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Zeros of 6- j symbols: Atoms, nuclei, and bosons

L. Zamick1 and S. J. Q. Robinson2

1Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
2Department of Physics, Millsaps College, Jackson, Mississippi 39210, USA

(Received 31 May 2011; published 24 October 2011)

The absence of certain LS states in atoms leads to the vanishing of several 6-j symbols. One of these vanishing
6-j ’s explains the absence of a certain jj coupling state in a nucleus, while the other explains the vanishing of a
certain state for a system of three bosons. This is part of a continuing study of “companion problems.” It is noted
that the vanishing 6-j ’s play an important role for establishing partial dynamical symmetries. Whenever possible
we offer alternate explanations that do not involve 6-j symbols. Extensions to vanishing 9-j symbols are also
shown. Regge symmetries help to make connections between different topics.
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I. INTRODUCTION

In this work we address the problem of missing states for
certain configurations of fermions—both in LS coupling and
jj coupling—and also missing states for bosons. Unity is
brought to these a priori different topics by relations involving
6-j symbols, which have similar appearances in the above
three categories. Many, but not all, of the relations involve
the vanishings of 6-j symbols. Extensions to 9-j symbols
are also shown, as well as applications to partial dynamical
symmetries. Some results presented here are familiar; some
are not. The main virtue of this work is to bring these diverse
topics all into one place. The topics addressed are fermions in
LS coupling, fermions in jj coupling, and spinless bosons.

II. LS COUPLING IN ATOMS AND NUCLEI

In a 1989 paper by Judd and Li [1] it was noted that for
three electrons in the g3 configuration (LS coupling) there is
no quartet state 4D. For those not familiar with the atomic
notation the superscript refers to the spin degeneracy. In the
context of nuclear physics we would say that the spin S is
equal to 3/2. They were able to show that the nonexistence of
the quartet state was due to the vanishing of two 6-j symbols:{

4 2 5
4 4 3

}
= 0,

{
4 8 7
4 4 5

}
= 0. (1)

This was generalized to the following relations for even L:{
L 2 (L + 1)
L L (L − 1)

}
= 0, (2)

{
L (3L − 4) (2L − 1)
L L (2L − 3)

}
= 0. (3)

We will consider not only three g electrons but three L
electrons where L is even. We take as a given that there are
no states of this configuration with S = 3

2 and LT = 2, the
latter being the total angular momentum; i.e., there are no 4D

states of the L3 configuration for any even L. We then find out
what are the mathematical consequences. This will involve
relations among the 6-j symbols. The results will of course
also apply to three identical nucleons in LS coupling—three

neutrons or three protons. In the nuclear case LS coupling is a
better approximation for light nuclei, whereas jj coupling is
better for heavier nuclei.

Note that S = 3
2 is the maximum spin for three electrons.

The S = 3
2 spin-wave function must be symmetric since the

MS = 3
2 state must have all three electrons with spin up. Hence

the orbital part of the wave function must be antisymmetric.
First we couple two of the electrons to a godparent angular

momentum LG, which must be odd so that the two electrons
have an antisymmetric wave function. The possible values of
LG are L − 1 and L + 1, and there is no loss in generality in
choosing the former.

We then antisymmetrize the state [(LL)L−1L]2:

� =
[

1 − 2(2L − 1)

{
L L (L − 1)
L 2 (L − 1)

}]
[(LL)L−1L]2

−2
√

(2L − 1)(2L + 3)

{
L L (L − 1)
L 2 (L + 1)

}
[(LL)L+1L]2.

(4)

Since � is zero, the coefficients of the two basic states in
Eq. (4) must vanish. This leads to Eq. (2) for the second term,
while for the first term we obtain

1 − 2(2L − 1)

{
L L (L − 1)
L 2 (L − 1)

}
= 0. (5)

These relations can be verified case by case from tables of 6-j
symbols.

We next show that the nonexistence of states with S = 3
2

and LT = (3L − 4), also of the L3 configuration with even L,
leads to other relations involving 6-j symbols. We choose the
value of the godparent as LG = (2L − 3). Antisymmetrizing
� = A[(LL)2L−3L]3L−4 +B[(LL)2L−1 L]3L−4 gives us

A = 1 − 2(4L − 5)

{
L L (2L − 3)
L (3L − 4) (2L − 3)

}
, (6)

B = 2
√

(4L − 5)(4L − 1)

{
L L (2L − 3)
L (3L − 4) (2L − 1)

}
. (7)

Since the state � does not exist we must have A = 0 and
B = 0.
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But we can here actually prove that the state with LT =
(3L − 4) does not exist. The maximum M state for three L
electrons with S = 3

2 is equal to L + (L − 1) + (L − 2) =
3L − 3. Thus we have a state with LT = Lmax = (3L − 3)
and MT = (3L − 3). There is only one way to form a state
with M = 3L − 4. The M values of the three electrons are L,
(L − 1), and (L − 3). This state must be part of the (3L − 3)
multiplet. Thus, we cannot have a state with S = 3

2 and
LT = (3L − 4).

From what was mentioned above there also cannot be
states with LT = 3L, 3L − 1, and 3L − 2. Concerning the
latter we can nevertheless try to antisymmetrize the state
� = [(LL)2L−1L]LT , where LT can be either (3L − 2) or
(3L − 1). This leads to the following relation:

1 − 2(4L − 1)

{
L L (2L − 1)
L LT (2L − 1)

}
= 0. (8)

As an example of the considerations in this section we see that
for three electrons in the g shell we cannot have quartet states
with LT equal to 2, 8, 10, 11, and 12.

III. BOSONS—THE ODD-L CASE

We can make use of the vanishing 6-j of Eq. (2) for
odd L. Consider three spinless L bosons with L odd with
total angular momentum J = 2. We construct a symmetric
wave function {[L(1)L(2)]J0L(3)}2 + {[L(3)L(2)]J0L(1)}2 +
{[L(1)L(3)]J0L(2)}2. Here J0 can be L − 1 or L + 1. Using
Racah algebra this equals{

1 + 2�[(2J0 + 1)(2Ja + 1)]1/2

{
L L J0

L 2 Ja

}}

×{[L(1)L(2)]JaL(3)}2 (Jaeven). (9)

Taking J0 = L − 1, we find{
L L L − 1
L 2 L − 1

}
= − 1

2(2L − 1)
, (10)

so the Ja = L − 1 term vanishes, but what about the Ja =
L + 1 term? We find that indeed{

L L L − 1
L 2 L + 1

}
= 0. (11)

This is one of many cases of nontrivial vanishings of certain
6-j symbols. Hence there will be no J = 2 states of three
bosons with odd L. Note that this is the same condition as
Eq. (2). For L = 2 this condition explains why there is no 4D

state for three electrons (or identical fermions, e.g., neutrons)
of the g3 configuration. For L = 3 it explains why there are no
J = 2 states of three spinless bosons of the L3 configuration.

It is also true that for bosons in a single L shell there is no
state with J = Jmax − 1. One can see this from the tables of
Bayman and Lande [2] and the online book by Dommelen [3].
One can also show it analytically.

The value of J max is nL where n is the number of bosons.
This is also the value of Mmax. One can construct a state with
M = Mmax − 1 by changing the M value of the ith particle to
L − 1. Call such a many-particle state ψi . There are n such
states but the only symmetric wave function is

∑
ψi . This state

must belong to the Jmax multiplet and so there cannot be any
state of n bosons in a single L shell with J = Jmax − 1—the
same as in the fermion case.

One can nevertheless try to construct such a state by
coupling two L bosons to LG = 2L and symmetrizing the state
[[(LL)2LL](3L−1)]. The nonexistence of this state leads to a
condition that is valid not only for odd L but also for even L
and half-integer L:

1 + 4(4L + 1)(−1)2L

{
L L 2L

L (3L − 1) 2L

}
= 0 (12)

IV. FERMIONS IN j j COUPLING

The conditions in Eqs. (2) and (3) which were originally
derived for even L not only hold for odd L but also for
half-integer spin and are therefore useful in jj coupling
situations. Indeed Talmi [4] obtained this result by constructing
a coefficient of fractional parentage to a state of three
neutrons in a single-j shell which he knew did not exist. In
particular J max for three identical fermions is equal to Mmax =
j + (j − 1) + (j − 2) = 3j − 3. There is only one state with
M = Mmax − 1. One moves a nucleon with M = (j − 2) to
the state with M = (j − 3). This state must belong to the
Jmax multiplet, so there cannot be a state with J = Jmax − 1.
Trying to calculate coefficients of fractional parentage to the
nonexistent state leads to the result

{
j (3j − 4) (2j − 1)
j j (2j − 3)

}
= 0. (13)

This is the same as Eq. (3) but for half integer j is greater
than 3/2.

Sometimes the vanishing 6-j ’s are part of a bigger picture.
Robinson and Zamick [5] used this relationship along with
some “diagonal conditions” to demonstrate that for a system
of two protons and one neutron in a single-j shell a partial
dynamical symmetry (PDS) occurred when one sets all two-
body matrix elements with T = 0 to zero in a shell-model
calculation. It turns out that not only J but also Jp and Jn

separately are good quantum numbers. Furthermore, states
with the same Jp and Jn are degenerate. The diagonal
conditions are

{
j j (2j − 1)
j I (2j − 1)

}
= (−1)2j

8j − 2
, (14)

where I = (2j − 1), (3j − 2), and (3j − 4).
Another known fact is that there are no J = 1

2 states for
three identical fermions in a single-j shell. This problem
has been addressed by Talmi [4,6] and Zhao and Arima [7].
We include this case here for completeness. To show the
consequences of this for 6-j relations we first couple two
fermions to an even angular momentum J0. If j + 1/2 is
even, J0 must be j + 1/2; if odd, J0 must be j − 1/2. We
then add the third fermion and couple the combination to
J = 1

2 . We then antisymmetrize. The fact that J = 1
2 states for

three fermions do not exist leads to the following relations: if
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j + 1/2 is even we get

1 + 2(2j + 2)

{
j j (j + 1/2)
j 1/2 (j + 1/2)

}
= 0. (15)

If j + 1/2 is odd we get

1 + 4j

{
j j (j − 1/2)
j 1/2 (j − 1/2)

}
= 0. (16)

V. VANISHING 9- j ’S

From the fact that some states do not exist for four fermions
in a j shell Robinson and Zamick [5,8] were able to show that
certain 9-j symbols vanished (see also the related work by
Zhao and Arima [9]). This was an extension of the above
arguments from Talmi about three fermions [4]. One of their
results is ⎧⎨

⎩
j j (2j − 1)
j j (2j − 1)

(2j − 1) (2j − 3) (4j − 4)

⎫⎬
⎭ = 0. (17)

They also used this relation for a different physical problem—a
system of two neutrons and two protons. If one sets all the
two-body interaction matrix elements with isospin T = 0 to
zero then a PDS emerges. There are certain angular momenta
for this system that cannot occur for a system of four identical
fermions.

The PDS applies to these angular momenta. It turns out
that not only total J but also Jp and J n separately are good
quantum numbers, and this is carried by the vanishing of the
above 9-j symbol. Furthermore, states with the same Jp and
J n are degenerate.

The diagonal conditions are⎧⎨
⎩

j j (2j − 3)
j j (2j − 1)

(2j − 3) (2j − 1) I

⎫⎬
⎭ = 1

4(4j − 5)(4j − 1)
, (18)

for I = (4j − 4), (4j − 5), and (4j − 7), and⎧⎨
⎩

j j (2j − 1)
j j (2j − 1)

(2j − 1) (2j − 1) I

⎫⎬
⎭ = 1

2(4j − 1)2
, (19)

for I = (4j − 4) and (4j − 2).
Let us now apply these results in more detail. For three

identical particles in a j shell the maximum J is j + (j −
1) + (j − 2) = (3j − 3). For one proton and two neutrons
the maximum value is (2j − 1) + j = (3j − 1). Hence states
with J = 3j − 2 and 3j − 1 are part of the PDS. These
have high spins and so the single-j model might work
better. Also belonging to the PDS are states with J = 1

2 and
Jmax = 3j − 4; the last one belongs because there are no states
with J = Jmax − 1 for identical fermions (this is also true for
identical bosons).

For four nucleons (or holes) the maximum J is j + (j −
1) + (j − 2) + (j − 3) = 4j − 6. However, for two protons
and two neutrons the maximum J is (2j − 1) + (2j − 1) =
4j − 2. Hence states with J = (4j − 5), (4j − 4), (4j − 3),
and (4j − 2) belong to the PDS. These are again high-spin
states so the single-j shell might work fairly well for these.

There might be other states with PDS, e.g., as noted above,
J = 3 and 7 in the f 7/2 shell.

Consider next three nucleons in the g9/2 shell. If they are
identical, Jmax = 21

2 . For a system of two protons and one
neutron the value of Jmax = 25

2 . We get a degenerate set Jp =
9, Jn = 9

2 with total angular momenta J = 19
2 , 23

2 , and 25
2 , all

with isospin T = 1
2 .

Consider four nucleons in the g9/2 shell. If they are all
identical, Jmax = 12. For two protons and two neutrons,
Jmax = 16. Here are selected sets of degenerate states for four
nucleons in the g9/2 shell:

Jp Jn

8 8 J = 14, 16 T = 0
8 6 J = 11, 13, 14 T = 0

There are more. Above, (8,6) is an abbreviation for
(8,6)+(−1)J+T (6,8). For the (8,6) configuration there is also a
degeneracy of J = 8 and 9. The above considerations do not
explain this.

The discovery of the J = 16+ isomeric state in 96Cd has
been recently reported [10]. It lies below the J = 14+ state
and so the long lifetime is due to a spin gap. It can only decay
by gamma emission to a 10+ state via an E6 transition, and this
is highly inhibited. If we set all T = 0 2 body matrix elements
in the g9/2 shell to zero, keeping only T = 1, then the J = 16+
and J = 14+ would be degenerate, as just noted. Evidently the
T = 0 part of the two-body interaction moves the J = 14+
state above J = 16+.

VI. VANISHING 6- j IN THE f SHELL—RACAH, JUDD
AND ELLIOTT, AND REGGE

Racah noted that for electrons in the f shell the calculation
of coefficients of fractional parentage could be greatly simpli-
fied by noting that the exceptional group G2 is a subgroup of
SO(7) [11].

The proof involved noting the following 6-j relation:
{ 5 5 3

3 3 3 } = 0. Regge [12] found several symmetry relations for
6-j symbols, one of which is

{
a b e

d c f

}
=

{
a 1/2(b + c + e−f ) 1/2(b − c + e+f )
d 1/2(b + c − e + f ) 1/2(−b + c + e + f )

}
.

(20)

Early on, Judd and Elliott [13] used this to show that

{
5 5 3
3 3 3

}
=

{
5 4 4
3 4 2

}
. (21)

See also the work of Judd and Li [1]. Furthermore we
emphasized at the beginning of this work that for quartet states
of three electrons in the g shell the space wave function has
to be antisymmetric. This leads to the vanishing of the 6-j on
the right-hand side above. This is easier to understand than
the f -shell result of Racah [11]. Thus we have an amusing
connection between electrons in the f shell and those in the
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g shell, and some of the mystery of the vanishing Racah
has been removed. The above result has also been used by
Vanden Berghe et al. [14]. They show many other examples
of vanishing 6-j ’s.

It should be noted that the following Regge symmetry
relation (previously used by Robinson and Zamick [5]) can
shed some light on the relation between Eqs. (2) and (3):

{
a b c

d e f

}
=

{
(b + c + f − e)/2 (a + c + d − f )/2 (a + b + e − d)/2
(c + e + f − b)/2 (a + d + f − e)/2 (d + c + b − a)/2

}
. (22)

This leads to the relation {
j j (2j − 3)

(3j − 4) j (2j − 1)

}
=

{
(2j − 2) (2j − 3) 2
(2j − 2) (2j − 1) (2j − 2)

}
. (23)

This is true for even j , odd j , and half-integer j . We have
already shown that the 6-j on the left which appears in Eq. (3)
vanishes for even j and half integer j by constructing all m

states for Mmax = J max and Jmax − 1. This did not involve
6-j symbols explicitly. We can now use this relation to show
selected vanishings in Eq. (2), e.g.,

{
4 4 5
8 4 7

}
=

{
6 2 5
6 6 7

}
= 0,

{
7/2 7/2 4
13/2 7/2 6

}
=

{
5 4 2
5 6 5

}
= 0.

We thus establish connections between 6-j ’s whose vanish-
ing can be obtained from m-state arguments to selected states
which have “two” in them, as per Eq. (2).

We note that explicit expressions for 6-j symbols with a
“two” in them have been worked out by Biedenharn et al.
[15]. Using their notation, we find from their results that

{ l1 J1 2
J2 l2 L

} for l2 = J1 + 1 and l1 = J1 + 1 is proportional to

X where X = [(J1 + 1)(J1 − J2) − L(L + 1) + J2(J2 + 2)].
We have L = 2j − 2, J1 = 2j − 3, l1 = 2j − 2, J2 = 2j − 2,
and l2 = 2j − 1. With these values we see that X vanishes.

VII. CLOSING

In summary we have in this work mainly addressed the
problem of missing states for fermions in LS coupling,
especially electrons, fermions in jj coupling, especially for
particles of one kind, e.g., neutrons only or protons only, and
of bosons. We note that very similar expressions apply in
the different cases. For example, the nonexistence of quartet
S = 3/2 states with total angular orbital momentum LT = 2
for an L3 configuration with even L is closely associated with

the nonexistence of spinless boson states also with LT = 2
but for an odd L,L3 configuration. We also have shown that
in all three cases states with J = Jmax − 1 did not exist. We
were able to obtain these results not only in terms of vanishing
6-j symbols but also by counting the number of m states.
On the other side we have shown that the value of having
6-j symmetries is greatly enhanced by the Regge symmetry
relations. They help to establish connections with what were a
priori diverse subjects. By putting all these results in one place
we hope we have conveyed the beautiful unity that pervades
the problem of missing states.

This work can be regarded as an extension of previous work
on companion problems [16]. In the previous contributions
we showed how similar expressions have consequences on
different physical problems and different branches of physics,
e.g., how isospin can be used to get the same results as
quasispin [16,17]. We find such associations fascinating.
In this work we show that an expression involving even L
which was used to explain the absence of certain states in LS

coupling can be generalized to odd L in order to explain the
absence of certain bosonic states and can also be generalized to
half-integer angular momenta to explain the absence of certain
states in jj coupling, the latter being most relevant to nuclear
physics.
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