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Semimicroscopic description of backbending phenomena in some deformed even-even nuclei
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The mechanism of backbending is semiphenomenologically investigated based on the hybridization of two
rotational bands. These bands are defined by treating a model Hamiltonian describing two interacting subsystems:
a set of particles moving in a deformed mean field and interacting among themselves through an effective pairing
force and a phenomenological deformed core whose intrinsic ground state is an axially symmetric coherent boson
state. The two components interact with each other by a quadrupole-quadrupole and a spin-spin interaction. The
total Hamiltonian is considered in the space of states with good angular momentum, projected from a quadrupole
deformed product function. The single-particle factor function defines the nature of the rotational bands, one
corresponding to the ground band in which all particles are paired and another one built upon a i13/2 neutron
broken pair. The formalism is applied to six deformed even-even nuclei, known as being good backbenders.
Agreement between theory and experiment is fairly good.
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I. INTRODUCTION

The anomaly in energy spacings of the rotational spectra is
still an actual subject for theoretical and experimental studies.
A special attention is paid to the backbending phenomena
observed in the moment of inertia dependency on the angular
velocity squared. The sudden increase for the moment of
inertia at intermediate and high spin is reflected in the energy
spectra by a discontinuity of the monotonous increase in
energy level spacings. Backbending is a common phenomenon
for many heavy and quadrupole deformed nuclei. Since
its discovery [1], there were many attempts to provide a
theoretical interpretation for such an anomalous behavior of
nuclear energy spectra. Over the last decade, studies showed
that in general the backbending is a result of the crossing
of the ground band (g band) with another rotational band
with a larger moment of inertia [2–4]. The mechanism of
backbending is now well known (i.e., i13/2 two neutron
quasiparticle alignments). The nature of the second rotational
band was, however, a question of a long-standing debate, such
that a few theoretical interpretations for the origin of this band
came out [5]: (i) The second band has a deformation which is
larger than that characterizing the ground band. (ii) The second
band is not superfluid like the ground band but a rigid body
one. (iii) The second band is built upon a broken pair with
aligned individual high angular momenta. The total angular
momentum of the de-paired particles being itself aligned to
the core angular momentum. The later two hypotheses were
the most successful ones.

The pioneering theoretical interpretation is based on the so-
called Coriolis antipairing effect (CAP) proposed by Mottelson
and Valatin [6]. Indeed, the Coriolis interaction violates
the time reversal symmetry and consequently contributes
essentially to the de-pairing process. As a result, a phase
transition from a superfluid to an independent particle state
characterized by normal fluid properties, and therefore by a
larger moment of inertia, takes place. CAP is analogous to
the Meissner effect in metal superconductors [7]. The Coriolis

force is proportional to the orbital angular momentum l, which
results in breaking first the pairs built on nucleons having
largest l with respect to the axis of rotation. Breaking a
pair leads to a dramatic increase of the moment of inertia
[1] because of the large decrease of the static gap which
may even vanish. Within a cranked mean-field approach, the
backbending phenomenon is caused by a rearrangement of
the vacuum configuration or alternatively by the crossing
of the ground-state band with the lowest two quasiparticle
(2qp) band which is often referred to as the S(tockholm)
band [1]. Information about several features like the crossing
frequency, the yrast-yrare interaction, and the alignment gain
can be obtained from the diagram showing the qp Routhians
calculated at fixed deformation and for a constant pairing
gap, versus the frequency [8–11]. Difficulties raised from the
semiclassical nature of the cranking approach and related with
the angular momentum dispersion, �(Ĵ 2), were discussed
by several authors (see,e..g., [12]). Certainly a quantitative
microscopic description of the moment of inertia in the
crossing region encounters some difficulties caused by the
symmetry breaking. Thus, the Lipkin-Nogami method [13,14]
for the gauge projection was used in Ref. [15] by Satula and
collaborators, while the Galilean invariance [16] was restored
in Refs. [17,18]. The spurious shape dependence met in
treating the quadrupole-quadrupole (QQ) pairing interaction
was eliminated by using a double stretched QQ pairing [15]
and an excellent quantitative description of the moment of
inertia for the so-called superdeformed bands of Hg-Pb nuclei
was obtained. An alternative description of the pair breaking
process [19] was proposed by Stephens and Simon, pointing
to a mechanism which causes a rotational alignment of the
particles from intruder orbitals. Other microscopic models
reproducing qualitatively the zigzag shape of experimental
plots of moment of inertia are those of Sorensen [20] and
Faessler [21,22]. More recent attempts proposed approaches
based on the interacting boson model [23,24].

In this study we present a new and simple semiphenomeno-
logical model for backbending which here is considered to
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be the result of the band crossing mechanism between the
ground band and a two quasiparticle decoupled band known
as the S band. The first backbending is known to be caused
by the breaking of a neutron pair from the intruder orbital
i13/2, while the second one is from a subsequent breaking
of a proton h11/2 pair. Our model is meant to reproduce the
low-spin and intermediate-spin states from the yrast band,
such that the scope of this paper is to describe only the first
backbending. The particles from the intruder orbitals where the
pair breaking occurs are treated separately from the remaining
ones which define the core. The phenomenological core is
described by the coherent state model [25], while the motion
of the intruder particles is treated through BCS model states.
A special ingredient of our formalism is that we consider
here a deformed core which induces also deformed trajectories
for the intruder particles. The rotational bands implied in the
hybridization procedure are defined by angular momentum
projection from quadrupole deformed product states, which
achieves the coupling of the single-particle degrees of freedom
to a quadrupole deformed core and provides states with
good angular momentum. The basis states are deformed and
nonorthogonal. From this basis an orthogonal basis is obtained
which is further used to diagonalize the model Hamiltonian.
The yrast energies are defined by the lowest eigenvalues of the
model Hamiltonian in the orthogonal basis. This formalism
was applied to six even-even nuclei from the rare earth region
with N = 90–94, which exhibit backbending behavior in their
moment of inertia plots. The numerical applications reproduce
quite well the experimental data and also provide some useful
information regarding the rotational alignment of particles
moving in the intruder orbitals.

Results are presented according to the following plan. In
the next Section we describe the projected nonorthogonal basis
states from which emerges the orthogonal basis. The model
Hamiltonian is introduced in Sec. III where some of its single-
particle and collective features are discussed. The matrix
elements of the model Hamiltonian in the nonorthogonal basis
are analytically given. Section IV is devoted to deriving the
final orthogonal basis and to the band hybridization procedure.
Numerical results are analyzed in Sec. V. Conclusions and the
future perspectives of the model are discussed in Sec. VI.

II. DESCRIPTION OF THE BACKBENDING PHENOMENA
IN A RESTRICTED MODEL SPACE

As we have already mentioned a particle-core interacting
Hamiltonian will be treated in a space of spherical projected
particle-core states. We start by giving the necessary details
for the projection procedure and therefore about the model
states. The collective factor state is a coherent state for the
quadrupole bosons b

†
20, while the single-particle component

is a deformed BCS state describing a set of paired nucleons
which are moving in a deformed mean field [26]:

� ≡ ψf ψb = |BCS〉ded(b†20−b20)|0〉b. (2.1)

In the above equation, |0〉b stands for the boson vacuum
state, and d is a real parameter which simulates the nuclear
deformation. The low index of the BCS state suggests that this

is deformed. The projected states are obtained, in the usual
manner, by acting on the state (2.1) with the Hill-Wheeler
projection operator,

P J
MK = 2J + 1

8π2

∫
DJ∗

MKR̂(�)d�. (2.2)

In what follows, we shall present the angular momentum
projection procedure for each factor state from (2.1).

A. Angular momentum projection of the coherent state

The projection of the quadrupole coherent state was pre-
sented by one of the authors (A. A. Raduta), in collaboration,
in Ref. [27]. The main results are as follows:

φ
(g)
J = N (g)

J P J
M0ψb. (2.3)

The matrix elements of any boson Hamiltonian between these
projected states can be analytically expressed in terms of the
norms: (

N (g)
J

)−2 = (2J + 1)e−d2
I

(0)
J , (2.4)

where I
(k)
J stands for the overlap integrals,

I
(k)
J =

∫ 1

0
PJ (y)[P2(y)]kexP2(y)dy, with x = d2, (2.5)

and PJ (y) denotes the Legendre polynomial of the rank J .
These integrals have been analytically calculated in Refs. [25,
27].

B. Spherical projected states from a deformed BCS state

The projection procedure adopted in this paper for the
deformed BCS state is that formulated by Kelemen and
Dreizler in Ref. [28]. Thus, the fermionic function ψf is
expressed first as a linear combination of states with a definite
angular momentum,

ψf ≡ |BCS〉d =
∑

J

CJ |J, 0〉, (2.6)

and then the projection operator selects only the component of
the desired angular momentum:

�
(f )
JM = N (f )

J P J
M0ψf = N (f )

J CJ |J,M〉. (2.7)

The projected function is normalized to unity, and conse-
quently we have

N (f )
J = C−1

J . (2.8)

In this way the amplitude CJ can be expressed as

|CJ |2 = 〈ψf |P J
00|ψf 〉

= 2J + 1

8π2

∫ π

0
PJ (cos β)〈ψf |e−iβĴy |ψf 〉 sin βdβ.

(2.9)

The calculation of CJ is very much simplified if the projector
operator P J

00 is expressed as a finite sum of particular rotation
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operators [28]:

P J
00 = 2J + 1

M + 1

[
A1(M,J ) + 2

M/2∑
n=1

B̃n(M,J )e−i π
M+1 nĴy

]
,

(2.10)

where J is even and M = Jmax. On the other hand the terms
A1(M,J ) and B̃n(M,J ) can be also analytically calculated.
Their expressions are given in Appendix A.

The calculation of the amplitudes CJ is thus reduced
to finding the matrix element 〈ψf |e−i π

M+1 nĴy |ψf 〉. For this
purpose, the fermionic wave function is written as a sum
of components with determined the number of particle
pairs:

|BCS〉d =
∏
m>0

(Ujm + Vjmc
†
jmc

†
j−m(−)j−m)|0〉

=
(∏

m>0

Ujm

)(
|0〉 +

∑
k1>0

Vjk1

Ujk1

c
†
jk1

c
†
j−k1

(−)j−k1

+
∑
k1<k2

Vjk1Vjk2

Ujk1Ujk2

c
†
jk1

c
†
j−k1

(−)j−k1c
†
jk2

c
†
j−k2

(−)j−k2

+ . . .

)

≡
∑
Np

CNp
|Np〉, (2.11)

where |Np〉 are states with Np pairs of particles and {U,V }
are defining the Bogoliubov-Valatin (BV) transformation from
the particle to the quasiparticle representation. It can be shown
that the matrix element of the rotation operator e−i π

M+1 nĴy on
states |Np〉 can be expressed in the form of a determinant of
rank 2Np of reduced Wigner functions d

j

k1,k2
(βn

Np
) with the

argument,

βn
Np

= π · n

M + 1
, (2.12)

where M is the maximum angular momentum realized by the
set of Np pairs of particles. For illustration we will present
here only the case for two pairs:

〈0|(−)j−k2cj−k2cjk2 (−)j−k1cj−k1cjk1e
−iβn

2 Ĵy c
†
jk′

1
c
†
j−k′

1
(−)j−k′

1c
†
jk′

2
c
†
j−k′

2
(−)j−k′

2 |0〉

= (−)(k1+k2+k′
1+k′

2) det

⎛
⎜⎜⎜⎜⎜⎝

d
j

k1,k
′
1

(
βn

2

)
d

j

k1,−k′
1

(
βn

2

)
d

j

k1,k
′
2

(
βn

2

)
d

j

k1,−k′
2

(
βn

2

)
d

j

−k1,k
′
1

(
βn

2

)
d

j

−k1,−k′
1

(
βn

2

)
d

j

−k1,k
′
2

(
βn

2

)
d

j

−k1,−k′
2

(
βn

2

)
d

j

k2,k
′
1

(
βn

2

)
d

j

k2,−k′
1

(
βn

2

)
d

j

k2,k
′
2

(
βn

2

)
d

j

k2,−k′
2

(
βn

2

)
d

j

−k2,k
′
1

(
βn

2

)
d

j

−k2,−k′
1

(
βn

2

)
d

j

−k2,k
′
2

(
βn

2

)
d

j

−k2,−k′
2

(
βn

2

)

⎞
⎟⎟⎟⎟⎟⎠. (2.13)

The largest angular momentum M in the configuration (j )2Np ,
where j is the angular momentum of the individual particles, is
not necessary 2Npj because of the Pauli principle constraint.
Group theory provides a simple formula for the upper limit of
the total angular momentum of a given configuration, which
moreover takes care of the Pauli principle [29]:

M = Np(2j − 2Np + 1). (2.14)

In Table I the largest angular momenta achieved for all possible
numbers of neutron pairs in the intruder orbital i13/2, are listed.
The results from this table are used to calculate the arguments
βn

Np
by means of Eq. (2.12) and then the overlaps of the

type (2.13). With all these done the average of the rotation
operator e−i π

M+1 nĴy with |BCS〉d is readily obtained. Finally

TABLE I. Maximum angular momentum M achieved for a given
number of particles, each carrying an angular momentum of j =
13/2.

Number of particles 2Np 0 2 4 6 8 10 12 14
Maximum angular momentum M 0 12 20 24 24 20 12 0

the projected particle-core function is written in the form:

�
(1)
JM = N (1)

J P J
M0|BCS〉dψg

= N (1)
J

∑
Jf Jc

C
Jf JcJ

0 0 0

NBCS
Jf

N
(g)
Jc

[
ψBCS

Jf
φ

(g)
Jc

]
JM

, (2.15)

with the normalization factor,

(
N (1)

J

)−2 =
∑
Jf Jc

(
C

Jf JcJ

0 0 0

NBCS
Jf

N
(g)
Jc

)2

. (2.16)

The summations in Eqs. (2.15) and (2.16) are restricted to
the ranges Jf � 24 (see Table I), and Jc � 60. In this way
one accounts for all possible configurations of a given total
angular momentum J , with J running from 0 to 36. The set
of wave functions (2.15) describes the ground band which
is associated to the case when all particles from the intruder
orbital are paired.

The S band which crosses the g band and produces the
backbending in the energy spectra can be described by a wave
function similar to (2.15) with the difference that now one pair
of particles is broken (i.e., they occupy two states which are
not related by a time reversal transformation). The symmetry
breaking is simulated by applying the angular momentum
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raising operator on a function with good symmetry. Thus the
two qp state which is responsible for generating the S band
is a K = 1 state of the following form: J+α

†
jkα

†
j−k|BCS〉d ,

where α
†
jk is the creation quasiparticle operator defined by the

canonical BV transformation:

α
†
jk = Ujkc

†
jk − Vjk(−)j−kcj−k,

(2.17)
αjk = Ujkcjk − Vjk(−)j−kc

†
j−k.

The total projected state corresponding to the S band is defined
by

�
(2)
JM;1(jk) = N (2)

J1 (jk)P J
M1

[
J+α

†
jkα

†
j−k|BCS〉d

]
ψg

= N (2)
J1 (jk)

∑
Jf Jc

C
Jf JcJ

1 0 1

N jk

Jf 1N
(g)
Jc

[



jk

Jf 1φ
(g)
Jc

]
JM

, (2.18)

where the normalization factor is

(
N (2)

J1 (jk)
)−2 =

∑
Jf Jc

(
C

Jf JcJ

1 0 1

N jk

Jf 1N
(g)
Jc

)2

. (2.19)

The projected two quasiparticle state 

jk

Jf 1 from (2.18) has the
following expression:



jk

Jf 1;Mf
= N jk

Jf 1P
Jf

Mf 1J+α
†
jkα

†
j−k|BCS〉d . (2.20)

The normalization factor of this state is defined by the matrix
element,(

N jk

Jf 1

)−2 = d〈BCS|αjkαj−kJ−P
Jf

11 J+α
†
jkα

†
j−k|BCS〉d ,

(2.21)

which is determined in a similar way as the norm of the
projected BCS function (see Appendix B). The upper limit
of the Jf is still 24 even after the application of the
quasiparticle creation operators, because it is the maximum
angular momentum which can be realized in the i13/2 intruder
orbital, irrespective of the number of particles involved.

Both projected states, (2.15) and (2.18), depend on the
deformation parameter d, although they are states with good
angular momentum. Note that the projected 2qp states are
defined only for even angular momentum J , with J > 1.
Another important property of the projected 2qp states is that
two states with k �= k′ are not orthogonal.

III. THE MODEL HAMILTONIAN

The backbending features of some rare earth nuclei will be
studied with the following particle-core Hamiltonian:

H = Hc + Hp + Hpair + Hpc. (3.1)

The Hamiltonian Hc is a harmonic quadrupole boson operator:

Hc = h̄ωb

∑
μ

b
†
2μb2μ, (3.2)

and describes a spherical core. Hp is describing a set of
particles in a spherical shell-model single j orbital of intruder

nature, interacting through a paring force:

Hp = (εnlj − λ)
∑
m=all

c
†
nljmcnljm,

(3.3)

Hpair = −G

4
P

†
j Pj ,

where P
†
j (Pj ) are creation(annihilation) operators of the

Cooper pair in the intruder orbital j defined by

P
†
j =

∑
m>0

c
†
nljmc

†
nlj−m(−)j−m. (3.4)

The operators c
†
nljm and cnljm stand for the creation and

annihilation operators for a particle in the spherical shell-
model state |nljm〉 having the energy εnlj . The Lagrange
multiplier λ plays the role of the Fermi energy for the paired
system. For the sake of saving the space in what follows
the spherical shell-model state will be specified only by two
quantum numbers, that is, |jm〉.

The particle-core interaction is taken of the form,

Hpc ≡ HqQ + HJf Jc

= −AC

∑
μ,m,m′

q2μ(j ; mm′)c†jmcjm′ ((−)μb
†
2−μ

+ b2μ) + C �Jc · �Jf ,

q2μ(j ; mm′) = 〈jm|r2Y2μ|jm′〉, (3.5)

where AC and C are free parameters. The last term plays
an important role in reproducing the correct transition at the
band crossing point and simulates the effect of the Coriolis
coupling [30].

Depending on whether the considered system is a near
spherical or a deformed nucleus we diagonalize first the
single-particle plus the pairing interaction and then treat the
remaining terms or we diagonalize first the single-particle plus
the qQ interaction and then treat the rest in the resulting
single-particle basis [31]. Actually, here we make the option
for the second procedure for reasons which will become clear
in the next subsection.

A. Pairing in a deformed single-particle basis

The particle-core interaction leads to deforming the single-
particle mean field. On the other hand the interaction deforms
the quadrupole boson. This mutual deformation effect is
suggested for the following reasoning. If one considers the
average of the particle-core Hamiltonian with a single-particle
state one obtains a deformed Hamiltonian with a ground
state described by an axially symmetric coherent state. As
for the single-particle deformed mean field let us consider,
for simplification, the model Hamiltonian which corresponds
to vanishing spin-spin interaction (i.e., C = 0) and unpaired
particles (G = 0),

H̃ = Hp + Hc + HqQ. (3.6)

Averaging this Hamiltonian with the coherent state,

ψb = exp [d(b†20 − b20)]|0〉, (3.7)
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6i 13/2 3/2

6i 13/2 1/2
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FIG. 1. (Color online) Neutron energies of the deformed single-
particle states given by Eq. (3.9) with XC = 50.81 keV are plotted
as a function of the deformation parameter d . The solid thick lines
correspond to the i13/2 states. Energies are given in units of h̄ω0

(=41A−1/3 MeV). The intersection of the dashed line, d = 3.103,
with the energy curves indicates the single-particle energies which
correspond to 160Er.

one obtains a single-particle Hamiltonian for a deformed mean
field similar to that used within the Nilsson model [32]:

H̃p = d2h̄ωb + Hp − 2dAC

∑
m

q20(j ; m,−m)c†jmcjm. (3.8)

Note the role of nuclear deformation played by the parameter
d. Apart from an additive constant, in the first order of
perturbation, the energies of H̃p are given by

εnljm = εnlj − 4dXC(2n + 3)Cj 2 j
1
2 2 1

2
C

j 2 j

m 0 m, (3.9)

where

XC = h̄

8Mω0

√
5

π
AC. (3.10)

Here M and ω0 are the nucleon mass and the frequency of
the harmonic oscillator function. The dependence of single-
particle energy on deformation is linear and shown in Fig. 1
for the n = 5 shell.

We remark that in a single j calculation, the n and l

quantum numbers are superflue and therefore dropped out.
Moreover, because only relative energies are involved in
the BCS calculations, the constant term (i.e., that one not
depending on m) is put equal to zero. Therefore, in our
calculations the single-particle space is spanned by |jm〉 and
the single-particle energies corresponding to the mentioned
states are

εjm = −4dXC(2n + 3)Cj 2 j
1
2 2 1

2
C

j 2 j

m 0 m, (3.11)

with n being the principal quantum number characterizing the
major shell to which the intruder state belongs. The pairing
interaction in such a deformed multiplet was considered by

Bés at al. in Ref. [26]. Note that the deformation effect from
the qQ interaction onto the single-particle state |jm〉, was
ignored at this stage. According to Eq. (3.11) the energies of
the time reversed states are equal. Therefore, we can restrict
the space to the states |jm〉 with m > 0 keeping in mind that
on each such state two nucleons are allowed.

The single-particle Hamiltonian for the deformed mean
field can be written as

H eff
p =

∑
m=all

εjmc
†
jmcjm. (3.12)

The next step is to treat H eff
p + Hpair through the BCS

formalism, using the BV transformation (2.17). In the quasi-
particle representation the mentioned Hamiltonian becomes

Hqp = E0 +
∑
m=all

E′
jmα

†
jmαjm +

∑
m>0

gjm(−)j−m(α†
jmα

†
j−m

+αj−mαjm), (3.13)

where the following notations were adopted:

E0 = −λNpart − �2

G
, E′

jm = −λ(εjm − λ) + �2

Ejm

,

(3.14)
gjm = −εjm�

Ejm

, (εj = 0).

Here Npart represents the number of particles in the intruder
orbital; Ejm is the quasiparticle energy while � is the energy
gap.

The expression of the qQ interaction term in the qp

representation is

HqQ =
[

2
∑
m>0

q20(j ; mm)V 2
jm +

∑
m=all

q20(j ; mm)
(
U 2

jm

−V 2
jm

)
α
†
jmαjm − 2

∑
m>0

q20(j ; mm)UjmVjm(−)j−m

× (α†
jmα

†
j,−m + αj,−mαjm)

]
(b†20 + b20). (3.15)

In deriving this expression we took into account the fact that
only the component with μ = 0 of the boson factor contributes
when the average on the projected coherent state is calculated.

B. The diagonalization of H in the particle-core product basis

We recall the fact that the BCS equations can be obtained
either by minimizing the ground-state energy or by vanishing
the dangerous graphs. Indeed one can check that the total
coefficient multiplying the cross terms (−)j−m(α†

jmα
†
j,−m +

αj,−mαjm), coming from Hqp and HqQ is vanishing.
The diagonal matrix elements of the various terms of the

model Hamiltonian can be easily calculated. Their compact
expressions are〈

�
(1)
JM

∣∣Hqp + HqQ

∣∣�(1)
JM

〉 = E0 + 2dAeff, (3.16)〈
�

(2)
JM;1(jk)

∣∣Hqp + HqQ

∣∣�(2)
JM;1(jk)

〉 = E0 + 2Ejk + 2dAeff,

(3.17)
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where

Aeff = −2XC(2n + 3)Cj 2 j
1
2 0 1

2

∑
m>0

C
j 2 j

m0m V 2
jm (3.18)

is a constant quantity and can be omitted along with E0.
The matrix elements of the harmonic boson Hamiltonian

(3.2) on projected coherent states were given in Ref. [33],
where a description for the ground band energies of axially
deformed nuclei was provided. Thus, the matrix elements of
Hc in the space of 0qp and 2qp states are given by

〈
�

(1)
JM

∣∣Hc

∣∣�(1)
JM

〉 = h̄ωbd
2
(
N (1)

J

)2∑
Jf Jc

(
C

Jf JcJ

0 0 0

NBCS
Jf

N
(g)
Jc

)2
I

(1)
Jc

I
(0)
Jc

,

(3.19)

〈
�

(2)
JM;1(jk)

∣∣Hc

∣∣�(2)
JM;1(jk)

〉
= h̄ωbd

2
(
N (2)

J1 (jk)
)2∑

Jf Jc

(
C

Jf JcJ

1 0 1

N jk

Jf 1N
(g)
Jc

)2
I

(1)
Jc

I
(0)
Jc

. (3.20)

Using the tensorial form of 0qp and 2qp states (2.15) and
(2.18) as well as the results of Appendix B, the matrix elements
of the spin-spin interaction term HJf Jc

are easily found:〈
�

(1)
JM

∣∣HJf Jc

∣∣�(1)
JM

〉
= C

2
J (J + 1) − C

2

(
N (1)

J

)2∑
Jf Jc

(
C

Jf JcJ

0 0 0

NBCS
Jf

N
(g)
Jc

)2

× [Jc(Jc + 1) + Jf (Jf + 1)], (3.21)

〈
�

(2)
JM;1(jk)

∣∣HJf Jc

∣∣�(2)
JM;1(jk)

〉
= C

2
J (J + 1) − C

2

(
N (2)

J1 (jk)
)2∑

Jf Jc

(
C

Jf JcJ

1 0 1

N jk

Jf 1N
(g)
Jc

)2

×[Jc(Jc + 1) + Jf (Jf + 1)]. (3.22)

In this way the rotational spectra of g band and S band are
completely determined.

IV. BAND HYBRIDIZATION PROCEDURE

To describe the backbending phenomenon as being deter-
mined by the bands intersection we have to diagonalize the
total Hamiltonian in a basis defined by Eqs. (2.15) and (2.18).
Unfortunately, this basis is not orthogonal. Indeed the overlap
matrix elements,

OJM
12 (jk) = 〈�(1)

JM (jk)
∣∣�(2)

JM;1(jk)
〉
, (4.1)

are not vanishing. This can be seen from the explicit expres-
sion:

〈
�

(1)
JM

∣∣�(2)
JM;1(jk)

〉 = N (1)
J N (2)

J1 (jk)
∑
Jf Jc

C
Jf JcJ

0 0 0 C
Jf JcJ

1 0 1

N
(g)
Jc

2
NBCS

Jf
N jk

Jf 1

.

(4.2)

Overlaps are nonvanishing because of the fact that quasiparti-
cle operators are not tensors of a definite rank and projection,

which can be easily seen from their transformation against an
arbitrary rotation R:

Rα
†
jkR

−1 =
∑
m

D̃
j

mkα
†
jm + ˜̃D

j

mk(−)j−mαj−m,

D̃
j

mk = (UjkUjm + VjkVjm)Dj

mk, (4.3)

˜̃D
j

mk = (UjkVjm − VjkUjm)Dj

mk.

That would not happen if the U and V coefficients were not
dependent on the m quantum number. By diagonalizing the
overlap matrix, one obtains the eigenvalues αm(J, jk) and the
corresponding eigenvectors V (m)

n (J, jk). Then the functions,


JM
m (jk) = [αm(J, jk)]−1/2

[
�

(1)
JMV

(m)
1 (J, jk)

+�
(2)
JM;1V

(m)
2 (J1, jk)

]
, m = 1, 2, (4.4)

are mutually orthogonal and can be used as a diagonalization
basis for the total Hamiltonian [34]. If we take the total wave
function of the form,


JM
Tot (jk) =

∑
m

XJM
m (jk)
JM

m (jk), (4.5)

then we have to solve the following eigenvalue problem:∑
m′

H̃mm′XJM
m′ (jk) = EJM (jk)XJM

m (jk), (4.6)

for finding the yrast spectrum. The Hamiltonian matrix H̃nm is
defined by

H̃mm′ = [αm(J, jk)αm′ (J, jk)]−1/2

×
∑
nn′

V (m)
n (J, jk)

〈
�

(n)
β

∣∣H ∣∣�(n′)
β

′
〉
V

(m′)
n′ (J, jk),

(4.7)

where the low indices β, β
′
are either JM if the corresponding

upper index n (or n′) is 1 or JM; 1 for n (or n
′
) equal to 2.

By mixing the nonorthogonal states in the orthogonalization
process and then diagonalizing the model Hamiltonian a
natural interaction of the primary bands takes place. Such an
interaction is angular momentum dependent and seems to be
more efficient in the K = 1 band hybridization process [35]
than a constant one.

The off-diagonal matrix elements of the model Hamiltonian
terms, in the nonorthogonal basis are given by the following
expressions:

〈
�

(1)
JM

∣∣Hqp + HqQ

∣∣�(2)
JM;1(jk)

〉
= N (1)

J N (2)
J1 (jk)

∑
Jf Jc

C
Jf JcJ

0 0 0 C
Jf JcJ

1 0 1

N
(g)
Jc

2
NBCS

Jf
N jk

Jf 1

(E0 + Ejk + 2dAeff),

(4.8)

〈
�

(1)
JM

∣∣Hc

∣∣�(2)
JM;1(jk)

〉
= h̄ωbd

2N (1)
J N (2)

J1 (jk)
∑
Jf Jc

C
Jf JcJ

0 0 0 C
Jf JcJ

1 0 1

N
(g)
Jc

2
NBCS

Jf
N jk

Jf 1

I
(1)
Jc

I
(0)
Jc

, (4.9)
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〈
�

(1)
JM

∣∣HJf Jc

∣∣�(2)
JM;1(jk)

〉
= C

2
N (1)

J N (2)
J1 (jk)

∑
Jf Jc

C
Jf JcJ

0 0 0 C
Jf JcJ

1 0 1

N
(g)
Jc

2
NBCS

Jf
N jk

Jf 1

(J (J + 1)

− Jc(Jc + 1) − Jf (Jf + 1)). (4.10)

V. NUMERICAL APPLICATION

The formalism described in the previous sections was
applied to six even-even nuclei from the rare earth region
which are known to be good backbenders, namely 156Dy,
160Yb, 158,160Er, and 164,166Hf. The first three nuclei are N = 90
isotons, the next two are N = 92 isotons, and the last one has
94 neutrons.

The model Hamiltonian involves four free parameters
namely, the pairing constant G, quadrupole-quadrupole inter-
action strength XC , the spin-spin interaction strength C, and
the boson frequency of the core h̄ωb. Another parameter is the
deformation parameter d, defining the coherent state ψb.

The input data for the BCS equations are the pairing
constant G and the single-particle energies determined by
Eq. (3.9). The deformation parameter d and the boson
frequency h̄ωb are fixed so that the first energy levels lying
before the band crossing point are reproduced with a good
accuracy by Eq. (3.19). Indeed, the g-band energies are
not very sensitive to the single-particle degrees of freedom.
Practically, the only contribution to the total energy is from
the core, the particle-core interaction being reflected in the
norm of the projected BCS state. In the case of the g-band
states, all particles are paired, and the dominant term of the
sums in Eqs. (3.19) and (3.21) corresponds to the situation
Jf = 0 and J = Jc. This is also consistent with the fact that
until the band crossing point the whole angular momentum is
carried by the core. In this way the g-band energies can be
roughly approximated by

EJ ≈ h̄ωbd
2 I

(1)
J

I
(0)
J

, (5.1)

which is just the expression of the ground band energies
predicted by the coherent state model [25,27]. In the extreme
limits of large and small deformations d, the above energies
have been approximated by compact and simple functions of
J (J + 1) in Refs. [37,38]. Actually, this simple expression can
be used to determine the parameters d and h̄ωb by fitting the
first energies before the band crossing of the g and S bands.
Later on a tuning fit can be achieved by using the eigenvalues
of the model Hamiltonian in the orthogonal basis.

The pairing interaction constant G and the qQ interaction
strength XC are fixed such that the band crossing point and the
observed sequence of single-particle energies are reproduced.
Here we deal with neutrons from the shell i13/2, where we can
expect at most seven pairs. The number of neutrons considered
out of the core, in the shell i13/2, is two for 156Dy, 158Er, 160Yb,
164Hf,160Er and four for 166Hf. Solving the BCS equations
one obtains the gap parameter �, the Fermi level energy λ,
and consequently the occupation probability parameters U

and V . With this data the wave functions corresponding to

0qp (2.15) and 2qp (2.18) are completely determined. The
relevant information yielded by the BCS calculations are
presented in Table III. We mention the fact that our choice
for the number of neutrons distributed on the i13/2 substates
is consistent with the BCS calculations in an extended
single-particle space. Indeed, we solved the BCS equations
for a space of 23 states, consisting in the union of the substates
5h9/2m, 5f7/2m, 6i13/2m, 5p3/2m, 5f5/2m, 5p1/2m, 5h11/2,11/2,
where we distributed 10, 12, and 14 neutrons for the N =90,
92, and 94 isotons, respectively. The results for the fitted
pairing strengths can be interpolated by the following
function:

G = 1

A

(
g0 − g1

N − Z

A

)
, with g0 = 37.44 MeV,

(5.2)
g1 = 62.25 MeV.

Summing up the occupation probabilities for the i13/2 sub-

states, we obtained the average number 〈Ni13/2

part 〉 listed in
Table III. Thus Npart is the largest even number smaller than

〈Ni13/2

part 〉. The exception is for the case of 166Hf where Npart is

larger than, but very close to, 〈Ni13/2

part 〉. The calculations in the
reduced space of i13/2 substates was performed with a pairing
strength chosen such that the minimal qp energy is equal to that
obtained within the extended space. In this way the occupation
probabilities obtained by solving the BCS calculations in
the extended and reduced single-particle space, respectively,
are close to each other. In this context one could say that
the schematic calculations in the reduced single-particle space
accounts for the effective pairing interaction in this subspace.

Note that except for 166Hf, the gap � is very close in
magnitude to the corresponding quasiparticle energies, which
suggests that the Fermi level lies close to the selected k-energy
level. Of course, the S band associated to the 2qp projected
state (k)2 is the first one which intersects the g band and will
become the yrast after intersection. The quantum numbers
k listed in Table III are consistent with the Nilsson model
prediction for the last filled orbital of the chosen nuclei having
the quadrupole nuclear deformation β2 given in Table II.

Our calculations show that the Jf = 0 component has a
squared weight of about 45%–64% in the BCS composition.

TABLE II. The pairing strength (G) is given in units of MeV,
while the quadrupole-quadrupole (XC) and spin-spin (C) interactions
strength are given in units of keV. The boson frequency of the core
is also given. The list of the deformation parameters d are presented
together with the corresponding β2 deformation, taken from Ref. [36].
The manner in which these parameters were fixed is explained in the
text.

Nucleus β2 d h̄ωb (MeV) XC (keV) G (MeV) C (keV)

156Dy 0.211 3.1414 0.9781 52.63 0.1786 72.27
160Yb 0.195 2.5000 1.0078 65.59 0.1854 36.90
158Er 0.203 2.7355 0.9778 59.95 0.1814 60.10
160Er 0.231 3.1030 1.0089 50.81 0.1769 93.63
164Hf 0.208 2.6605 1.1039 59.89 0.1836 52.20
166Hf 0.237 2.8505 1.0436 52.89 0.1737 69.63
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TABLE III. The Fermi level energies, gap parameters, and the
quasiparticle energies are given for the chosen number of particles
Npart, and the projection k associated with the broken pair. We also

give the average number of particles, denoted by 〈Ni13/2
part 〉, in the

multiplet i13/2.

Nucleus N N
i13/2
part

〈
N

i13/2
part

〉
λ � k(Ek = min) Ek

(MeV) (MeV) (MeV)

156Dy 90 2 2.39 48.7643 1.12446 1/2 1.12448
160Yb 90 2 2.47 48.3187 1.19819 1/2 1.19830
158Er 90 2 2.44 48.5354 1.15443 1/2 1.15460
160Er 92 2 3.12 48.6732 1.16028 3/2 1.16036
164Hf 92 2 3.18 48.2444 1.23826 3/2 1.23827
166Hf 94 4 3.88 48.4181 1.17327 3/2 1.20183

As a matter of fact, this suggests that the approximation (5.1)
made for the g-band energies is to be corrected because of
the nonvanishing angular momentum components of the BCS
state. In fact because the Jf = 0 component is only moderately
dominant in the BCS state composition, the effective angular
momentum of fermions is not vanishing in the g band and
not 12 for the states belonging to the S band. This feature is
conspicuous from the analysis of Fig. 5.

The matrix elements between states (2.18) of the spin-spin
interaction term have a very peculiar feature. Their numerical
values increase with the total angular momentum, going from
negative values to positive ones. The transition from negative to
positive values takes place at J = 10, 12, where, in most cases,
the backbending shows up. In this situation the parameter
C does not affect the position of the band crossing point.
However, it influences the magnitude of the yrast energies in
the high-spin region. Because of this feature C is fixed as to
reproduce the moderate high-spin energies of the yrast band.
The fitted parameters of the model Hamiltonian are collected
in Table II. We remark that the factor dXC which, according to
Eq. (3.9), plays the role of the deformed mean-field strength,

FIG. 2. (Color online) The product dXC , with the factors given
in Table II, is represented as a function of the nuclear deformation β2

taken from Ref. [36].

has roughly a linear dependence on the quadrupole nuclear
deformation β2. This dependence is illustrated in Fig. 2.

Using the parameters specified in Table II, Eq. (4.6)
provides the system energies. For each angular momentum
J we select the lowest eigenvalues E(J ). The set of energies
E(J ) defines the yrast band. The discrete derivatives of the
resulting energies with respect to the angular momentum
defines the angular frequency:

h̄ω(J ) = dE(J )

dJ
≈ 1

2
[E(J + 2) − E(J )]. (5.3)

Alternatively, the angular velocity can also be defined by
using for E(J ) the expression provided by a symmetric rotor
Hamiltonian:

E(J ) = J (J + 1)

I
. (5.4)

Then the discrete derivative of this expression yields

h̄ω(J ) = 2J + 3

I
. (5.5)

From here one derives a simple expression for the moment of
inertia:

I = 4J + 6

E(J + 2) − E(J )
. (5.6)

The backbending plot is a graph in which the moment of inertia
is plotted versus (h̄ω)2. Theoretical results and experimental
data are usually compared in terms of this plot. This is done
in Fig. 3 for the even-even rare earth nuclei treated here.
Note that in all cases the zigzag behavior is reproduced quite
well. In general, a good agreement between theoretical and
experimental data corresponding to low-spin states and mod-
erately high-spin states located, however, below the possible
second backbending is obtained. The second backbending is
known to be caused by the consecutive breaking of a neutron
i13/2 pair and a proton pair from the shell h11/2. The second
backbending seems to be a rare event. Despite this, some of the
considered nuclei exhibit such a phenomenon. Indeed, 160Yb
has a second backbending which occurs at J = 26, while for
158Er the second backbending shows up in the same region but
is less evident being rather an up-bending. In both mentioned
cases our calculations show an up-bending around the J =
26 state. The study of the second backbending is, however,
beyond the scope of the present paper.

The crossing of the g and the S bands is illustrated in Fig. 4,
where their energies are plotted as a function of J (J + 1). We
also give the results for the two unperturbed bands whose
energies are approximated as the diagonal matrix elements
of the system’s Hamiltonian in the nonorthogonal basis. In
each panel the rms values for the deviation of the theoretical
results from the corresponding experimental data are given. As
can be seen from Fig. 4, while the S-band energies exhibit a
linear dependence on J (J + 1) for the g band a slight quadratic
dependence on J (J + 1) is met. Because 156Dy and 160Er have
the largest deformation d, the linear dependence on J (J + 1)
of the corresponding g-band energies prevail.

To investigate the alignment of the individual angular
momenta to the angular momentum of the core we define
the average angular momenta for the interacting components
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FIG. 3. (Color online) Backbending plots for 156Dy, 160Yb, 158,160Er, and 164,166Hf isotopes comparing theory (black squares) with experiment
(red circles). Experimental data are taken from Refs. [39–43].

as follows:

J̃c(J̃c + 1) = 〈

JM

Tot (jk)
∣∣ �J 2

c

∣∣
JM
Tot (jk)

〉
, (5.7)

J̃f (J̃f + 1) = 〈

JM

Tot (jk)
∣∣ �J 2

f

∣∣
JM
Tot (jk)

〉
. (5.8)

The full alignment corresponds to the situation when J̃c + J̃f

equates the total angular momentum of the system J . The
departure from this ideal picture is measured by the deviation:

�J = |J − (J̃c + J̃f )|. (5.9)

This quantity together with the average angular momenta of
the core J̃c and fermion system J̃f are plotted versus the total
angular momentum J in Fig. 5. These plots reveal several
features, such as the band crossing point, the amount of angular
momentum carried by the broken pair, or even the fraction of

the angular momenta alignment. For example, for Er isotopes
and 166Hf the band crossing takes place at J = 12, while for
164Hf and 160Yb at J = 10, and for 156Dy at J = 14. This is
actually a confirmation of the backbending results from Fig. 3.
The amount of angular momentum, J̃f , carried by the broken
pair varies from 10h̄ to 14h̄. We remark that at the band crossing
the alignment defect is maximal and this is decreasing by
increasing J . The full alignment is never reached but the defect
�J exhibits a plateau with the value of 2h̄–3h̄, beyond J = 20.
This is a salient feature for the present formalism which is not
met in other approaches where �Jc = �Jf = 10, 12. Indeed,
for 160Yb the variation of Jc around crossing is only 2h̄ and,
moreover, after band crossing the core and fermionic angular
momenta are almost equal to each other. For all other nuclei,
at the crossing J the core angular momentum variation is
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FIG. 4. Energy trajectories resulting from the diagonalization of total Hamiltonian in the orthogonal basis (4.4) (straight lines) are compared
with experimental points (black circles) for 156Dy, 160Yb, 158,160Er, and 164,166Hf. The unperturbed g band (dotted lines) and the selected 2qp

band (dashed lines) are also presented. For each nucleus the rms values corresponding only to the states taken in consideration here (i.e., up to
J = 26, 28) are given.

about 4h̄. We don’t have any situation where after crossing
Jc = 0. Therefore for a critical value of angular momentum
of the core, the spin-spin interaction causes the de-pairing of
two neutrons, which almost align their angular momenta and
starting from a larger total spin (∼20) the fermion total angular
momentum is almost aligned to the core angular momentum,
�J = 2 − 3. In general, the second alignment is produced for
Jc > Jf .

Figure 6 shows the calculated rotational energies and the
experimental data of g band and S band versus angular mo-
mentum for 166Hf. We present this case separately because here
the best agreement of theoretical results and the corresponding
data was obtained in the backbending region, after the crossing
point. The slope of the curves from this figure is the angular
velocity ω(J ). Note that up to a critical spin the rotational
energies of the 2qp band have a negative slope, then this is
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FIG. 5. (Color online) Expected angular momentum of the core and of the broken pair of intruder neutrons. The deviation of total angular
momentum �J is also presented.

vanishing and further is increasing. Finally it reaches a constant
value which reflects an equidistant structure for the spectrum
in this region. The later situation shows up when a maximal
alignment is achieved. The negative slope corresponds to the
situation when the fermion and the core angular momenta
make an angle varying from π to π/2. At the beginning
of the interval the individual angular momenta are almost
antialigned and their sum is also almost antialigned to the core
angular momenta. When the individual angular momenta are
partially antialigned, the two frequencies caused by particles
and core, respectively, add destructively. Increasing J the
two frequencies have the same sign and therefore add each
other, constructively. In this part of the curve, the second
alignment namely that of the total fermionic and the core
angular momenta, starts operating. When a maximal alignment
is achieved the slope keeps constant and consequently the

two curves become almost parallel. As shown in Fig. 5, the
properties described before, seem to be generally valid. A
similar angular momentum dependency was obtained also in
Refs. [19,44].

The mechanism of breaking the pairs and aligning the
individual angular momenta to the core angular momentum is
suggested in Fig. 7. Indeed, for low values of the core angular
momentum the nucleon angular momenta are aligned to the
symmetry axis of the mean field which, as a matter of fact, is
determined by the qQ coupling term. This situation is shown
in Fig. 7(a) where �Jf = 0 and �Jc = �J .

The mechanism suggested in Fig. 7 is consistent with
the following phenomenological picture. The core angular
momentum is perpendicular to the symmetry axis OZ. Let
us consider that OX is the direction of �Jc. Averaging HJf Jc

with the Wigner functions D
Jc

MK with M and K being
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FIG. 6. (Color online) Energy plot for 166Hf showing the interact-
ing bands. Rotational energy of the g band and of the 2qp band from
a certain spin increases monotonously. Experimental data points are
also visualized.

eigenvalues of (Jc)x , one obtains an operator acting in the
intrinsic frame which breaks the time reversal symmetry.
Because of this property this is the term responsible for the
neutron pair breaking connecting the states of 0qp and 2qp

types, respectively. In the intrinsic frame the mentioned term
connects a state with all particles paired (i.e., with total K

equal to zero) with a state where a K = 0 pair is replaced by
a K = 1 broken pair. Actually, the same effect is obtained
within microscopic models using for a many-body system
with pairing interaction a cranking term of the type ωjx . It is
worth mentioning the following specific features of the present
model. The total quantum number K is obtained by summing
the contributions from nucleons and the core. However, writing
the projected state of the core [25] in the intrinsic frame, one
obtains an expression which is a superposition of components
of different K. Among these, the major component corresponds
to K = 0. In this respect the broken pair state is not a pure
K = 1 state but, because of the core, a superposition of various
K �= 0 components. However, the major component is the one
characterized by K = 1.

At this stage it is worth making clear the way the spin-
spin interaction simulates the action of the Coriolis force
in the intrinsic reference frame. Indeed, up to a diagonal
term the interaction HJf Jc

can be written in the following
form:

HJf Jc
∼ Jf −J+ + Jf +J−, (5.10)

Z

J c J

j

K 0

Z

J c

j

j

K 0

k1

k2

J f

J f 0

J J c J f

(a) (b)

j

FIG. 7. The coupling scheme for g band (a) and for S band
(b) associated with a broken pair of particles which give rise to
a �Jf angular momentum and a general K = k1 + k2 projection.
The angular momentum of the particles is then coupled to that of
the prolate core which is perpendicular to the symmetry axis (Z),
resulting in the total angular momentum �J .

with J denoting the total angular momentum. Because the
core projected state is a superposition of components where
the core function factor is a Wigner function of even values
for K , the projected state characterizing the whole system is
a superposition of components having a Wigner function with
odd K as one of the factor states. The action of the raising
or lowering operator on DJ

MK will transform it to DJ
MK+1 or

DJ
MK−1 with an even projection of �J on the symmetry axis. The

factor states associated with quasiparticles will be transformed
from a K = 1 state either to a K = 0 state or to a K = 2 state.
Concluding, in the intrinsic frame the Coriolis term connects
the K = 1 two qp states with the K = 0 two qp states. In the
case of the odd particle-core system with one particle out of the
core, the matrix element of the Coriolis interaction is different
from zero only for the states with K = ± 1

2 . The interaction is
attractive or repulsive depending on whether J + 1/2 is even

FIG. 8. (Color online) The matrix elements of the spin-spin
interaction are plotted as a function of the total angular momentum.
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FIG. 9. (Color online) The gyromagnetic factor given in units of nuclear magneton, calculated for yrast states, is represented as a function
of angular momentum.

or odd. Note that, by contrast, here a set of even numbers
of nucleons is moving outside a phenomenological core and,
moreover, the Coriolis interaction is effective in any K state.
In the laboratory frame the spin-spin interaction affects mainly
the 2qp states, as is shown in Fig. 8. It is worth noticing that the
interaction is attractive in the 2qp band states having an angular
momentum smaller than the crossing point and repulsive in
other states of the S band. Therefore, the spin-spin interaction
causes an attenuation effect on the moment of inertia in the S

band, after crossing the g band. If we switch off the spin-spin
interaction, the slope of the curves from Fig. 4, representing
the energy versus J (J + 1), is decreased after the two bands’
crossing point, which results in enlarging the moment of inertia
of the S band. Because of this feature the bending in the
moment of inertia plot is more pronounced than the bending
taking place in the presence of the spin-spin interaction.

The alignment of the particle angular momenta to the core
angular momenta is shown in Fig. 7(b). The fact that the total K
for the two neutrons is equal to unity prevents a full alignment.
The larger �Jf , the larger the effect of the spin-spin interaction
term. This infers that the backbending occurs when the broken
pair is from a large spin single-particle state. For this reason
the most favorable candidates for decoupling are particles from
intruder orbitals like i13/2 for neutrons and h11/2 for protons.

We stress on the fact that breaking a pair means to break the
time reversal symmetry of the system (i.e., to promote a paired
particle to a state of different k which results in having a pair
with a total K different from zero). Such an operation cannot be
performed by the qQ interaction [see Eq. (3.15)] because the
quasiparticle factor has only two quasiparticle K = 0 terms.
Therefore in the present formalism the only term responsible
for pair breaking is the spin-spin interaction.
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Equations (5.7) and (5.8) can be used for calculating the
gyromagnetic factor for an yrast state of angular momentum
J . Indeed, from the expression of the magnetic moment,

�μ = gc
�Jc + gf

�Jf ≡ gJ
�J , (5.11)

one easily derives the following expression for gJ :

gJ = gc + gf − gc

2

[
1 + J̃f (J̃f + 1) − J̃c(J̃c + 1)

J (J + 1)

]
,

(5.12)

where gc and gf denote the gyromagnetic factor of the core
and fermionic system. For the core we consider

gc ≈ Zc

Ac

, (5.13)

with Zc and Ac denoting the charge and atomic number
characterizing the core. Taking into account that the intruder
state is i13/2 and this is occupied by neutrons, the corresponding
gyromagnetic factor is

gf = gn
s

13
≈ −0.2943μN, (5.14)

with μN being the nuclear magneton and gn
s the gyromagnetic

factor for the neutron spin. The gyromagnetic factor plotted in
Fig. 9 as a function of J , reflects the nature of the yrast states.
Indeed, before the intersection of the 0qp and 2qp bands,
gJ is independent of J and very close to the rotational value
Z/A. When the intersection of the two bands takes place,
gJ has a big jump to a negative value, which confirms the
2qp character of the band which follows. This feature persists
only for a few states and then the core contribution starts to
be dominant which results in having a positive value for gJ .
The curve allure suggests a quadratic J dependence for gJ .
Except for 160Yb, the curve has two branches, one constant
corresponding to the g band and one quadratically increasing
with J , which corresponds to the S band. In the case of 160Yb,
after the crossing point, the curve decreases a little and then
starts increasing. Note that because the magnetic moment
carried by the core and fermions have opposite orientations
and moreover the core contribution is an increasing function
of J , there is a critical value of J where the total magnetic
moment and therefore the gyromagnetic factor are vanishing.
For the maximum angular momentum considered here, the
gyromagnetic factor reaches half of the rotational value (i.e.,
about 0.2 μN ).

Before closing this section we would like to spend a few
lines on comparing our approach with two other formalisms.
At a superficial glance one may think that the formalism
presented here is similar to that of Refs. [31,45]. Therefore
a fair comparison of the two procedures is necessary. First
we mention that the mean field determining the single-particle
basis is deformed while that used in Refs. [31,45] is spherical.
Therefore, an angular momentum projection operation for
the deformed BCS states is necessary in our case. In the
quoted reference, the coherent state is defined in terms
of deformed quadrupole bosons which makes difficult the
evaluation of the overlap matrix elements. Indeed, the matrix
elements between rotated intrinsic states are approximated and

then parametrized. By contrast, the coherent state used here
corresponds to spherical quadrupole bosons and moreover
the matrix elements are analytically calculated. Here the
pairing interaction is effective for nucleons moving outside
the phenomenological core, while in Refs. [31,45] only
the pairs from the core and those from outside the core
interact with each other. Moreover, the pairing interaction
is treated in the particle representation which, in fact, leads
to a parametrization of the corresponding matrix elements.
Consequently, the Hamiltonian is diagonalized in a basis with
a fixed number of particles. Because a BCS formalism for the
deformed single-particle states is used, in the present case,
the number of particles is conserved only in average. The
numbers of the parameters employed by the two formalisms
are also different: seven for Refs. [31,45] and five in the present
approach. One may conclude that although the two approaches
have some common features, they are essentially different.
A similar single-particle basis is used in Ref. [46] but in a
different context. Indeed, using a particle-rotor formalism the
dependence of the interaction of the lowest two bands on the
degree of filling the shell is studied pointing out an oscillating
behavior.

VI. CONCLUSIONS

In the previous sections a semiphenomenological formal-
ism for the description of the backbending phenomenon
was proposed. A model Hamiltonian associated with a set
of interacting particles moving in a deformed mean field
coupled to a phenomenological core described in terms of
quadrupole boson operators is treated in a product space of
angular momentum projected states. The pairing interaction
of neutrons moving in a deformed mean field is treated by
the BCS formalism. The model states for the ground-state
band are obtained by angular momentum projection of the
deformed product state |BCS〉dψc, while the S-band states
are projected out from the intrinsic K = 1 two quasiparticle
states J+α

†
jkα

†
j−k|BCS〉dψc. The substate |jk〉 is chosen such

that the corresponding quasiparticle energy is minimum.
Projected states of g and S bands are not mutually orthogonal.
Diagonalizing the overlap matrix, one defines an orthogonal
basis for treating the model Hamiltonian. The parameters
involved were fixed by a fitting procedure described in the
previous section. The lowest Hamiltonian eigenvalues in the
orthogonal basis defines the yrast band. The first energy levels
originate from the projected states of the 0qp state mentioned
above while, starting from a critical angular momentum, they
are mainly of a 2qp nature.

The experimental backbending shape of the moment of iner-
tia versus angular frequency squared is fairly well reproduced
by our results. The data considered in our calculations refer to
energy levels with angular momentum up to 26-28. A measure
of the agreement quality is the rms value characterizing the
deviations of the calculated energies from the corresponding
experimental data. This quantity is about 30 keV or less.

A detailed analysis of the effect coming from the HJf Jc

term concerning the neutron pair breaking as well as the
alignment of individual angular momentum to the core angular
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momentum, is presented. The pair breaking takes place for
J = 10, 12 and the maximum alignment is settled for J larger
than 20. Because the de-paired neutrons carry a projection
K = 1, a full alignment is not possible. As shown in Fig. 5 for
J � 20 the angular momentum defect �J reaches a plateau
with �J = 2. Also observed is an abrupt change of the
gyromagnetic factor from positive to negative values in the
band crossing region, which is consistent with the change
in structure of the yrast band, going from rotational to 2qp

character.
We may conclude that the present formalism is able to

account quantitatively for the main features of the backbending
phenomenon in the rare earth nuclei.

Although effects like pair breaking, bands crossing, and
angular momentum alignment have been explained, within
some cranking formalisms, by several authors, the present
approach provides a consistent description for the mentioned
effects pointing out several interesting features which will be
enumerated below.

(i) Although we use a spherical projected particle-core
basis the two components, particles and core, are de-
formed. Working with states of good angular momenta
is an advantage over the cranking methods where the
states in the crossing region exhibit a large dispersion
for angular momentum.

(ii) The effects of the qQ and �Jf · �Jc terms on the
backbending are discussed and specific contributions
are identified.

(iii) It is shown that the spin-spin interaction simulates in
the laboratory frame the Coriolis force which is active
in the intrinsic frame.

(iv) By the bands crossing the core angular momentum, J̃c,
varies only by a few units, 2h̄–4h̄. The minimal variation
is 2h̄ and is recorded for 160Yb. Because of this feature
one expects a nonvanishing E2 transition between the
states lying in the vicinity of the crossing point.

(v) We depicted one case, 160Yb, where after the bands
crossing point, the angular momenta carried by
fermions and the core are close to each other.

(vi) The curves associated with J̃c and J̃f , in Fig. 5, cross
each other at a total angular momentum equal to 22 for
156Dy, 158Er, 24 for 160Yb, 160Er, and 26 for 164,166Hf.

(vii) The maximum alignment is reached in the region of
Jc > Jf , where the defect �J is equal to 2h̄–3h̄. This
is a reflection of the K = 1 nature for the S band.

Because of the above-mentioned aspects one may say that
although the present paper addresses a relatively old subject
the proposed formalism unveils alternative features of the
backbending phenomenon.

Before closing, we present a few perspectives of the present
approach. Indeed, the results encourage us to extend the
restricted model space by adding to the particle factor the
proton state h11/2 which is suspected to be responsible for
the second backbending. Another possible extension refers to
the collective factor states, by adding to the coherent state
considered here the model states for beta and gamma bands
used by the coherent state model. It is well known that the
energy spectra of these bands comprise more irregularities

than the ground-state band. It is an open question whether
such anomalies could be also interpreted as the interaction
with other bands of a different nature. In this way we could
describe a multibackbending phenomenon showing up in the
yrast and nonyrast bands.
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APPENDIX A

The analytical expressions for the terms A1(M,J ) and
B̃n(M,J ) involved in Eq. (2.10) are as follows:

B̃n(M,J ) = δJ,0 +
M∑

m=2,

m=even

Ib(J,m) cos

[
π

M + 1
m · n

]
, (A1)

Ib(J,m) =
∫ π

0
dβ sin βPJ (cos β)e−imβ, (A2)

A1(M,J ) =
∏J

k=1(M − J + 2k)∏J
k=0(M − J + 2k + 1)

. (A3)

The integral Ib(J,m) can be analytically determined, and the
result for the present case J =even and m =even is

Ib(J,m) =
⎧⎨
⎩−2

∏ J
2 −1

k=0 [m2−(2k)2]∏ J
2
k=0[m2−(2k+1)2]

, m � J.

0, m < J.

(A4)

APPENDIX B

The state obtained by applying a pair of time-reversed
quasiparticle operators on a BCS function can be written as a
linear combination of states with a definite angular momentum
J , with J running from 0 to 24, and a projection on z axis
K = 0:

α
†
jkα

†
j−k|BCS〉d =

∑
J

C
jk

J |J, 0〉. (B1)

Acting with an angular momentum projection operator on this
state is equivalent to selection of only one J component from
the above linear combination, and rotating the projection to
the value M:

P
Jf

Mf 0α
†
jkα

†
j−k|BCS〉d = C

jk

Jf
|Jf ,Mf 〉. (B2)

The angular momentum states |J,M〉 are orthogonal and
normalized to unity. Then the norm of this projected function
is the reciprocal of the amplitude C

jk

Jf
:(

C
jk

Jf

)2 = d〈BCS|α−kαkP
Jf

00 α
†
kα

†
−k|BCS〉d . (B3)

Now if we apply on the state (B1) a raising angular
momentum operator,

J+α
†
jkα

†
j−k|BCS〉d =

∑
J

C
jk

J

√
J (J + 1)|J, 1〉, (B4)
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and then project an angular momentum from the resulting func-
tion, one obtains exactly the K = 1 2qp projected fermionic
function:

P
Jf

Mf 1J+α
†
jkα

†
j−k|BCS〉d = C

jk

Jf

√
Jf (Jf + 1)|Jf ,Mf 〉, (B5)

whose normalization factor is readily obtained:

(
N jk

Jf 1

)−2 = Jf (Jf + 1)d〈BCS|α−kαkP
Jf

00 α
†
kα

†
−k|BCS〉d .

(B6)

Making use of Eqs. (B5) and (B6), one can also derive the
expressions for other m.e. which we need in our calculations.
For example, the overlap of the 0qp and 2qp projected states
can be expressed as

d〈BCS|P Jf

01 J+α
†
jkα

†
j−k|BCS〉d = [NBCS

Jf
N jk

Jf 1

]−1
. (B7)

To calculate the quantities d〈BCS|αj−kαjkP
Jf

00 α
†
jk′

α
†
j−k′ |BCS〉d first are calculated the corresponding matrix

elements with particle operators c
†
jk(cjk) instead of quasipar-

ticle ones α
†
jk(αjk), for which we use the same method as

in the case of the norm of the projected BCS state. Having
these determined, the desired matrix elements are easily
obtained by applying a canonical transformation to the particle
operators:

d〈BCS|αj−kαjkP
Jf

00 α
†
jk′α

†
j−k′ |BCS〉d

= 1

U 2
jkU

2
jk′

d

〈BCS|cj−kcjkP
Jf

00 c
†
jk′c

†
j−k′ |BCS〉d

− Vjk′Vjk

Ujk′Ujk

(−)k+k′
d 〈BCS|P Jf

00 |BCS〉d

− Vjk

UjkU
2
jk′

(−)j−k

d 〈BCS|P Jf

00 c
†
jk′c

†
j−k′ |BCS〉d

− Vjk′

Ujk′U 2
jk

(−)j−k′
d 〈BCS|cj−kcjkP

Jf

00 |BCS〉d , (B8)

where U and V are the occupation parameters from the BCS
equations.
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