokker-
Planck equation was subsequently used for extensive studies
of nuclear fission [17–26]. The Langevin equations however
found wider applications in recent years mainly because,
unlike the Fokker-Planck equation, the Langevin equations
do not require any approximation and it is easier to solve
the latter for multidimensional cases by numerical simulations
[27]. Fairly successful Langevin dynamical calculations for
several observables such as fission and evaporation residue
cross sections, pre-scission multiplicities of light particles and
giant dipole resonance γ rays, and mass and kinetic energy
distributions of the fission fragments have been reported
[7–15,28–42].

In a stochastic dynamical model of nuclear fission, the
fission fragment mass distribution essentially portrays the
interplay between the conservative and the random forces
acting along the mass asymmetry coordinate. Therefore, it
will be of interest to find how the fluctuation in the mass
asymmetry coordinate changes as the CN makes its journey
from the saddle region to the scission configuration. This will
essentially involve comparison of the asymmetry coordinate
distribution at the saddle with that at the scission configuration.
Such a comparison is expected to elucidate the role of
the potential landscape vis-à-vis that of the random force
in giving rise to the fission fragment mass distribution at
scission [7,9,10]. The “memory” of the asymmetry coordinate
fluctuation at the saddle that is retained at scission has also
been discussed earlier on several occasions [6,12]. We address
the above issues in the present work.

The fragment mass dispersions at the saddle and scission
were compared in an earlier work of Gontchar et al. [9], where
the mass variances at the saddle and scission were obtained
from statistical and dynamical models, respectively. Though
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the mass variance at scission has been obtained from dynamical
model calculations by a number of workers [8,9,42] in the past,
the mass variance at the saddle has not been calculated from
dynamical models so far. In the present calculation we obtain
mass variances at both the saddle and scission from dynamical
calculation since it is appropriate that both variances be
obtained from the same model in order to compare them and
investigate effects due to saddle-to-scission transition. In a
Langevin dynamical calculation, a fission trajectory crosses
the saddle ridge many times in a to-and-fro motion before
it reaches the scission line. We obtain the mass asymmetry
distribution along the saddle ridge by considering only those
mass asymmetries which correspond to the last crossing of the
saddle ridge by fission trajectories. The nature of the fission
trajectories in the saddle region is further illustrated in the
present work by comparing the distributions of the asymmetry
coordinates corresponding to the first and last crossings of the
saddle ridge by the fission trajectories.

The plan of our work is as follows. We perform Langevin
dynamical calculations for fission in two dimensions using
elongation and asymmetry as the relevant coordinates. We
restrict the present calculation to the above two coordinates
primarily because, while they bring out the essential features
of the dynamics of the asymmetry coordinate, they also provide
easy visualization of the fission process. For each fissioning
Langevin trajectory, the asymmetry coordinates at which the
trajectory crosses the saddle (for the last time) and scission
regions are recorded. We thus directly obtain the asymmetry
coordinate distributions at both the saddle and the scission.
We make a detailed comparison of these two distributions
for different nuclei representing a broad range of distances
between the saddle and the scission regions.

We describe the Langevin equations and the various inputs
in the next section. The numerical results are presented in
Sec. III. The last section contains a summary of the work and
a discussion.

II. THE LANGEVIN EQUATIONS AND THE INPUTS

In order to specify the collective coordinates for a dy-
namical description of nuclear fission, we use the shape
parameters (c, h, α′) from Ref. [10], where c denotes the
elongation parameter, h represents the neck degree of freedom,
and the mass asymmetry parameter α′ determines the ratio
of the volumes (masses) of the future fragments. With the
above parameters, the surface of the nucleus in cylindrical
coordinates is given as

ρ2(z) =
(

1 − z2

c2

) (
a0c

2 + b0z
2 + α′z

c2

)
, b0 � 0,

=
(
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) [
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c2

exp

(
b0cz

2

R3
0
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2p

)√−πp erf(
√−p)
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where p = b0c
3 and erf(x) is the error function. In Eqs. (1)

and (2), the parameter h describes the variation of the thickness
of the neck without changing the length 2c (in units of R0, the
radius of the spherical nuclear radius) of the nucleus along
the symmetry axis. Since we do not consider neck dynamics
in the present work, we set h = 0 in the above equations. The
mass asymmetry parameter α′ is related to the ratio of the
masses (volumes) of the nascent fragments as [10]

A1

A2
= V1

V2
= 1 + 3

8α′

1 − 3
8α′ ,

where the masses A1 and A2 are the two parts of the nucleus
obtained by its intersection with the plane z = 0.

The two-dimensional Langevin equation in (c, α′) coordi-
nates has the following form [43]:

dpi

dt
=−pjpk

2

∂

∂qi

(m−1)jk − ∂U

∂qi

− γij (m−1)jkpk + gij�j (t),

(3)
dqi

dt
= (m−1)ijpj ,

where q1 and q2 stand for c and α′, respectively, and pi

represents the respective momentum. U is the potential energy
of the system and mij and γij are the shape-dependent
collective inertia and dissipation tensors, respectively. The
time-correlation property of the random force is assumed to
follow the relation

〈�k(t)�l(t
′)〉 = 2δklδ(t − t ′),

and the strength of the random force is related to the dissipation
coefficients through the fluctuation-dissipation theorem and is
given as

gikgjk = γijT ,

where the temperature T of the compound nucleus at any
instant of its evolution is given as

T =
√

Eint/a(q).

The intrinsic excitation energy Eint is calculated from the
total excitation energy E∗ of the compound nucleus using
energy conservation,

E∗ = Eint + Ecoll + U (q),

where Ecoll is the collective translational kinetic energy and
U (q) is the potential energy including the rotational energy of
the system. The level density parameter a(q) depends on the
collective coordinates and is taken from the works of Ignatyuk
et al. [44].

We make the Werner-Wheeler approximation [45] for
incompressible irrotational flow to calculate the collective
inertia tensor and its inverse (m−1)ij in Eq. (3). The potential
energy U (c, α′) is obtained from the finite-range liquid-drop
model by a double folding procedure [46]. The rotational
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energy part of U (c, α′) is calculated using the moment of
inertia of a rigid rotator. For γij , we use the one-body
model for nuclear dissipation in our calculations. The original
wall-plus-window formula [47,48], which was subsequently
generalized to include the dissipation associated with the time

rate of change of mass asymmetry degree of freedom [49], is
employed here and is given as [10]

γij = κγ wall
ij + γ window

ij + γ
asym
ij , (4)

where

γ wall
ij = 1
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2
ρmv̄

∂R

∂qi

∂R

∂qj


σ, (6)

and

γ
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ij = 16

9
ρmv̄

1


σ

∂V1

∂qi

∂V1

∂qj

. (7)

γ wall
ij and γ window

ij in the above equations represent the wall and
window dissipation coefficients, respectively [48]. It has been
established from earlier studies [10] that a smaller strength of
the wall dissipation than that given by Eq. (5) is required in
order to fit experimental data. κ represents the reduction factor
for wall dissipation coefficient in Eq. (4) and a value of κ =
0.25 is used in the present work [10,14,42]. The coefficient
for dissipative resistance against change in asymmetry degree
of freedom is given by γ

asym
ij [49]. This component of one-

body dissipation strongly influences the fission fragment mass
distribution, as we shall see in the next section. In the above
equations, ρm and v̄ represent the average nuclear mass density
and the average nucleon speed within the nucleus, respectively.

σ denotes the window area between the two parts of the
system while D1 and D2 are the positions of the centers of
mass of the two parts of the fissioning system relative to the
center of mass of the whole system and R is the separation
between D1 and D2. The two extreme ends of the nuclear
shape along the z axis are zmin and zmax, and zN is the position
where neck formation begins.

It is of interest at this point to examine the two-dimensional
landscapes of various input quantities in our calculation. We
first show the potential energy contours in Fig. 1 for six rotating
nuclei. The loci of the conditional saddle points or the saddle
ridge and that of the scission configurations (scission line)
are also shown in this figure for each nuclei. The scission
configuration is determined following the criterion given in
Ref. [10] and corresponds to a neck radius of 0.3R0. The
above nuclei and their spin values are so chosen that they
represent a broad range of saddle-to-scission distances and
also a reasonable range of fission barriers where Langevin
dynamical calculations with good statistics can be performed.
Table I gives the values of Z2/A, the distance (cSS in units
of R0) between the saddle ridge and the scission line along
the c axis for α′ = 0, and the fission barrier of these nuclei.
We next show in Fig. 1 the locus of the points (neck line) where

neck formation begins in (c, α′) space. It is observed that while
the saddle-to-scission transition is made through shapes with
well-developed necks for lighter nuclei, a large fraction of the
transition takes place in heavier nuclei before a neck is formed.
Since the component of the stochastic force associated with the
mass asymmetry degree of freedom becomes effective after the
neck is formed, the above observation indicates that the relative
roles of the conservative and stochastic forces are expected to
be different for light and heavy nuclei. This aspect will be
further explored in the next section.

We next show the contour plots of inverse inertia tensor
components of 224Th in Fig. 2. We observe that both the
diagonal components (m−1)cc and (m−1)α′α′ have very weak
α′ dependence though their c dependence is quite strong. The
nondiagonal component (m−1)cα′ however has a stronger α′
dependence and a weaker c dependence. This means that the
contributions of the diagonal terms in the inertia derivative
term in the Langevin equations [Eq. (3)] is much stronger
in the c coordinate than that in the α′ coordinate while it is
the opposite for the nondiagonal term. It is also of interest to
note that while the diagonal components (m−1)cc and (m−1)α′α′

have a symmetric α′ dependence, it is antisymmetric for the
nondiagonal component (m−1)cα′ . The contour plots of the
dissipation tensor shown in Fig. 3 also have features similar
to those of inertia. The diagonal components are symmetric
in α′ though they have a somewhat stronger α′ dependence
compared to inverse inertia. The nondiagonal component γcα′

has a strong α′ dependence and it is also antisymmetric
in α′. The symmetry properties with respect to α′ of the
inverse inertia and the dissipation coordinates taken together
give rise to the correct symmetry of the Langevin dynamical

TABLE I. Z2/A, saddle-to-scission distance (cSS in units of R0)
and fission barrier (VB ) for symmetric fission of compound nuclei
used in the work.

124Ba 184W 208Pb 206Po 224Th 254Fm
l = 60h̄ l = 60h̄ l = 60h̄ l = 60h̄ l = 60h̄ l = 40h̄

Z2/A 25.29 29.76 32.33 34.25 36.16 39.37
cSS 0.08 0.14 0.32 0.46 0.63 0.74
VB (MeV) 8.61 8.63 3.41 1.76 0.38 0.10
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FIG. 1. (Color online) The finite-range liquid-drop-model potential contours (in MeV) for a number of compound nuclei. The saddle ridge
and scission line are shown by thick dashed and full lines, respectively. The thin gray line represents the neck line (see text).

equations. This essentially implies that the c component of
force at c for (α′, pα′ ) is the same as that for (−α′,−pα′ ).
However, the α′ component of the force should change
sign between (α′, pα′ ) and (−α′,−pα′ ). Both are realized
when diagonal components are symmetric and nondiagonal
components antisymmetric with respect to reflection of α′. We
also compare the magnitudes of γcc and γα′α′ in Fig. 4. γα′α′

is much weaker than γcc for most values of the elongation
parameter c except at large deformations, where a neck has
developed, due to the γ asym term.

With the input quantities defined as in the above, the
Langevin equations are numerically integrated in second order
using a small time step of 0.0005 h̄/MeV. All the input quanti-
ties are first calculated on a uniform two-dimensional grid with
150 × 101 grid points covering the range of c ∈ (0.6, 2.09)
and α′ ∈ (−1, 1). Calculations are performed for a compound
nucleus at specified values of its spin and temperature. The
initial collective coordinates are chosen as those of a spherical
nucleus and the initial momentum distribution is assumed to
follow that of a equilibrated thermal system. In the present cal-
culation, we record the asymmetry coordinate of the crossing
point whenever a Langevin trajectory crosses the saddle ridge.

If the same trajectory subsequently reaches the scission line,
it is identified as a fission event and the asymmetry coordinate
at scission is also recorded. While the asymmetry coordinates
corresponding to the last crossing of the saddle ridge by the
fission trajectories are used to obtain the mass variance at the
saddle, those corresponding to the crossing of the scission line
give the mass variance at scission. The fission fragment mass
distribution at the saddle thus corresponds to the distribution
that would result if the asymmetry distribution at the saddle
were transported to the scission configuration without any
further modification. The calculations are performed for a
large ensemble of Langevin trajectories such that the number
of fission events are typically 10 000 or more. Numerical
integration of the Langevin equations for each trajectory is
continued for a sufficiently long time interval such that a
steady flow of fission trajectories across the saddle ridge
is established. The fragment mass distributions at saddle
and scission configurations are subsequently obtained from
the asymmetry coordinate distributions by binning over the
asymmetry coordinate. The fragment mass distributions at the
saddle and scission are thus obtained from the same set of
fission events.
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MeV/h̄2) of 224Th.

III. MASS DISPERSION DURING TRANSITION FROM
SADDLE RIDGE TO SCISSION LINE

We first show in Fig. 5 the fission fragment mass dis-
tributions calculated for nuclei listed in Table I and at a
temperature of 2 MeV. This temperature defines the initial
excitation energy of a nucleus in its ground-state configuration.
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FIG. 4. The diagonal components of one-body dissipation plotted
against c for α′ = 0. The solid and dashed lines correspond to different
dissipation strengths calculated with κ = 0.25 and 1, respectively.

The fragment mass distributions calculated at both saddle and
scission configurations with the γ asym term in Eq. (4) are
shown in this figure. Similar calculations are also performed
without γ asym and the corresponding mean-square deviations
σ 2

m for the different systems are plotted as a function of
saddle-to-scission distances cSS in Fig. 6. This figure provides
a direct comparison between mass variances at saddle and
scission when both are obtained from Langevin dynamical
model calculation, in contrast with the results of [9], where
the mass variances at saddle and scission were obtained from
statistical and dynamical models, respectively. We find that
the mass variance of a system decreases as it moves from
the saddle to the scission region. Though the magnitude of
reduction is very small for small values of cSS , it increases with
increasing saddle-to-scission distance. This feature clearly
demonstrates the role of the potential landscape in developing
the mass variance during saddle-to-scission transition. Since
γ asym is not included in the calculation of mass variances
in Fig. 6, a strong dissipative force is not present in the
saddle-to-scission dynamics. Therefore, the funnel shape of
the potential landscape in the saddle-to-scission region pushes
the system toward a symmetric configuration and consequently
the mass variance at scission decreases.

Mass variances obtained with γ asym in the Langevin
dynamical calculation are next shown in Fig. 7. Dynamical
model results without γ asym (as given in Fig. 6) are also
shown in this figure for comparison. The variances at the
saddle obtained with and without γ asym are indistinguishable
in this figure, which is expected since γ asym becomes effective
only beyond the neck line. We make two observations from
this figure. First, the variances at scission are enhanced (with
respect to values obtained without γ asym) with inclusion of
γ asym in the calculation. This is a consequence of the random
force associated with γ asym, which operates between the neck
line and the scission line and drives the system toward larger
asymmetry. This also demonstrates the importance of the
asymmetry term γ asym in the generalized one-body dissipation
[49]. Our next observation concerns a comparison of variances
at saddle and scission when both are obtained with the γ asym

term in the calculation. The variance at scission is found to be
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FIG. 5. Fission fragment mass distributions (filled circles) at the scission line for different nuclei obtained from dynamical model calculations
with the γ asym term. The mass distributions on the saddle ridge, contributed by the trajectories which eventually reach the scission line, are
shown by the empty circles.

larger than that at the saddle for smaller values of cSS while the
reverse is the case for higher values of cSS . In order to make
a qualitative understanding of this observation, we proceed as
follows. From the potential landscape of the different systems
given in Fig. 1, we have observed in the earlier section
that necks are already developed in the saddle-to-scission
region for lighter nuclei (small cSS) while a neck is formed
only during the latter stage of saddle-to-scission transition in
heavier nuclei (large cSS). Therefore, the random force due to
γ asym operates over the entire stretch of the saddle-to-scission
region for lighter nuclei while it is effective only for a part
of the saddle-to-scission region for heavier nuclei. On the
other hand, the funneling effect of the potential landscape
is present for all nuclei over the entire saddle-to-scission
region. The above scenario suggests that the net effect in
driving a system to higher asymmetry as it evolves from
saddle-to-scission will be higher for lighter nuclei than for
heavier ones. In fact, comparison of mass variances at saddle
and scission in Fig. 7 shows that while the mass dispersion
grows during saddle-to-scission transition for lighter nuclei,
it shrinks for heavier nuclei. It may be pointed out here that
the first observation in the above, namely, the reduction of
mass variance at scission when γ asym is not included in the
calculation, was also made in Ref. [9]. In the present work, we
are able to make further observations regarding the changes
in mass variances during saddle-to-scission transition since
the variances at both saddle and scission are obtained from
dynamical calculations.

We have considered different compound nuclei in the above
in order to study the effect of saddle-to-scission dynamics
in fission fragment mass distributions over a broad range of

saddle-to-scission distances. The saddle-to-scission distance
also varies with spin for a given nucleus though over a limited
range. The effects are still discernible, as shown in Fig. 8,
where fission fragment mass variances of 224Th calculated at
three different spin values are shown. The mass variances at
saddle and scission are found to depend upon cSS in a manner
similar to that obtained while considering a set of different
compound nuclei.

The stochastic nature of fission dynamics causes a fission
trajectory to cross the saddle ridge a number of times in
a to-and-fro motion before it reaches the scission line. In
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2  (
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c
ss

FIG. 6. The variance of the fission fragment mass distribution
(σ 2

m) at the saddle ridge (empty squares) and on the scission line
(empty circles) as a function of the saddle-to-scission distance
obtained from dynamical model calculations without the γ asym term.
Lines are drawn to guide the eyes.
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the variances at the saddle. The variances at the saddle for both cases
(with and without γ asym) are nearly the same and are indistinguishable
in the plot. Lines are drawn to guide the eyes.

addition to the asymmetry distribution due to the last crossing
of the saddle ridge by the fission trajectories, we also obtain
the mass asymmetry distribution along the saddle ridge for the
following cases. First, we calculate the asymmetry distribution
by considering only those asymmetry coordinates which
correspond to the first crossing of the saddle ridge by the fission
trajectories. Keeping track of all the successive crossings of
the saddle ridge by a fission trajectory, we further calculate
the asymmetry distribution by considering the asymmetry
coordinates of all such crossings. The corresponding mass
variances are given for different systems as a function of cSS

in Fig. 9. The variances for first and last crossings are found
to be very close for small values of cSS while the last crossing
values are larger at large cSS . We interpret this observation
as follows. In a stochastic process such as nuclear fission, a
fission trajectory can return to a more compact shape even
after it crosses the saddle ridge due to the presence of the
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FIG. 8. The mass variances σ 2
m calculated with (filled symbols)

and without (empty symbols) the γ asym term for 224Th at different
spins. The circles represent the variances at scission while the squares
represent the variances at the saddle. The variances at the saddle for
both cases (with and without γ asym) are nearly the same and are
indistinguishable in the plot. Lines are drawn to guide the eyes.
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FIG. 9. The mass variances σ 2
m corresponding to the first crossing

(half-filled square), the last crossing (filled square), and all crossings
(gray squares) of the saddle ridge by fission trajectories for different
systems. The statistical model predictions are shown by downward
triangles. Lines are drawn to guide the eyes.

random forces in the equations of motion. This backstreaming
is typical of Brownian motion and has been noted earlier
by several authors [31,35,50,51]. In the present analysis of
two-dimensional fission dynamics, the scope of to-and-fro
motion is highly restricted when the saddle ridge and the
scission line are very close together (small cSS). The first and
last crossing points of the saddle ridge practically coincide
in such cases, giving rise to almost similar distributions. For
systems with larger saddle-to-scission separations, however,
a larger phase space is available for to-and-fro motion in the
saddle region. A fission trajectory therefore experiences the
random force for a longer time interval between the first and
last crossing of the saddle ridge. Consequently, the system
develops higher asymmetry during its evolution from the first
crossing to the last crossing of the saddle ridge. We may point
out here that the subsequent change in the mass variance of
the system as it moves from the saddle to the scission point
has already been given earlier in Fig. 7.

We next observe in Fig. 9 that the variances of distributions
considering all crossings lie in between the variances from
first and last crossings, as one would expect. The asymmetry
distribution obtained from all crossings of the saddle ridge by
fission trajectories also corresponds to the average distribution
of fission trajectories over the saddle ridge. This distribution
is therefore comparable with the predictions of the statistical
model. According to the statistical model [31,52], the yield of
fragments with mass asymmetry α′ is given as

Y (α′) = N exp [−U (α′)/T ], (8)

where U (α′) is the potential profile along the saddle ridge and
N is a normalization constant. The mass variances according
to the statistical model are directly obtained from Eq. (8) and
are given in Fig. 9. The variances of average distributions from
the dynamical model are found to be very close to the statistical
model predictions. This indicates that statistical equilibrium is
almost reached in the saddle region in dynamical calculations.
We next compare the mass distributions calculated at scission
by the statistical and dynamical models. The statistical model
values are obtained from a yield distribution as given by
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FIG. 10. The mass variances σ 2
m at scission from the statistical

model (upward triangles) and the dynamical model (circles) for
different systems. Lines are drawn to guide the eyes.

Eq. (8), where the potential profile along the scission line
is used. The inadequacy of the statistical model in predicting
the mass variance at scission was shown earlier [9,42] and
it is further illustrated here in Fig. 10. The statistical model
substantially underestimates the mass variance at scission.

IV. SUMMARY AND DISCUSSION

In the preceding sections, we have studied the growth in
shape asymmetry of a fissioning nucleus as it evolves from the
ground state to the scission configuration. A number of systems
spanning a broad range of saddle-to-scission distances have
been considered for this purpose. In particular, the role of the
dissipative resistance to change the mass asymmetry degree
of freedom (γ asym) during saddle-to-scission transition has
been investigated. By comparing the asymmetry coordinate
distributions at saddle and scission, it has been shown that
while the conservative force guides a CN toward symmetric
fission, the random force associated with γ asym substantially
counteracts it and drives the system toward higher asymmetry
during saddle-to-scission transition. This observation has been
made using asymmetry distributions at saddle and scission
when both are obtained from dynamical model calculations.

The role of multiple crossing of the saddle ridge by a
stochastic fission trajectory in giving rise to the asymmetry
coordinate distribution at the saddle has also been investigated.
It has been shown that the mass variance increases between
the first and the last crossing of the saddle ridge by a fission
trajectory. The subsequent development in the asymmetry
coordinate distribution as the system approaches scission takes
place in a manner as given in the above.

We have also examined the validity of the statistical
model in the context of fission fragment mass distribution
by comparing the statistical model predictions at the sad-
dle with dynamical model results. It has been shown that
the average distribution of fission trajectories over the saddle
ridge obtained from the dynamical model closely follows the
statistical model predictions.

At the end, we point out that the observed near cancellation
of the effects due to conservative and random forces during
the descent of a CN from saddle to scission in determining the
fission fragment mass distribution is specific to the collective
fission coordinates and the nature of dissipation used in
the present work. Questions may naturally arise regarding
the consequences of including more collective degrees of
freedom or changing the nature of dissipation on the saddle-
to-scission dynamics and the resulting fission fragment mass
distribution. It was shown earlier [15] that inclusion of the
neck degree of freedom substantially increases the most
probable fission path from saddle to scission. Consequently,
one may expect that a fission trajectory will be subjected
to random forces for a longer period, giving rise to a
larger mass dispersion. The saddle-to-scission dynamics also
changes when one considers a non-Markovian dissipation
(and random force) instead of the Markovian dissipation
used in the present work. By considering non-Markovian
stochastic dynamics of fission, it has been shown [53] that
the mean descent time from saddle to scission increases with
the relaxation time of the collective coordinates. Thus the
introduction of non-Markovian features in stochastic fission
dynamics is also expected to increase the fission fragment mass
variance. Evidently, more calculations are needed to explore
the role of saddle-to-scission descent under different stochastic
dynamical models in giving rise to the fission fragment mass
distribution.
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