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Transition and static moments of octupole-deformed heavy nuclei
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We studied the properties of even-even actinide nuclei using the binary cluster model. Band-mixing calculation
of the Kπ = 0− negative parity bands arising from the core nucleus having two different states and with the
core and cluster having different effective charges enabled a simultaneous interpretation of the electromagnetic
transitions.
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I. INTRODUCTION

Many papers have reported the existence of broken reflec-
tion symmetry in the rare-earth and heavy nuclei [1–8]. The
experimental signatures of the asymmetry have been shown
to include, but are not limited to, the observed low-lying
bandhead of the Kπ = 0− band in the light actinide nuclei,
the alternating parity at high spin of the even-A nuclei, and the
enhanced dipole transition between the opposite parity states.
All of these features have been associated with the equilibrium
quadrupole and octupole deformations of the heavy nuclei, and
as a result the theoretical studies and the interpretation of the
experimental data are mostly done within the collective model
and deformed shell model. For example, self-consistent mean-
field techniques and Nilsson-Strutinsky deformed potential
plus shell correction methods have been widely used to
investigate the nuclear reflection asymmetry [1].

The appearance of cluster structures and its connection
with nuclear deformations in light nuclei [9–11] and the
relationship between the equilibrium shape, nuclear clustering,
and the observed exotic decay of a number of heavy actinide
nuclei [12–17] naturally suggest the possibility of describing
the above experimental features within the cluster model.
This idea has led to a number of theoretical investigations on
the connection between nuclear clustering and the reflection
asymmetric properties of heavy nuclei [18–22]. A particu-
larly simple and intuitive cluster model interpretation of the
properties of heavy nuclei is the exotic-cluster model of Buck
et al. [18,19,23,24]. This variant of the cluster model seeks to
describe the positive parity ground state band Kπ = 0+ and
the negative parity band Kπ = 0− of the even-even actinide
nuclei in terms of the core-cluster relative motion with both
systems restricted to their respective ground states. However,
the negative parity band is usually placed at too high an
excitation energy relative to the positive parity ground state
band. Furthermore the corresponding dipole E1 transitions
turns out to be much larger than the experimental values [19].
A similar marked deviation of the model prediction from
experimental data is also found for the dipole moments of
the even-even heavy nuclei [15]. Recently, the exotic-cluster
model description of the negative parity bands was extended in
order to explain the salient experimental features common to
a number of heavy nuclei (see Refs. [25,26] for details). This

approach assumes that the low-lying negative parity bands of
even-even heavy nuclei are more appropriately described by
coupling the core at its lowest Iπ = 3− state with the relative
motion angular momentum Lπ of the core-cluster system.
This formalism generates a set of negative parity bands which
can be labeled as Kπ = 0−, 1−, 2−, 3− bands. It was found
that the lowest-energy odd-spin states forming the negative
parity Kπ = 0− band do not decay via E1 transition to the
positive parity ground state band. A band-mixing calculation
of the two Kπ = 0− negative parity bands obtained with
Iπ = 0+ and with Iπ = 3− produces E1 transition strengths
which gave satisfactory description of the electromagnetic
data of 238U [27]. Higher multipolarities, such as the octupole
transition strength of heavy nuclei, have also been described to
a good degree of accuracy within the alternative excited core
formalism [26]. Furthermore application of the excited-core
model to a 212Po nucleus treated as an α cluster plus excited
208Pb core has been shown to reproduce the recently observed
experimental data [28].

The purpose of this work is to investigate the electro-
magnetic properties of the negative parity bands of octupole-
deformed nuclei within the excited-core cluster model formal-
ism. We are particularly interested in the dipole moments and
the enhanced E1 transitions between members of alternating
parity bands. The existence of these observables in the light
even-even actinides is indicative of nuclear asymmetric shape
[1–3] and of cluster structures with differing charge-to-mass
ratios [29]. We used here the proposed formalism [27] to
calculate the electromagnetic transition strengths. We extend
our calculations to include the static multipole moments in the
excited core model, and by using the radial wave functions
of the cluster-core relative motion we give a more explicit
quantitative description of nuclei with octupole correlations.

The remainder of this paper is organized as follows. We give
the theoretical formalism in Sec. II. The results and discussion
of our calculations are presented in Sec. III, followed by our
conclusions in Sec. IV.

II. THEORETICAL FRAMEWORK

In the exotic-cluster model the ground state of the parent
nucleus is described as an exotic cluster in its ground state
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orbiting a core nucleus. The core-cluster splitting is such that
the cluster nucleons occupy states above the Fermi level of
the core in order to satisfy the Pauli principle. The orbit
of the cluster can be described by a large value of the
quantum number G = 2n + L, where n is the number of
nodes of the relative motion and L is the orbital angular
momentum. The core-cluster relative motion characterized
by an even value of G generates the positive parity states
Lπ

even = 0+, 2+, 4+, . . . ,G+, which, when coupled with the
core nucleus at its ground state Iπ = 0+, results in the
positive parity ground state band of the parent nucleus Jπ =
0+, 2+, 4+, . . . ,G+. Similarly, an excited negative parity band
Lπ

odd = 1−, 3−, 5−, . . . , (G + 1)− corresponding to an odd-G
relative motion can be coupled with the core spin Iπ = 0+ to
generate the Kπ = 0− [i.e., Jπ = 1−, 3−, 5−, . . . , (G + 1)−]
negative parity band. Previous studies have, however, shown
that the observed low-lying negative parity bands found in
most even-even heavy nuclei are not adequately described by
the relative motion of the spinless core and cluster systems
characterized by odd-G quantum number.

An alternative view of these bands, recently proposed, is
that the core nucleus could be found in either the positive parity
ground state Iπ = 0+ or the lowest negative parity excited state
Iπ = 3−. Coupling the excited state Iπ = 3− to the even-G
core-cluster relative motion yields a rich spectrum of negative
parity states, which has given a good representation of the
experimental situation in a number of heavy actinide nuclei
[25,26,30].

Here we employ the alternative approach to obtain the
low-lying negative parity bands by solving the Schrödinger
equation of the form

[H (r, ξ ) − E]�JM (r, ξ ) = 0, (1)

where H (r, ξ ) is the sum of the relative motion Hamilto-
nian with coordinate r , the core Hamiltonian with internal
coordinate ξ , and a non-central interaction V ′(r, ξ ), which
couples both the relative and the internal motions. The total
wave function �JM (r, ξ ) may then be expanded in terms
of basis states involving the product of the relative motion
wave function and the core eigenfunction, which, in compact
notation, may be written as

|JM〉 =
∑
L′

αJ
L′ |L′I ′; JM〉, (2)

where αJ
L′ is the expansion coefficient.

Following Refs. [25,26,30], we assume the relative motion
component of H (r, ξ ) is not affected by the core state Iπ so
that the positive parity excitation energies arising from the
relative motion correspond to the ground state band, here
represented by E(L), and that these energies may be taken
from the experimental spectrum. Given the nature of the
problem, we may proceed to solve Eq. (1) by using a standard
diagonalization technique.

The Schrödinger equation above may simply be cast into
the form ∑

L′
HJ

LL′α
J
L′ = EJ αJ

L, (3)

where the Hamiltonian matrix HJ
LL′ contains the coupling

matrix elements

V J
LL′ = 〈LI ; JM|V ′(r, ξ )|L′I ; JM〉. (4)

By using a quadrupole-quadrupole form for the non-central
interaction, V ′(r,ξ ) = V2(r)Y2(r̂) · Y2(ξ̂ ), the coupling matrix
element may be rewritten as [25,26,31]

V J
LL′ = (−)J+L−L′

7βL̂L̂′W (LL′33; 2J )〈L0L′0|20〉
×〈3030|20〉. (5)

In Eq. (5), β is the radial integral involving the non-central in-
teraction strength V2(r) and the relative motion wave functions,
the symbol N̂ = √

2N + 1,W (abcd; ef ) is a standard Racah
coefficient, and 〈aαbβ|cγ 〉 is the Clebsch-Gordan coefficient.

Implicit in Eq. (5) is the assumed similarity of the relative
motion radial wave functions, thus giving a constant radial
integral β, which we considered to be an adjustable strength
parameter. This assumption has been shown to hold especially
for heavy nuclei with core-cluster systems having a large
quantum number G [23,32]. In arriving at Eq. (5) we have
adopted a phase convention that is different from the one
employed in earlier works [25,26].

A. Transition strength

The in-band quadrupole transition strength for the Kπ = 0−
band involving an initial state Ji and a final state Jf , each of
which has two components with different sets of coordinates,
takes the form

[B(E2; Ji −→ Jf )]
1
2 =

∑
LiLf even

(−1)Jf +Li−1

×
√

5

4π
α

Ji

Li
α

Jf

Lf
β2Ĵf L̂iW (Lf LiJf Ji ; 23)

×〈Li020|Lf 0〉〈Lf |r2|Li〉, (6)

where the symbol N̂ = √
2N + 1. The quantities α

Ji

Li
and α

Jf

Lf

are the expansion coefficients of the initial and final states,
and β2 is a factor arising from the multipole operator whose
general form is given by [23]

β� = Z1A2
� + (−1)�Z2A1

�

(A1 + A2)�
, (7)

where � is the multipolarity and Z1, Z2 and A1, A2 are the
core and cluster charge and mass numbers, respectively. As
can be seen, Eq. (6) is consistent with Eq. (12) of [27].
The matrix elements of the squared radial separation may be
calculated using wave functions from a numerical solution of
the radial Schrödinger wave equation (RSWE) for the relative
motion.

For the dipole transition strength B(E1) we consider the
mixing of the negative parity states of angular momenta
1−, 3−, 5−, . . . belonging to the G + 1 band with the negative
parity states of the Kπ = 0− band arising from the core
excitation [27,30]. An initial mixed negative parity state of
angular momentum Ji can then decay through an electric
dipole transition to a final positive parity state of angular
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momentum Jf = Ji ± 1 belonging to the positive parity
ground state band. In this model the decay is essentially that
from a pure G + 1 state to a pure G state, moderated by the
mixing coefficient CJ of the form

CJ = γ

4π�EJ

J+3∑
L=|J−3|even

αJ
LL̂〈J0L0|30〉, (8)

where we have assumed an octupole-octupole mixing inter-
action of the type V ′′(r, ξ ) = g(r)Y3(r̂) · Y3(ξ̂ ). The strength
γ is the radial integral involving the unknown strength
function g(r) and the even-G and odd-G relative motion
wave functions. The energy denominator �EJ is the energy
difference between two admixed negative parity states having
the same spin J . The dipole transition strength is then given
by

B(E1; Ji −→ Jf ) = 3

4π
C2

Ji
β2

1 |〈Ji010|Jf 0〉〈Jf |r|Ji〉|2

= 3

64π3

(
γβ1

�EJi

)2

〈Ji010|Jf 0〉2〈Jf |r|Ji〉2

×
[

Ji+3∑
L=|Ji−3|even

α
Ji

L L̂〈Ji0L0|30〉
]2

, (9)

where the radial matrix elements 〈Jf |r|Ji〉 involve the relative
motion wave functions with odd spin Ji and even spin Jf and
the factor β1 is the dipole form of Eq. (7).

Within the exotic-cluster model, the octupole transition
strength B(E3) from a Jπ = 3− state in any of the K bands to
the Jπ = 0+ ground state of the parent nucleus is essentially
given by the octupole transition strength of the Pb core from
its 3− state to its 0+ ground state moderated by the squared
modulus of their respective expansion coefficients for the
L = 0 component of the wave functions of the Jπ = 3− states
of the parent nucleus [25,26]. For the admixed Kπ = 0− band
we have, in addition to the dominant transition from the 3−
state of the core, a non-negligible contribution from the 3−
state of the excited G + 1 band to the 0+ ground state of the
parent nucleus moderated also by the mixing coefficient CJ . In
general the octupole transitions from an initial negative parity
state Ji to a final positive parity state Jf may be determined
from the squared modulus of the sum of contributions from
the excited 3− state of the core nucleus to its ground state
moderated by the expansion coefficient for components of the
wave functions of Ji having the same L as the final positive
parity state Jf and from the 3− state of the excited G + 1 band
to the final state Jf moderated by the mixing coefficient of the
state Ji .

B. Static moment

We define the intrinsic multipole moment Q�m′ as [33]

Q�m′ =
√

16π

5
〈φI,λ=I (ξ )|Ô ′

�m′ |φI,λ=I (ξ )〉, (10)

where φI,λ=I (ξ ) is the internal eigenfunction, λ is the projec-
tion of the core spin I onto the quantization axis, and Ô ′

�m′ is
the multipole operator in the body-fixed axes.

In the cluster model the intrinsic quadrupole moments can
be obtained from the transition strength B(E2) by using the
wave functions of Eq. (2) and the transformation

Ô�,m =
∑
m′

D�
mm′Ô

′
�m′ (11)

connecting the space-fixed Ô�m and the body-fixed Ô ′
�m′

operators. Thus after some angular momentum recoupling the
B(E2) can be rewritten as

[B(E2; Ji −→ Jf )]
1
2

=
√

5

16π
Q20

∑
Lf Li

(−)Jf +Li−1α
Jf

Lf
α

Ji

Li
Ĵf L̂i

×W (Lf LiJf Ji ; 23)〈Lf |Li〉〈Li020|Lf 0〉 (12)

where Q20 is the the static quadrupole moment. The moment
can therefore be deduced from a combination of Eqs. (6)
and (12). The intrinsic dipole moment Q10 can similarly be
derived from the transition strength B(E1) by using instead
the admixed wave function containing the factor CJ ,

B(E1; Ji −→ Jf ) =
∣∣∣∣∣
√

3

4π
CJi

Q10〈Jf |Ji〉〈Ji010|Jf 0〉
∣∣∣∣∣
2

.

(13)

This gives a dipole moment

Q10 = β1〈Jf |r|Ji〉
〈Jf |Ji〉 . (14)

With the formalism described above and by using an ef-
fective charge ε, via a transformation Zi = Zi + εAi [19,23],
the experimental electromagnetic quadrupole transitions can
be reproduced to within a very good accuracy. However, the
same cannot be said for the dipole transitions within the
binary cluster model. The reason is partly because the proton
polarization charge ep has been set equal to the effective charge
of the neutrons en. This is common practice, which may not
necessarily hold [34–36]. In fact, the difference between the
nucleon effective charges is important and necessary for a
simultaneous description of both the quadrupole and the dipole
transitions in the exotic-cluster model. The overall effect is that
the core effective charge ε1 is slightly different from the cluster
effective charge ε2. If, for example, the difference ep − en is
not negligible, one has

β� =
(
1 + ep

e
− en

e

)
[Z1A2

� + (−1)�Z2A1
�] + [

A�−1
2 + (−1)�A�−1

1

]
A1A2

en

e

(A1 + A2)�
, (15)
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TABLE I. The experimental level scheme of 226Ra [2] and the
calculated spectra obtained with SW + SW3 potential parameter
values of Ref. [19].

J π Eexpt (MeV) Eth (MeV)

0+ 0.000 0.000
2+ 0.068 0.073
4+ 0.212 0.217
6+ 0.417 0.419
8+ 0.669 0.674
10+ 0.960 0.975
12+ 1.282 1.318
14+ 1.629 1.699
16+ 1.999 2.114
18+ 2.389 2.559
20+ 2.801 3.031
22+ 3.233 3.525
24+ 3.686 4.037
26+ 4.158 4.562
28+ 4.651 5.098

where e is the electron charge. Equation (15) gives the same
factor β�=1 for the dipole operator as in [37]. In fact, by using

TABLE II. The experimental and the calculated excitation ener-
gies of the Kπ = 0− and Kπ = 1− negative parity bands of 226Ra
(in MeV units). The predicted Kπ = 2− and Kπ = 3− negative
parity bands (in MeV) are given in the sixth and seventh columns,
respectively.

J π Kπ = 0− Kπ = 1− Kπ = 2− Kπ = 3−

Eexpt Eth Eexpt Eth Eth Eth

1− 0.254 0.261 1.040 1.045
2− 1.070 1.078 3.393
3− 0.322 0.326 1.159 3.453 7.304
4− 1.205 3.531 7.388
5− 0.447 0.450 1.349 3.624 7.488
6− 1.394 3.732 7.600
7− 0.627 0.631 1.596 3.852 7.725
8− 1.631 3.983 7.860
9− 0.858 0.861 1.885 4.124 8.004
10− 1.909 4.274 8.157
11− 1.134 1.132 2.207 4.431 8.317
12− 2.220 4.596 8.484
13− 1.448 1.436 2.556 4.767 8.657
14− 2.558 4.944 8.836
15− 1.797 1.768 2.929 5.128 9.020
16− 2.920 5.316 9.210
17− 2.175 2.125 3.324 5.510 9.405
18− 3.304 5.709 9.605
19− 2.579 2.503 3.741 5.914 9.810
20− 3.709 6.123 10.020
21− 3.007 2.903 4.178 6.339 10.235
22− 4.134 6.558 10.456
23− 3.455 3.322 4.636 6.785 10.681
24− 4.580 7.013 10.911
25− 3.922 3.762 5.114 7.250 11.147
26− 5.047 7.489 11.387

TABLE III. Reduced matrix elements for the E2 transitions.The
experimental data are taken from Ref. [3].

〈Jf ||M(E2)||Ji〉 (e fm2)

J π
i → J π

f Experiment Theory

1− → 3− 366+6
−12 287

3− → 5− 409+5
−10 392

5− → 7− 407+3
−7 473

7− → 9− 545+3
−17 541

9− → 11− 677+30
−70 599

11− → 13− 1000+110
−70 651

13− → 15− 970+300
−220 696

15− → 17− 737
17− → 19− 772
19− → 21− 799

an effective charge eeff = e(1 + χ ), where χ corresponds to
χ = ep

e
− en

e
in Eq. (15), the E1 transitions in the Ba-Sm region

were satisfactorily described in an α cluster model [37]. The
transition is interpreted as the result of a coupling between
the cluster mode and the giant dipole vibrations [37]. For
a typical heavy actinide nuclei, Eq. (9) with Eq. (15) gave
a good description of the E1 transitions. However, we find
that the expected quadrupole transitions of the positive parity
ground state band are strongly underestimated. Alternatively,
if we use different core and cluster effective charges and take
into consideration the difference given by

ε1 − ε2 =
(

ep

e
− en

e

)
Z1A2 − Z2A1

A1A2
, (16)

we can give a good account of the quadrupole and the dipole
transitions as well as the static moments. The difference

TABLE IV. Reduced matrix elements for the E1 transitions. The
experimental data are taken from Ref. [3].

〈Jf ||M(E1||Ji〉 (e fm)

J π
i → J π

f Experiment Theory

0+ → 1− 0.050 ± 0.009 0.096
1− → 2+ 0.068 ± 0.010 0.065
2+ → 3− 0.061 ± 0.007 0.032
3− → 4+ 0.057 ± 0.005 0.007
4+ → 5− 0.093 ± 0.007 0.053
5− → 6+ 0.097
6+ → 7− 0.157 ± 0.010 0.156
7− → 8+ 0.21 ± 0.08 0.198
8+ → 9− 0.24 ± 0.02 0.276
9− → 10+ 0.27 ± 0.05 0.308
10+ → 11− 0.33 ± 0.04 0.410
11− → 12+ 0.35 ± 0.08 0.423
12+ → 13− 0.63 ± 0.08 0.556
13− → 14+ 0.65+0.15

−0.05 0.541
14+ → 15− 0.709
15− → 16+ 0.55+0.07

−0.14 0.658
16+ → 17− 0.870
17− → 18+ 0.773
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TABLE V. Ratios of the electric dipole to quadrupole moments (|Q10/Q20| × 10−4) and the corresponding ratios of the reduced transition
strengths of 226Ra. The experimental data are taken from Refs. [2,19,43].

J π
i |Q10

Q20
|expt (fm−1) |Q10

Q20
|th (fm−1) B(E1↓)

B(E2↓)

expt
(fm−2) B(E1↓)

B(E2↓)

th
(fm−2)

3− 2.60 1.37 × 10−9

5− � 1.0 2.52 1.69 × 10−7

7− 2.30 ± 0.14 2.44 5.76 × 10−7

9− 2.56 ± 0.18 2.37 (2.21 ± 0.19) × 10−7 1.20 × 10−6

11− 2.50 ± 0.14 2.30 (1.83 ± 0.44) × 10−7 2.04 × 10−6

13− 1.96 ± 0.16 2.24 (1.25 ± 0.17) × 10−7 3.09 × 10−6

15− 2.18 4.33 × 10−6

17− 2.49 ± 0.51 2.13 (2.04 ± 0.83) × 10−7 5.76 × 10−6

19− 2.08 7.37 × 10−6

between the effective charges ε1 and ε2 of the core and the
cluster therefore depends on the difference in the charge to
mass ratios of the core and the cluster and on the difference
in the proton and neutron effective charges. The existence of
the core and cluster effective charges may be explained by the
following. First the fluctuations produced by the clusterization
process i.e., the transient formation and dissolution of the
clusters in the parent nuclei, may result in the existence of
a mixture of different core-cluster configurations. Second, the
overall polarization of the core may be very different from
that of the cluster, probably due to the excess neutron of the
core [38].

III. RESULTS AND DISCUSSIONS

In this section we first present the results of our calculations
for 226Ra treated as a 14C exotic cluster plus a 212Pb core. For
both systems in their respective ground states the excitation
energies and the wave functions of members of the positive
parity ground state band of 226Ra are obtained by solving the
relative motion RSWE with Woods-Saxon potential (SW +
SW3). The potential parameter values and the global quantum

TABLE VI. The experimental and the calculated excitation
energies of the Kπ = 0+ positive parity bands of 222Ra, 226Th, and
232U (in MeV units).

222Ra 226Th 232U

J π Eexpt Eth Eexpt Eth Eexpt Eth

0+ 0.000 0.000 0.000 0.000 0.000 0.000
2+ 0.111 0.078 0.072 0.069 0.048 0.045
4+ 0.302 0.234 0.226 0.208 0.157 0.150
6+ 0.550 0.448 0.447 0.407 0.323 0.300
8+ 0.843 0.718 0.722 0.660 0.541 0.493
10+ 1.173 1.039 1.040 0.959 0.806 0.726
12+ 1.537 1.406 1.395 1.305 1.112 0.996
14+ 1.933 1.815 1.782 1.695 1.454 1.301
16+ 2.359 2.262 2.196 2.124 1.828 1.640
18+ 2.811 2.743 2.635 2.590 2.232 2.010
20+ 3.288 3.255 3.097 3.091 2.659 2.411
22+ 3.113 2.840
24+ (3.590) 3.297

number G are taken from Ref. [19]. The experimental and the
calculated energies are listed in Table I for comparison. Our
results agree with those of Ref. [19] with a further extension
of the level scheme to the recently observed Jπ = 28+
state.

The quadrupole transition strength B(E2; Ji −→ Jf ) from
an initial state of angular momentum Ji to a final state of
angular momentum Jf of the positive parity band can be ob-
tained from the generalized expression given in Refs. [19,30].
Our calculated values B(E2; 2+ −→ 0+) = 115 W.u. and
B(E2; 4+ −→ 2+) = 164 W.u. are satisfactory when com-
pared with the corresponding measured values of 123 ± 5 W.u.
and ∼212 W.u., respectively. These results are obtained with
a core effective charge ε1 = 0.33, and the cluster effective
charge ε2 is determined from Eq. (16).

The negative parity bands are generated by considering
an excited core plus a cluster in its ground state. The core
excitation energy E(3−) and the coupling strength β are
treated as adjustable parameters whose values may be defined
following the procedure outlined in Refs. [25,26]. However,
due to the nonavailability of the required experimental data
for the low-spin members of Kπ = 1− and Kπ = 2− bands,
we choose to fit the parameters to the observed states of
the Kπ = 0− and the Kπ = 1− bands. The values obtained

TABLE VII. The experimental and calculated excitation energies
of the Kπ = 0− negative parity bands of 222Ra, 226Th, and 232U (in
MeV units).

222Ra 226Th 232U

J π Eexpt Eth Eexpt Eth Eexpt Eth

1− 0.242 0.327 0.230 0.270 0.563 0.567
3− 0.317 0.391 0.308 0.338 0.629 0.632
5− 0.474 0.542 0.451 0.470 0.747 0.748
7− 0.703 0.758 0.658 0.663 0.915 0.914
9− 0.992 1.025 0.923 0.911 1.131 1.127
11− 1.331 1.334 1.238 1.205 1.391 1.384
13− 1.710 1.677 1.596 1.539 1.689 1.680
15− 2.125 2.054 1.989 1.906 2.023 2.012
17− 2.570 2.461 2.413 2.303 2.385 2.376
19− 3.041 2.775 2.769
21− 3.187 3.189
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TABLE VIII. Ratios of the electric dipole to quadrupole moments (|Q10/Q20| × 10−4) and the corresponding ratios of the reduced transition
strengths of 222Ra. The experimental data are taken from Ref. [2].

J π
i |Q10

Q20
|expt (fm−1) |Q10

Q20
|th (fm−1) B(E1↓)

B(E2↓)

expt
(fm−2) B(E1↓)

B(E2↓)

th
(fm−2)

3− 2.10 9.42 × 10−10

5− 2.04 1.15 × 10−7

7− 4.51 ± 0.28 1.98 (7.05 ± 1.94) × 10−7 3.95 × 10−7

9− 3.78 ± 0.21 1.92 (4.86 ± 1.43) × 10−7 8.29 × 10−7

11− 3.94 ± 0.20 1.87 (5.22 ± 134) × 10−7 1.41 × 10−6

13− 5.22 ± 0.69 1.82 (9.08 ± 4.60) × 10−7 2.13 × 10−6

15− 4.67 ± 0.98 1.77 (7.23 ± 6.50) × 10−7 2.98 × 10−6

17− 1.73 3.96 × 10−6

from a least-squares fit are E(3−) = 3.2821 MeV and β =
−2.3731 MeV. These values are seen to deviate markedly from
the values obtained for heavier nuclei in earlier works [25,26].
The experimental ground state band E(L) of the 226Ra isotope
is taken from [2]. We obtained a series of negative parity states
that, following Refs. [25,26,31,39], were grouped into four
Kπ = 0−, 1−, 2−, 3− negative parity bands. The classification
into the different K bands is consistent with their separations in
the strong-coupling limit [25,26,30,31]. A comparison of the
calculated Kπ = 0− and Kπ = 1− bands with experimental
data is presented in Table II. The agreement of the level spectra
with the observed data is good. The characteristic doublets of
the low-spin states of the Kπ = 1− band are in agreement
with theoretical results obtained in Refs. [26,40]. The inverted
doublets of the high-spin members of the band are an
interesting feature with no experimental counterpart. We note,
however, that the bandheads of the predicted Kπ = 2− and
Kπ = 3− excited bands are too high when compared with, for
example, the theoretical and experimental band assignments
in the even-even actinide nuclei (see Refs. [26,40,41]). The
upward shift of these bands is understood as an effect of the
strong-coupling strength β.

Tables III and IV compare the calculated quadrupole and
dipole transition strengths with experimental data. Follow-
ing Refs. [3,19], we have converted the reduced transition
strengths to the corresponding reduced matrix elements for
direct comparison with experiment. We calculate the wave
functions of the excited G + 1 negative parity band using the

same SW + SW3 parameter values. The strength γ of the
mixing coefficient CJi

is parametrized as γ = A + BJi [42],
where the parameters A and B together with the difference
between the proton and neutron polarization charges χ =
ep

e
− en

e
have been fitted to the experimental dipole transition

matrix element 〈Jf ||M(E1||Ji〉. The parameter values A =
−44.15 MeV, B = 15.67 MeV, and χ = −0.948 are obtained.
The overall agreement of our results with experimental data is
satisfactory. We find that the absolute dipole moment |Q10| 	
0.20 e fm averaged over a spin range I = 3h̄–19h̄ compares fa-
vorably with the experimental result |Q10| = 0.19 ± 0.03 e fm
quoted in Ref. [2] for the spin range I = 9h̄–18h̄.

The absolute values of the ratios of the dipole to quadrupole
moments and of the reduced transition strengths are listed in
Table V. Our ratios of the intrinsic moments agree well with the
data. We note, however, that our calculated ratio of the reduced
transition strength differs by an order of magnitude from the
experiment. The disagreement is due to the increasing nature of
the spin-dependent strength γ , indicating larger contributions
from the intermediate and high spin wave functions of the
excited G + 1 band to the corresponding Kπ = 0− negative
parity states.

The reduced transition strength B(E3; 0+ −→ 3−) for the
Kπ = 0− band is calculated from the squared modulus of the
sum of contributions from the excited 3− state of the core
nucleus to its ground state and from the 3− state of the excited
G + 1 band to the ground state. We use a previous estimate
Q3 = 1.129 e2 b3 for the octupole transition strength of the

TABLE IX. Ratios of the electric dipole to quadrupole moments (|Q10/Q20| × 10−4) and the corresponding ratios of the reduced transition
strengths of 226Th. The experimental data are taken from Ref. [43].

J π
i |Q10

Q20
|expt (fm−1) |Q10

Q20
|th (fm−1) B(E1↓)

B(E2↓)

expt
(fm−2) B(E1↓)

B(E2↓)

th
(fm−2)

3− 3.59 2.50 × 10−9

5− 3.52 3.09 × 10−7

7− 3.45 1.06 × 10−6

9− 3.8 ± 0.2 3.33 (4.91 ± 1.36) × 10−7 2.17 × 10−6

11− 3.9 ± 0.2 3.26 (5.11 ± 1.34) × 10−7 3.72 × 10−6

13− 3.19 5.77 × 10−6

15− 3.9 ± 0.3 3.12 (5.04 ± 1.98) × 10−7 8.19 × 10−6

17− 3.6 ± 0.3 3.05 (4.28 ± 1.98) × 10−7 1.10 × 10−5

19− 3.9 ± 0.5 (5.00 ± 3.28) × 10−7
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Pb core [25,26], and the remaining contribution resulting from
the band mixing is estimated using Eq. (4) of Ref. [19]. Our
calculated value of 0.43 e2 b3 is a factor of ∼3 away from the
measured value 1.10 ± 0.11 e2 b3 [3].

We next apply the formalism described above to 222Ra,
226Th, and 232U treated as 208Pb core plus 14C, 18O, and 24Ne
exotic clusters, respectively. Our choice of the core-cluster
system is guided by the experimentally observed exotic-cluster
decay [44]. The parameter values are fixed as for the 226Ra
calculations. The only exception is that we use the SW +
SW3 potential parameter values of Eq. (4) in Ref. [23] for
226Th. Table VI shows good agreement between experimental
energies of the positive parity ground state band and the
calculated spectra of the Ra, Th, and U isotopes. We see a
marked compression in the calculated positive parity band of
the 232U. The quadrupole transition strengths B(E2; 2+ −→
0+) = 124 W.u. and B(E2; 4+ −→ 2+) = 177 W.u. obtained
for 222Ra are to be compared with 111 ± 9 and � 12 W.u.,
respectively. For 226Th the transition strength B(E2; 2+ −→
0+) = 153 obtained with core effective charge ε1 = 0.25 also
compares favorably with the measured value B(E2; 2+ −→
0+) = 164 ± 10 W.u. Similarly, the B(E2; 2+ −→ 0+) =
231 W.u. obtained for 232U agrees with the measured value
241 ± 21 using a smaller core effective charge ε1 = 0.20.

In Table VII we present only the results for the Kπ = 0−
negative parity bands. The experimental energies are well
reproduced by the theory except for the slight underbinding
in the low-spin states of 222Ra. We have used a core energy
E(3−) = 5.8404 MeV and strength β = −4.0360 MeV, ob-
tained from the fit to 232U data [45], to generate the negative
parity band excitation energies of the nucleus. It is remarkable
to find that our predictions for the previously unknown 13−
state and the intermediate-spin states of the 232U are in good
agreement with the recently measured values [46].

The results for the high-K negative parity bands (not
shown) are seen to present similar features observed in 226Ra.
The average dipole moments |Q10| = 0.16 and 0.30 e fm
obtained for 222Ra and 226Th are to be compared with
experimental values |Q10| = 0.27 ± 0.04 e fm and 0.30 ±
0.03 e fm [1,2], respectively. The |Q10/Q20| and B(E1 ↓)/B
(E2 ↓) ratios for 222Ra and 226Th are compared with exper-
imental data, where available, in Tables VIII and IX. The
experimental B(E1 ↓)/B(E2 ↓) ratios are obtained from the
corresponding |Q10/Q20| ratios quoted in Refs. [2,43] using

the strong-coupling limit of the rotational model. We see that
the calculated |Q10/Q20| ratio is a factor of ∼2 lower than the
experimental data for 222Ra, whereas a remarkable agreement
between theory and experiment is achieved for 226Th. The
ratios of the transition strengths are found to be an order of
magnitude larger than the experimental data, as for 226Ra. Our
theoretical estimates of the B(E3 ↑) for the 222Ra and 226Th
are 0.48 and 0.46 e2 b3, respectively.

The calculated average of the absolute dipole moment of
232U is 0.18 e fm, and the weighted average from a recent
measurement is 0.11 ± 0.03 e fm [46]. The octupole transition
strength B(E3 ↑) = 0.45 e2 b3 is obtained for the nucleus.
Apparently, both the predicted and the observed values of
the dipole moments are larger than the expected value for
an octupole vibrational nuclei. We note also that the large
differences in the values of E(3−) and β used to generate the
Kπ = 0− band of 232U and the fixed values used for the Ra
and Th isotopes probably indicate the important difference in
the structure of the U isotope and those of the light actinide
nuclei. The important point here is that the cluster model is
able to give a good account of the properties of nuclei with
different structures.

IV. CONCLUSIONS

The properties of the low-lying positive- and negative-
parity bands of heavy nuclei have been described within the
exotic-cluster model. The positive parity band is obtained from
the relative motion of the spinless core and cluster systems.
The negative parity bands are generated by coupling the core
nucleus at Iπ = 3− with the core-cluster relative motion.
Application of the model to some nuclei is found to generate
energies in good agreement with the experimental spectra. It
is shown that perturbations from an excited negative parity
band obtained with a core and cluster in their respective
ground states together with a different core and cluster effective
charges is necessary to account for a simultaneous description
of the quadrupole and the dipole transitions and moments.
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