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Microscopic self-energy of 40Ca from the charge-dependent Bonn potential
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The effects of short-range correlations on the nucleon self-energy in 40Ca are investigated using the charge-
dependent Bonn (CDBonn) interaction. Comparisons are made with recent results for the self-energy of 40Ca
derived from the dispersive optical-model (DOM). Particular emphasis is placed on the nonlocality of the
imaginary part of the microscopic self-energy which suggests that future DOM analyses should include this
feature. In particular, data below the Fermi energy appear sensitive to the implied orbital angular-momentum
dependence of the self-energy. Quasiparticle properties obtained for the CDBonn interaction are substantially
more mean-field-like than the corresponding DOM results with spectroscopic factors larger by about 0.2. Reaction
cross sections obtained from the microscopic self-energy for scattering energies up to 100 MeV indicate that
an adequate description of volume absorption is obtained while a considerable fraction of surface absorption
is missing. The analysis of the nonlocality of the imaginary part of the microscopic self-energy suggests that a
simple Gaussian provides an adequate description, albeit with rather large values for β, the nonlocality parameter.
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I. INTRODUCTION

Calculations of single-particle (sp) observables in nuclei
starting from realistic nucleon-nucleon (NN ) interactions
have demonstrated that several energy scales influence these
quantities [1]. Both short-range as well as tensor physics
associated with energy scales far above and below the Fermi
energy, in addition to long-range physics associated with
the nuclear surface, and most influential near the Fermi
energy, determine single-nucleon motion in the nucleus. This
interpretation is well established for nuclei near stability
where (e, e′p) experiments have yielded unambiguous results
approaching absolute spectroscopic factors [2]. The observed
reduction of the sp strength near the Femi energy of about 35%
can only be quantitatively explained by a combination of the
effects of long-range and short-range correlations (SRC) [1,3].
While it appears that the bulk of the depletion is associated
with the coupling of sp motion to low-lying collective states
and giant resonances that are mostly associated with surface
phenomena, there is an approximately modest 10% depletion
due to the short-range and tensor force of the NN interaction
calculated from the microscopic self-energy obtained for 16O
[4–6]. These calculations also demonstrate an accompanying
modest appearance of high-momentum components in the
ground state. The presence of about 10% high-momentum
components does have a significant influence on the binding
energy of the ground state, in some cases accounting for about
65% of the binding energy [5].

While the details of these high-momentum components
depend sensitively on the chosen NN interaction, experi-
mental evidence confirms their presence in about the amount
predicted [7] although the details of their energy dependence
require further study [8]. Calculations for 16O employing other
methods that include the effect of SRC confirm that they
remove strength from valence orbits by about 10% [9,10]. The

presence of high-momentum components in the ground state
for nuclei heavier than 16O is usually obtained by performing
a local-density approximation of the nuclear-matter spectral
function obtained by the correlated-basis-function method at
several densities [11,12]. It appears that only the Green’s
function calculations of Refs. [4–6] can generate spectral
functions directly for such nuclei.

Green’s function calculations generate self-energies that
can also be employed at positive energy where they can
be transformed into the so-called reducible self-energy that
is equivalent with the elastic-nucleon-scattering T matrix
[13]. Elastic-nucleon-scattering data are usually analyzed
with so-called optical potentials that provide quite accurate
representations of the data [14–16]. Optical potentials are
normally formulated in terms of local potentials that have
no immediate interpretation as nucleon self-energies. A close
connection to the nucleon self-energy has been developed in
the dispersive-optical-model (DOM) proposed by Mahaux and
Sartor [17,18]. By employing the dispersion relation between
the real and imaginary part of the self-energy in a subtracted
form, only the imaginary part of the self-energy and the real
part at the subtraction point (typically the Fermi energy)
are required to provide a fit to the available data. These
include not only elastic-scattering data but also bound-state
information, thereby providing a natural link between nuclear
reactions and nuclear structure when appropriate assumptions
are made about the relation of the imaginary part above and
below the Fermi energy [18]. Standard assumptions about
the functional form of these potentials include surface and
volume contributions with conventional form factors. The
parameters of these potentials are then constrained by a fit
to the available data. Recent implementations of this approach
attempt a simultaneous fit to nuclei with different nucleon
asymmetry, thereby providing access to extrapolations to more
exotic nuclei [19–21]. An extension of the DOM was recently
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introduced which enhances the domain of its applicability for
data below the Fermi energy [22]. Conventional DOM analyses
transform the nonlocal real part of the self-energy at the Fermi
energy into a local but energy-dependent potential according to
a standard procedure [23]. Such an energy dependence distorts
the normalization of solutions of the Dyson equation which
is of particular relevance for the calculation of the spectral
function below the Fermi energy. By returning to a nonlocal
form and renormalizing the imaginary part in a well-defined
manner [18], it is possible to obtain properly normalized results
for spectral functions, the one-body density matrix, and so
on [22].

Since all implementations of the DOM have assumed a
local representation of the imaginary part of the self-energy,
it is of particular relevance to investigate the nonlocal content
of microscopically calculated self-energies that are based on a
realistic interaction. A recent investigation of this type focused
on the coupling of the nucleon at low energy [24]. Such
long-range correlations are well-described by the Faddeev
random-phase approximation (FRPA) [3,25–29]. The analysis
of Ref. [24] suggests that at low energy, mostly representing
the coupling to surface excitations, there is ample evidence
of a substantial nonlocal contribution to the nucleon self-
energy. In the present work we extend this investigation to
study the predominantly volume coupling associated with the
contribution of SRC as determined by the ab initio strategy of
Refs. [4–6].

We employ the CDBonn interaction [30,31] in the present
work which is a relatively soft interaction [32]. At the same
time, we establish how such an ab initio optical potential
fares in the description of elastic scattering. Since most recent
DOM results include 40Ca, we have also performed the present
calculations for this nucleus. We note that fully microscopic
calculations of the optical potential for finite nuclei are sorely
lacking and most applications involve a detour through nuclear
matter accompanied by a suitable local-density approximation
[33]. The work reported in Ref. [22] demonstrates that the
DOM is capable of incorporating SRC in its description of
the nucleon self-energy. Its current implementation, however,
does not yet properly account for the effect that SRC have on
the distribution of sp strength, in particular that high-momenta
appear increasingly likely at more negative energies [4–6].
We, therefore, also consider the high-momentum components
generated by the CDBonn interaction in 40Ca to clarify this
issue.

In Sec. II we introduce the essential steps involved in the
microscopic calculation of the self-energy for 40Ca. While
the initial step involves a nuclear-matter calculation, the
subsequent steps correctly incorporate the propagation of
nucleons in the finite system under consideration. The relevant
quantities that can be derived by solving the Dyson equation
above and below the Fermi energy are also summarized
there. Results for spectral functions, momentum distributions,
natural orbits, charge density, energy sum rule, and elastic
scattering are presented in Sec. III. Whenever relevant, these
results are compared with corresponding DOM quantities. We
also attempt to identify properties of the nonlocal imaginary
part of the microscopic self-energy for future implementation
of DOM analyses. Conclusions are presented in Sec. IV.

II. THEORY

A. Effective interaction

The microscopic calculation of the nucleon self-energy
proceeds in two steps, as employed in Refs. [4–6]. We start
with an outline of the general idea and initially employ a
schematic formulation. A diagrammatic treatment of SRC
always involves the summation of ladder diagrams. When
only particle-particle (pp) intermediate states are included,
the resulting effective interaction is the so-called G matrix.
The corresponding calculation for a finite nucleus (FN) can be
represented in operator form by

GFN(E) = V + V G
pp
FN(E)GFN(E), (1)

where the noninteracting propagator G
pp
FN(E) represents two

particles above the Fermi sea of the finite nucleus taking
into account the Pauli principle. The simplest implementation
of G

pp
FN involves plane-wave intermediate states (possibly

orthogonalized to the bound states). Even such a simple
assumption leads to a prohibitive calculation to solve Eq. (1)
and subsequently generate the relevant real and imaginary part
of the self-energy over a wide range of energies above and
below the Fermi energy. We are not aware of any attempt at
such a direct solution at this time, except for the use of the G
matrix as an effective interaction at negative energy. Instead,
we employ a strategy developed in Refs. [34,35] that first
calculates a G matrix in nuclear matter at a fixed density and
fixed energy according to

GNM(ENM) = V + V G
pp
NM(ENM)GNM(ENM). (2)

The energy ENM is chosen below twice the Fermi energy
of nuclear matter for a kinetic energy sp spectrum and the
resulting GNM is, therefore, real. Formally solving Eq. (1) in
terms of GNM can be accomplished by

GFN(E) = GNM + GNM
{
G

pp
FN(E) − G

pp
NM

}
GFN(E), (3)

where the explicit reference to ENM is dropped. The main
assumption to make the self-energy calculation manageable is
to drop all terms higher than second order in GNM, leading to

GFN(E) = GNM − GNMG
pp
NMGNM + GNMG

pp
FN(E)GNM, (4)

where the first two terms are energy independent. Since a
nuclear-matter calculation already incorporates all the impor-
tant effects associated with SRC, it is reasonable to assume
that the lowest-order iteration of the difference propagator
in Eq. (4) represents an accurate approximation to the full
result. This assertion does require further confirmation in
future studies.

The Bethe-Goldstone equation for GNM reads in the appro-
priate basis

〈k�|GSJSKLT
NM |k′�′〉

= 〈k�|V SJSKLT |k′�′〉
+ 1

2

∑
�′′

∫
dk′′(k′′)2 〈k�|V SJSKLT |k′′�′′〉

× Q̄(K, k′′)

ENM − h̄2K2

4m
− h̄2k′′2

2m

〈k′′�′′|GSJSKLT
NM |k′�′〉. (5)
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(a) (b) (c)

FIG. 1. Graphical representation of the BHF (a), the two-particle–
one-hole contribution (b), and one-particle–two-hole term (c) to the
self-energy of the nucleon. The GNM matrix is indicated by the wiggly
line.

The variables k, k′, and k′′ denote the relative wave vectors
between the two nucleons; �, �′, and �′′ the orbital angular
momenta for the relative motion; K and L the corresponding
quantum numbers for the center-of-mass motion; S and T the
total spin and isospin; and JS is obtained by coupling the orbital
angular momentum of the relative motion to the spin S. We
note that Q̄(K, k) is the angle-averaged form of the product of
step functions that allows a partial wave decomposition. The
implied sole dependence of the G matrix on the magnitude
of K , the center-of-mass wave vector, also ensures that the
solution of Eq. (5) does not depend on L. The L label is
kept, however, to facilitate the recoupling to individual orbital
angular momentum states, as discussed below. Equation (5)
generates an appropriate solution of two-body short-range
dynamics but the resulting matrix elements require further
manipulation before becoming useful for the finite nucleus.

The self-energy contribution of the lowest-order term
GNM in Eq. (4) is shown in Fig. 1(a) and is similar to a
Brueckner-Hartree-Fock (BHF) self-energy. While, strictly
speaking, the genuine BHF approach involves self-consistent
sp wave functions, as in the HF approximation, the main
features associated with using the GNM matrix of Eq. (5) are
approximately the same when employing a summation over
the occupied harmonic oscillator states of 40Ca. Hence we
will use the BHF abbreviation. The correction term involving
the second order in GNM calculated in nuclear matter is also
static and can be obtained from the second term in Eq. (5)
by replacing the bare interaction by GNM. The corresponding
self-energy is also real and generated by summing over the
occupied oscillator states in the same way as for the BHF
term.

The second-order term containing the correct energy
dependence for GFN in Eq. (4) can now be used to construct
the self-energy contribution depicted in Fig. 1(b), representing
the coupling to two-particle–one-hole (2p1h) states. In the
calculation harmonic oscillator states for the occupied (hole)
states and plane waves for the intermediate unbound particle
states are assumed, incorporating the correct energy and
density dependence characteristic of a finite nucleus GFN

matrix. In a similar way, one can construct the second-order
self-energy contribution depicted in Fig. 1(c) which has an
imaginary part below the Fermi energy and includes the
coupling to one-particle–two-hole (1p2h) states.

Calculations of this kind require several basis transfor-
mations, including the one from relative and center-of-mass
momenta with corresponding orbital angular momenta to two-
particle states with individual momenta and orbital angular

momentum. Complete details can be found in Refs. [5,35].
In practice, the imaginary parts associated with diagrams
Figs. 1(b) and 1(c) are employed to obtain the corresponding
real parts by employing the appropriate dispersion relation.
The resulting (irreducible) self-energy then reads

�∗ = �∗
BHF + ��∗

= �∗
BHF + (Re�∗

2p1h − �∗
c + Re�∗

1p2h)

+ i(Im�∗
2p1h + Im�∗

1p2h) (6)

in obvious notation. This self-energy is employed in the sp
basis denoted by states |{k(� 1

2 )jmj }〉, characterized by wave
vector, orbital, spin, and total angular momentum and its
projection (suppressing isospin). We note that the quantum
numbers �, j , and mj are conserved and the self-energy does
not depend on mj . We will make use of isospin conservation for
40Ca but include the Coulomb contribution when discussing
results for protons.

B. Solution of the Dyson equation

The sp propagator in momentum space can be obtained
from the following version of the Dyson equation [36]

G�j (k, k′; E) = δ(k − k′)
k2

G(0)(k; E)

+G(0)(k; E)��j (k, k′; E)G(0)(k; E), (7)

where G(0)(k; E) = (E − h̄2k2/2m + iη)−1 corresponds to the
free propagator and ��j is the reducible self-energy. The latter
can be obtained by iterating the irreducible self-energy to all
orders

��j (k, k′; E) = �∗
�j (k, k′; E) +

∫
dqq2�∗

�j (k, q; E)G(0)(q; E)

×��j (q, k′; E). (8)

We first concentrate on energies below the Fermi energy
that involve quantities that elucidate properties of the ground
state. Below the Fermi energy the hole spectral function is
determined by the imaginary part of the propagator

S�j (k; E) = 1

π
Im G�j (k, k; E). (9)

For negative energies, the free propagator has no imaginary
part and so, according to Eq. (7), the spectral function reads

S�j (k; E) = 1

π
G(0)(k; E)Im ��j (k, k; E)G(0)(k; E), (10)

for energies where the imaginary part of the self-energy does
not vanish. The total spectral strength at E for a given �j

combination,

S�j (E) =
∫ ∞

0
dk k2 S�j (k; E), (11)

yields the spectroscopic strength per unit of energy.
The imaginary part of the CDBonn self-energy vanishes

between the maximum energy of 1p2h and the minimum
energy of 2p1h states. Inside this domain, discrete solutions to
the Dyson equation are obtained from the standard version of
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the Dyson equation

G�j (k, k′; E) = δ(k − k′)
k2

G(0)(k; E) + G(0)(k; E)

×
∫ ∞

0
dq q2 �∗

�j (k, q; E)G�j (q, k′; E).

(12)

The solution for discrete poles utilizes the spectral representa-
tion of the propagator

G�j (k, k′; E) =
∑
m

〈
	A

0

∣∣ ak�j

∣∣	A+1
m

〉 〈
	A+1

m

∣∣ a†
k′�j

∣∣	A
0

〉
E − (

EA+1
m − EA

0

) + iη

+
∑

n

〈
	A

0

∣∣ a†
k′�j

∣∣	A−1
n

〉 〈
	A−1

n

∣∣ ak�j

∣∣	A
0

〉
E − (

EA
0 − EA−1

n

) − iη
,

(13)

where complete sets of states in the A ± 1 systems are inserted.
The continuum solutions in the A ± 1 systems are also implied
in the completeness relations. The numerators of the particle
and hole components of the propagator represent the products
of overlap functions associated with adding or removing a
nucleon from the A-body ground state. Following standard
steps [36] the eigenvalue problem corresponding to Eq. (12)
reads

k2

2m
φn

�j (k) +
∫

dqq2�∗
�j (k, q; ε−

n ) φn
�j (q) = ε−

n φn
�j (k), (14)

where

ε−
n = EA

0 − EA−1
n (15)

for energies below the corresponding Fermi energy ε−
F =

EA
0 − EA−1

0 . The notation

√
Sn

�jφ
n
�j (k) = 〈

	A−1
n

∣∣ ak�j

∣∣	A
0

〉
, (16)

for the overlap functions is introduced. For an eigenstate of the
Schrödinger-like equation [Eq. (14)], the so-called quasihole
state labeled by αqh, the corresponding normalization or
spectroscopic factor is given by [36]

Sn
�j =

[
1 − ∂�∗

�j (αqh, αqh; E)

∂E

∣∣∣∣
ε−
n

]−1

, (17)

which is the discrete equivalent of Eq. (11). Discrete solutions
in the domain where the self-energy has no imaginary part
can, therefore, be obtained by expressing Eq. (14) on a grid
in momentum space and performing the corresponding matrix
diagonalization. This also applies to bound orbits above the
corresponding Fermi energy given by ε+

F = EA+1
0 − EA

0 . We
note that the DOM self-energy of Ref. [20] contains an
imaginary part below (hole domain) and above (particles) the
average Fermi energy εF = (ε+

F + ε−
F )/2.

The momentum distribution for a given �j is obtained from

n�j (k) = nc
�j (k) + n

q

�j (k), (18)

where the continuum contribution is obtained by integrating
the spectral function up to corresponding threshold

nc
�j (k) =

∫ ε−
T

−∞
dE S�j (k; E) (19)

and the contribution of the discrete quasihole states reads

n
q

�j (k) =
∑

n

Sn
�j

∣∣φn
�j (k)

∣∣2
. (20)

For protons the total momentum distribution (normalized by
the number of protons Z) is obtained from

n(k) = 1

Z

∑
�j

(2j + 1)n�j (k), (21)

with a similar result for the neutron distribution.
Information about natural orbits can be generated by

determining the one-body density matrix. The continuum
contribution to the one-body density matrix reads

nc
�j (k′, k) = 1

π

∫ ε−
T

−∞
dE S�j (k, k′; E), (22)

where

S�j (k, k′; E) = 1

π
G(0)(k; E)Im ��j (k, k′; E)G(0)(k′; E) (23)

corresponds to the nondiagonal spectral density. The one-body
density matrix also receives a contribution from the quasiholes
according to

n
q

�j (k′, k) =
∑

n

Sn
�jφ

n∗
�j (k)φn

�j (k′), (24)

where Sn
�j is the spectroscopic factor and φn

�j (k) are the
quasihole eigenfunctions in momentum space. The total one-
body density matrix is then given by

n�j (k′, k) = n
q

�j (k′, k) + nc
�j (k′, k). (25)

By diagonalizing the one-body density matrix given in Eq. (25)
one obtains the natural orbits for each �j combination together
with the corresponding occupation numbers. It is, therefore,
possible to write

n�j (k, k′) =
∑

i

nno
i�jφ

no∗
i�j (k)φno

i�j (k′), (26)

with nno
i�j , φ

no
i�j (k) the corresponding occupation numbers and

wave functions for natural orbit i. We note that these wave
functions are normalized to unity. Results for quantities
introduced in this section will be discussed in Sec. III
and wherever possible compared to the corresponding DOM
quantities.

In the language of many-body theory, the elastic nucleon-
nucleus scattering is determined by the on-shell matrix element
of the reducible self-energy ��j (k, k′; E), since it is directly
related to the S matrix by [36]

〈k0|S�j (E) |k0〉 ≡ e2iδ�j

= 1 − 2πi

(
mk0

h̄2

)
〈k0| ��j (E) |k0〉 , (27)
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where k0 = √
2mE/h̄, m is the nucleon mass, and E is the

energy relative to the center-of-mass. The phase shift, δ�j ,
defined by Eq. (27) is, in general, a complex number. Its
real part yields the usual phase shift and its imaginary part
is associated with the inelasticity of the scattering process and
denoted by

η�j = e−2Im(δ�j ). (28)

In general, the coupling to more complicated excitations in
the self-energy implies a complex potential responsible for the
loss of flux in the elastic channel, characterized by the inelast-
icities η�j .

Because self-energy calculations at positive energy are rare,
it is perhaps useful to include some relevant results in terms
of the phase shifts δ�j for the quantities that will be discussed
later. The scattering amplitude is given by

fm′
s ,ms

(θ, φ) = −4mπ2

h̄2 〈k′m′
s |�(E)|kms〉, (29)

with wave vectors of magnitude k0. The matrix structure is
usually represented by

[f (θ, φ)] = F(θ )I + σ · n̂G(θ ), (30)

based on rotational invariance and parity conservation. The
unit vector is given by n̂ = k × k′/|k × k′|, and σ is formed
by the Pauli spin matrices. The relation between F and G and
the phase shifts determined by Eq. (27), can now be worked
out, yielding

F(θ ) = 1

2ik

∞∑
�=0

[(� + 1){e2iδ�+ − 1}

+ �{e2iδ�− − 1}]P�(cos θ ) (31)

and

G(θ ) = sin θ

2k

∞∑
�=1

[e2iδ�+ − e2iδ�− ]P ′
�(cos θ ). (32)

We employ the notation δ�± ≡ δ�j=�± 1
2

and P ′
� denotes the

derivative of the Legendre polynomial with respect to cos θ .
The unpolarized cross section reads(

dσ

d�

)
unpol

= |F |2 + |G|2. (33)

Employing the partial-wave expansions (31) and (32) and the
orthogonality of the Legendre polynomials, we find

σ el
tot = π

k2

∞∑
�=0

|(� + 1){e2iδ�+ − 1} + �{e2iδ�− − 1}|2
2� + 1

+ π

k2

∞∑
�=0

�(� + 1)|e2iδ�+ − e2iδ�−|2
2� + 1

. (34)

We can define partial elastic cross sections such that

σ el
tot =

∞∑
�=0

σ el
� , (35)

which for a given � read

σ el
� = π

k2
[(� + 1)|e2iδ�+ − 1|2 + �|e2iδ�− − 1|2]. (36)

With complex potentials and, therefore, complex phase shifts,
it is possible to calculate the total reaction cross section

σ r
tot =

∞∑
�=0

σ r
� , (37)

with

σ r
� = π

k2
[(2� + 1) − (� + 1)|e2iδ�+|2 − �|e2iδ�−|2]. (38)

These results are derived by using the optical theorem that
yields the total cross section from the imaginary part of the
forward-scattering amplitude [37]

σT = σ el
tot + σ r

tot. (39)

The results presented here refer to neutron scattering when the
self-energy has a finite range.

Therefore, it is clear that at positive energies the problem is
completely reduced to solving the integral equation for the
reducible self-energy given in Eq. (8). It should be noted
that the solution in momentum space automatically treats the
nonlocality of the reducible self-energy in coordinate space.
In practice, the integral equation is solved in two steps. First,
the integral equation is solved by only including the principal
value part of the noninteracting propagator. Subsequently, it is
straightforward to employ the resulting reaction matrix to take
into account the contribution of the δ function associated with
the imaginary part of the noninteracting propagator.

Previous calculations of the nucleon self-energy for 16O
[4–6] only included a limited number of sp partial waves.
While this is sufficient for energies below the Fermi energy,
results for differential cross sections at positive energy quickly
require many more partial waves with increasing energy. It
is, nevertheless, possible to draw sensible conclusions by
comparison with the corresponding partial wave contributions
from DOM results that provide an accurate fit to the
experimental data.

III. RESULTS

A. Spectral functions

In Fig. 2 the d3/2 spectral function as a function of
momentum is shown for different negative energies. The d3/2

orbit is the last one that is mostly occupied in 40Ca and
the momentum content of the state near the Fermi energy
exhibits no substantial strength beyond the naive expectation,
similar to what was found for the p1/2 orbit in 16O before
[4]. As illustrated in Fig. 2, the strength at higher momenta
increases with decreasing energy, as expected and consistent
with earlier calculations [5]. We note that the presence of the
high momenta is not as pronounced as observed previously in
16O in Refs. [4,5]. In this earlier work the Bonn-B potential [38]
was employed, whereas the present work employs the CDBonn
interaction [30,31] which appears to be softer. We note that the
absence (presence) of high momenta near (far below) the Fermi
energy is a simple consequence of simultaneous energy and
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FIG. 2. (Color online) Momentum-space spectral function for
neutron d3/2 quantum numbers at different energies in 40Ca.

momentum conservation and is well documented for nuclear
matter [39]. The behavior of the spectral functions in Fig. 2
differs somewhat from the DOM results discussed in Ref. [22].
Whereas the microscopic strength exhibits a decrease of low
momenta starting at −75 MeV, while the higher momenta
exhibit similar strength, the corresponding DOM results show
a more uniform behavior with little change in momentum
profile as a function of energy.

In Fig. 3(a) the discrete and continuum contributions to
the spectral strength [see Eq. (11)] are shown as a function
of the energy for various �j channels for neutrons in 40Ca.
Results are shown for the following �j combinations: s1/2

(solid), p3/2 (long-dash), p1/2 (long-dash-dot), d5/2 (dash),
d3/2 (dotted), f7/2 (dash-dash-dot), and f5/2 (dash-dot-dot). In
Fig. 3(b) the corresponding DOM strength functions are shown
for comparison. The DOM self-energy from Ref. [20] has an
imaginary part that ends at ε−

T = εF and includes a surface term
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FIG. 3. (Color online) Comparison of spectral functions from
present work shown in panel (a) with those from a DOM analysis
using a nonlocal potential in panel (b). The results are for neutrons
in 40Ca. The curves correspond to different �j combinations that are
identified in the text.

to account for long-range correlations (LRC). The resulting
strength distribution is, therefore, continuous with sharp peaks
near the Fermi energy. These peaks are represented by discrete
ones (normalized by spectroscopic factors in the figure) for
the CDBonn self-energy. Because the coupling to LRC is de-
emphasized, the imaginary part ends at a much lower energy
ε−
T = −38 MeV. The DOM peaks closely correspond to the

location of corresponding experimental sp states. The CDBonn
self-energy generates energies for the peaks near the Fermi
energy that do not differ too much from the DOM result. For
the deeply bound s1/2 peak, the CDBonn result underestimates
the binding by a substantial amount as compared to the DOM
result, which is consistent with a corresponding proton peak
observed in the (e, e′p) reaction [40].

We note that the spectral functions obtained with the
CDBonn interaction or the DOM procedure can be used
in the analysis of scaling observed in (e, e′) cross sections
(see Ref. [41] and references therein). Since the role of
final-state interactions appears to be important in explaining
the experimental results, the CDBonn self-energy calculated
for positive energies (see Sec. III G) could provide additional
insights.

From Fig. 3, it is evident that the microscopic self-energy
generates more sp strength at energies below the deeply bound
s1/2 peak than the DOM self-energy used in Ref. [22]. Another
important difference is that the sp strength decreases more
quickly with increasing � in the microscopic approach than
in the DOM. We attribute this behavior to the nonlocality of
the imaginary part of the microscopic self-energy, whereas
the imaginary part of the DOM self-energy is purely local.
This feature has important consequences for the number of
particles calculated from the corresponding spectral functions
according to

Ncalc =
∑
�j

(2j + 1)
∫ ε−

F

−∞
dE S�j (E). (40)

Since the microscopic self-energy shows a substantial re-
duction of sp strength with increasing �, the total particle
number exhibits a good convergence with Ncalc = 19.3 for
neutrons when also the two partial waves with � = 4 are
included. The corresponding DOM result exhibits a much
slower convergence as illustrated in Fig. 3 and crosses 20
as early as the f5/2 orbit [22]. We, therefore, conclude that the
nonlocality of the imaginary part of the self-energy plays an
important role in generating the correct number of particles
from a DOM self-energy.

B. Quasiholes and quasiparticles

The quasihole energies are shown in Table I. They were
obtained by diagonalizing the self-energy in momentum space
while taking the energy dependence of the real part of the self-
energy properly into account but disregarding the imaginary
part. We also include the result for the static contribution of
the self-energy labeled by BHF in the table. We note that
the inclusion of the dispersive contribution moves the 0s1/2

state up by almost 13 MeV. The cause of this huge shift must
be attributed to the strong energy dependence of the diagram
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TABLE I. Quasihole energies for neutron orbits in 40Ca. The
second column shows the results from using the Hartree-Fock part
only and the third column the results from including the 2p1h and
2h1p terms in the self-energy. We also include DOM results and the
position of the experimental sp levels near the Fermi energy.

Orbit BHF (MeV) Full (MeV) DOM (MeV) Expt. (MeV)

0s1/2 −56.1 −43.6 −56.1
0p3/2 −37.4 −33.9 −39.6
0p1/2 −34.7 −31.7 −34.9
0d5/2 −20.4 −21.8 −21.6 −22.3
1s1/2 −18.1 −19.6 −17.4 −18.3
0d3/2 −16.0 −17.8 −15.9 −15.6
0f7/2 −4.3 −7.1 −9.8 −8.4
1p3/2 −2.6 −5.1 −7.0 −5.9
1p1/2 −1.2 −3.5 −5.4 −4.2

in Fig. 1(c) which is very repulsive at the solution of the
0s1/2 eigenvalue. For other quasihole energies substantially
smaller corrections of both signs are obtained. While not
including the imaginary part of the self-energy does not yield
the correct normalization for the 0s1/2 state, we do find that
the energy in the table is consistent with the location of the
corresponding peak in Fig. 3. Results for the DOM self-energy
employed in Ref. [22] are also included in the table as well
as the experimental location of the sp orbits near the Fermi
energy. The particle-hole gap of the CDBonn self-energy is
more than 10 MeV, substantially larger than for the DOM at
6.1 MeV which is a little below the experimental result of
6.8 MeV. A common issue with microscopic self-energies is
the underestimate of the spin-orbit splitting near the Fermi
energy. For the splitting of the d states below the Fermi
energy only 4 MeV is obtained compared to 6.7 MeV found
experimentally. The DOM generates 5.7 MeV for this quantity.
Relativistic effects and core polarization [42] or the importance
of three-body forces [43] are usually invoked to repair this
discrepancy but we note that only part of the sp strength resides
in these levels, making the determination of the spin-orbit
splitting more ambiguous.

The spectroscopic factors identify the amount of sp strength
residing near the Fermi energy and together with occupation
numbers are shown in Table II for the quasiparticle and
quasihole states. The spectroscopic factors are calculated
according to Eq. (17) after solving the Dyson equation (14).
Occupation numbers for the quasiparticle or quasihole orbits
are obtained by double folding the momentum space wave

TABLE II. Quasihole (quasiparticle) spectroscopic factors and
occupation numbers for the CDBonn (CDB) self-energy compared to
the corresponding DOM results.

Orbit SCDB SDOM nCDB nDOM

1s1/2 0.85 0.66 0.91 0.88
0d3/2 0.87 0.64 0.92 0.86
0f7/2 0.92 0.67 0.02 0.11
1p3/2 0.93 0.69 0.02 0.07
1p1/2 0.93 0.73 0.02 0.06

functions with the one-body density matrix in momentum
space given in Eq. (25). For the hole states near εF there
is a reduction of sp strength of a little more than 10% for
the CDBonn calculation associated mostly with the effect of
SRC. For the particle states, the reduction of the sp strength
corresponds to about 10%. It was observed in Ref. [22] that the
spectroscopic factors calculated for orbits in the continuum are
not reliable (and can be larger than 1) so these are not included
in the table. All CDBonn spectroscopic factors are about 20%
larger than in the DOM calculation. Since the DOM includes
the coupling to low-lying excitations associated with collective
effects of the nuclear surface, this simply reflects the important
role of LRC that are responsible for this difference, and the
resulting spectroscopic factors are in good agreement with the
analysis of the (e, e′p) reaction on 40Ca [44]. Differences in
integrated strength as displayed by occupation numbers are
less dramatic partially because the strength removed to lower
energy from the quasihole (particle) peaks due to LRC in the
DOM is recovered in the occupation numbers [21].

C. Momentum distribution

The total momentum distribution for neutrons in 40Ca re-
sulting from the CDBonn interaction and calculated according
to the equivalent of Eq. (21) is shown in Fig. 4 by the solid
line. All distributions are multiplied by k2 and normalized such
that 4π

∫
dk k2n(k) = 1. The quasihole contribution without

the reduction due to spectroscopic factors is shown by the
dashed line. Comparison of the correlated with this mean-field-
like contribution (dashed) shows an appreciable presence of
high-momentum components. A comparison with the DOM
result (dash-dot) in Fig. 5, normalized as in Fig. 4, indicates
that the DOM self-energy has slightly more high-momentum
components than the microscopic one, although the latter has
a larger quasihole contribution at high momentum, as shown
Fig. 6. The amount of strength above 1.4 fm−1 corresponds
to 8% for the CDBonn calculation compared to 10% for the
DOM. The convergence of the CDBonn result with orbital
angular momentum is also illustrated in Fig. 5, exhibiting a
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FIG. 4. (Color online) Momentum distribution for neutrons in
40Ca weighted by k2. Solid line represents the total momentum dis-
tribution including quasihole and continuum terms. The dashed line
represents the quasihole result without reductions from spectroscopic
factors.
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FIG. 5. (Color online) CDBonn momentum distribution with
�max = 3 (dashed) and �max = 4 (solid) compared with the DOM
result, including all partial waves, including f7/2 (dash-dot) as
obtained in Ref. [22]. The normalization of the curves is given by
4π

∫
dk k2n(k) = 1.

satisfactory convergence when the �max = 3 result (dashed) is
compared with the one for �max = 4 (solid). This convergence
is less satisfactory for the DOM result [22] which contains
contributions from partial waves only up to and including
the f7/2 one. These results further confirm the importance
of a nonlocal representation of the imaginary part of the
self-energy which automatically leads to a more satisfactory
convergence with orbital angular momentum. As discussed in
Sec. III A, the energy dependence of the spectral function of
the CDBonn potential in momentum space already suggests
that it is a rather soft potential in comparison with the Bonn-B
potential [38] that was employed for 16O in Refs. [4–6].
While the spectroscopic factors for the aforementioned Bonn
potentials in these nuclei are similar, the CDBonn potential
contains about 4% of strength in the quasihole orbits above
1.4 fm−1, whereas for the Bonn-B potential this amount is
much smaller. It would be interesting in the future to investigate
the corresponding behavior of a harder and local interaction
such as the Argonne V18 [45].
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FIG. 6. (Color online) Quasihole contribution to the momen-
tum distribution for the CDBonn (solid) compared to the DOM
result (dashed). Both distributions are normalized according to
4π

∫
dk k2n(k) = 1.
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FIG. 7. (Color online) Comparison of wave functions for the s1/2

quasihole result (solid) and the corresponding natural orbit (dashed)
without a node.

D. Natural orbits

Calculations of natural orbits and, in particular, the associ-
ated occupation numbers yield useful information concerning
correlations in many-fermion systems, since these orbits
exhibit the largest possible occupation numbers for a given
�j combination [46]. The size of the deviation from 1 is,
therefore, a useful measure of the relevance of correlations
beyond the mean field. Results for natural orbits are obtained
by diagonalizing the one-body density matrix which leads to
Eq. (26) containing the natural orbit functions in momentum
space (shown in Figs. 7–9) accompanied by the corresponding
occupation numbers. In Table III results for the occupation
numbers of natural orbits are collected for the relevant partial
waves. The results are quantitatively similar to previous results
for 16O [6]. More surprisingly, the results for the occupation
numbers of the natural orbits that are predominantly occupied
are very close to the DOM result reported in Ref. [22]. Only
the orbits immediately adjacent to the Fermi energy exhibit
more than 1 or 2% deviation but never more than 8%. This
is perhaps surprising in light of the rather large difference
between the spectroscopic factors obtained with these different
approaches. Since both approaches are constrained by very
different experimental data, it is, therefore, gratifying that the
dominant occupation numbers for the natural orbits are so
close. Differences of a few percentage points are observed for
the smaller occupation numbers, leading to a total occupation
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FIG. 8. (Color online) As in Fig. 7 but showing s1/2 wave
functions with one node.
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of these DOM orbits that is a few percentage points higher than
in the case of the CDBonn. We ascribe this to the inclusion of
LRC in the DOM.

A comparison with natural orbits obtained for finite drops of
3He atoms [47] illustrates the substantial difference between
the underlying fermion-fermion interactions. The atom-atom
interaction being much more repulsive and in a larger domain,
relative to the volume per particle, leads to occupation numbers
as small as 0.54 for the 1s state in a drop of 70 3He atoms,
whereas the nuclear interaction generates values close to 0.9
either in the DOM or from the CDBonn calculation. The
difference is, therefore, mostly related to the much stronger
repulsion between 3He atoms which, e.g., in the liquid at
saturation leads to a depletion of the Fermi sea of more than
50% [48]. Nucleon-nucleon interactions typically generate
10–15% depletion due to SRC [32].

Wave functions of natural orbits and quasihole states are
compared in Figs. 7–9. In Fig. 7 the momentum-space wave
functions without a node for the s1/2 partial wave are shown
for the deeply bound quasihole (solid) and the corresponding
natural orbit (corresponding to an occupation number of
0.882). The natural orbit wave function extends farther out
in momentum space, reflecting the contribution from lower
energies that contain higher momenta. The quasihole wave
function for the s1/2 state near the Fermi energy (solid) is
compared to the natural orbit result (also with one node) in
Fig. 8. Again, there is a substantial difference between the two
wave functions although they both have the same occupation
number. Contrary to the two s1/2 results, the d3/2 quasihole and
natural orbit wave functions are essentially indistinguishable,
as shown in Fig. 9. A similar result was obtained (in coordinate
space) for the DOM calculation of Ref. [22] and appears
to be due to the presence of only one natural orbit with a
large occupation number unlike the s1/2 case. We note that in
the DOM calculation of Ref. [22] both quasihole s1/2 wave
functions were essentially identical to the natural orbit results.

E. Charge distribution

Although we focus mainly on neutron results for 40Ca, it is
useful to study the charge density distribution obtained for the
CDBonn potential. For this purpose, the Coulomb potential
was incorporated into the calculations by first transforming
the irreducible self-energy to coordinate space. The Coulomb
potential from a uniformly charged sphere was then added, and
a matrix inversion was performed to get the propagator in a
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FIG. 9. (Color online) As in Fig. 7 but with the corresponding
d3/2 wave functions.

similar way as in Ref. [22]. The radius of the sphere was taken
to be RC = 1.31A1/3, which is what was used in the DOM
analysis. The point charge distribution was then obtained from

ρch(r) = e

4π

∑
�j

(2j + 1)n�j (r, r), (41)

where n�j refers to the one-body density matrix in coordinate
space. The resulting distribution was then corrected for the
experimental charge distribution of a single proton and a single
neutron as in Ref. [49]. The final charge distribution is shown
by the dashed line in Fig. 10 and compared to the experimental
one obtained from the Fourier-Bessel analysis of Ref. [50].

The mean-square radius of the CDBonn self-energy is
obtained from

〈r2〉 = 1

Ze

∫ ∞

0
dr r2ρch(r), (42)

yielding a value of 3.29 fm compared to the experimental result
of 3.45 fm taken from Ref. [50]. We note that microscopic
calculations usually underestimate the experimental results
(see, e.g., Ref. [5] for 16O). Since LRC correlations are
not adequately incorporated, it is possible that an improved
charge density is obtained when they are included. We note
that a recent microscopic calculation of the matter density in
40Ca also concentrates too much matter near the origin [51],
suggesting that it is useful to consider comparison with as
many experimental quantities as possible for a more detailed
understanding of the quality of the many-body calculations.

We note that the DOM charge density also contains too
much charge near the origin [22] even though LRC are
incorporated. The DOM self-energy was, however, constrained

TABLE III. Occupation numbers of natural orbits.

n s1/2 p3/2 p1/2 d5/2 d3/2 f7/2 f5/2

1 0.882 0.902 0.898 0.909 0.919 0.024 0.025
2 0.910 0.025 0.025 0.014 0.015 0.006 0.007
3 0.016 0.007 0.008 0.003 0.004 0.001 0.001
4 0.004 0.001 0.002 0.001 0.001 0.0003 0.0005
5 0.001 0.0004 0.0004 0.0001 0.0002 0.0001 0.0001
6 0.0002 0.0001 0.0001 0.0001 0.0001 <1 × 10−4 <1 × 10−4

�n 1.82 0.94 0.93 0.93 0.94 0.03 0.03
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FIG. 10. (Color online) Charge density distribution for 40Ca from
the CDBonn self-energy (dashed) compared to experiment (solid).

to reproduce the mean-square radius of the charge distribution.
It appears, therefore, essential to include apart from SRC, as
shown here for the CDBonn, both nonlocality and LRC in the
DOM to obtain a charge density that is in better agreement with
the data. Indeed, future fits to experimental data in the DOM
framework can utilize elastic electron-scattering data directly
to fit the parameters for nuclei where such data are available.

F. Energy of the ground state

From the momentum distribution and the spectral function
in k space, the neutron contribution to the ground state energy
per neutron can be calculated by using:

En(40Ca)

Ncalc
= 1

2Ncalc

∑
�j

(2j + 1)
∫

dkk2 h̄2k2

2m
n�j (k)

+ 1

2Ncalc

∑
�j

(2j + 1)
∫

dkk2

×
∫ εF

−∞
dE E S�j (k; E), (43)

where En is the total energy from the neutrons and Ncalc [see
Eq. (40)] is the calculated number of neutrons when all partial
waves with � � 4 are included. With this limit on the number
of partial waves Ncalc = 19.3 and a corresponding energy per
neutron of −8.25 MeV is obtained.

As for the charge distribution calculation, the energy for
the protons was generated in coordinate space. The density
matrix and spectral function were then transformed back to
the momentum space in order to use Eq. (43) with En replaced
by Ep and Ncalc by the calculated proton number Zcalc, which
is found to be Zcalc = 19.5. The resulting energy per proton
is −4.91 MeV, and the resulting total energy per particle is
E(40Ca)/nucleon = −6.56 MeV. This result is 1.85 MeV per
particle more attractive than the DOM result in Ref. [22] but
still more than 2 MeV/nucleon higher than the experimental
binding of −8.55 MeV/nucleon. From the results of the
spectral functions it is clear that more strength occurs in the
continuum for the CDBonn at very negative energies than in
the DOM calculation demonstrating the importance of these
continuum contributions to the total energy.

This importance was also recognized in Ref. [5], where it
was shown that about two-thirds of the binding is due to the
continuum even though it represents only about 10% of the
particles. Since a different interaction is used and a heavier
nucleus is considered in the present work, it is instructive
to quantify the role of the continuum also for the CDBonn
calculation. The quasihole contribution to the energy of the
ground state are well separated from the continuum except for
the peak corresponding to the lowest s1/2 orbit as shown in
Fig. 3. We, therefore, assessed the s1/2 continuum contribution
by integrating the strength in Eq. (43) up to −50 MeV. The
total binding from the continuum contributions of all partial
waves then amounts to −105.88 MeV compared to a total
of −159.16, therefore representing 67% of the total, a very
similar result to the 16O calculations of Ref. [5]. We note,
further, that even though the CDBonn interaction is relatively
soft, the cancellation between kinetic energy (419.15 MeV)
and potential energy ( −578.32 MeV) is quite substantial.

Recent calculations employing the unitary-model-operator
approach generate −8.51/nucleon close to experiment for
40Ca also using the CDBonn interaction [52]. The present
calculation of −6.56 MeV/nucleon is almost 2 MeV per
particle less, pointing to the need of additional correlations
and an improved treatment of the propagators included
in the present self-energy calculation. We note that only
noninteracting propagators have been used in the construction
of the self-energy and that self-consistency was not attempted.
In addition, the proper treatment of LRC may also be relevant
for certain observables like the charge density. A microscopic
treatment of LRC is available for the self-energy in which
random-phase-approximation phonons are summed to all
orders in a Faddeev technique and inserted into the self-energy
[3,25–29]. This FRPA method does not explicitly include
high-momentum components so a combination of the current
method and the FRPA needs to be developed. Self-energy
calculations also have the additional advantage that other
observables of interest can be evaluated. Such observables
are provided in particular by elastic-nucleon-scattering data.
We turn to an analysis of the corresponding results from the
CDBonn self-energy in the following section.

G. Neutron-40Ca scattering

In this section we make a direct comparison among
CDBonn and DOM results and experimental data for
neutron-nucleus scattering, more specifically the n+40Ca
process. References to data can be found in Refs. [20,21].
The total cross section obtained from CDBonn self-energy is
comparable to the experimental data for energies between 5
and 10 MeV, while for larger energies it does not reproduce
the observations as shown by the solid line in Fig. 11.
However, currently our CDBonn self-energy includes
contributions only up to �max = 4 which is a reasonable limit
for calculating properties below the Fermi energy. If we
consider the DOM potential and only add the partial-wave
contributions to the total cross section up to �max = 4, the
corresponding result also fails to reproduce the experimental
data, as shown by the dashed line in Fig. 11. The most
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FIG. 11. (Color online) Comparison of the experimental cross
section (data points) with the CDBonn calculation (solid line) for
n+40Ca. The dotted line corresponds to the DOM fitted cross section,
and the dashed line represents the DOM result including up to � = 4
only. The cross section obtained from the CDBonn self-energy has
contributions only up to � = 4.

useful procedure is, therefore, to compare the DOM and
CDBonn calculation with the inclusion of the same number
of partial waves. It is then gratifying to observe that the
microscopic calculation generates similar total cross sections
as the DOM for energies where surface contributions are
expected to be less relevant, i.e., above 70 MeV. Although
calculations for more partial waves are, in principle, possible,
the amount of angular-momentum recoupling corresponding
to the appropriate basis transformations becomes increasingly
cumbersome. Nevertheless, it is clear that the current limit
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FIG. 12. (Color online) Effect of adding subsequent partial waves
for the total cross section from the CDBonn self-energy (upper
panel) and corresponding DOM result (lower panel). The total DOM
cross section with a converged contribution of the partial-wave
decomposition is also shown as the solid line in the lower panel.
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FIG. 13. (Color online) Differential cross section for indicated
energies. Shown are the CDBonn result (solid), DOM for the same
�max = 4 (short-dashed), and the full DOM cross section (dashed).

of �max = 4 is insufficient to describe the total cross
section already at relatively low energy irrespective of
whether surface effects (LRC) are properly included.
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To visualize in more detail the specific contribution from
each partial wave, in Fig. 12 we display cross sections calcu-
lated up to a specific �max for CDBonn (upper panel) and DOM
(lower panel). Despite the limitation of not having CDBonn
values for � > 4, both potentials provide a comparable cross
sections up to this angular momentum cutoff in the explored
energy range. In the lower panel we also include the converged
cross section of the DOM potential that provides a good
description of the data.

In Fig. 13, each panel displays the differential cross section
as a function of the scattering angle for the indicated energies,
covering 11, 26, 65, and 95 MeV for which data are available
(shown by the dots). The solid line in every panel corresponds
to the CDBonn result and the others to the DOM, with the
dashed line representing the converged cross section and
the short-dashed line limiting the sum up to �max = 4. It is
quite sobering to realize how far from the experimental data the
microscopic calculations are, especially at the lower energies.
This issue represents an important challenge to all many-body
approaches that are of interest to the study of rare isotopes,
since only hadronic reactions are available to study these and
their analysis relies on presently unavailable optical potentials.
At the higher energies (65 and 95 MeV) the differential cross
section, while somewhat out of phase with the DOM result
(up to � = 4), is of similar magnitude. Clearly, the missing
details of LRC at lower energy are needed to get better
agreement with the data, while the missing � contributions
also become quickly noticeable. Future work clearly requires
the calculation for higher � values but should also focus on
an improved inclusion of surface dynamics in order to better
reproduce the experimental nucleon-nucleus scattering data.
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FIG. 14. (Color online) In each panel, the inelasticity η�j for the
indicated states as a function of the center-of-mass energy. The solid
(dashed) lines correspond to j = |� + s| (j = |� − s|) states. Below
25 MeV, the CDBonn potential is real, therefore the η�j are equal to
1. Above 25 MeV the decrease of the η�j indicates a loss of flux as
the energy increases.

In order to gain more insight into the similarities and
differences between the CDBonn self-energy and DOM
potentials, we also display the inelasticities [see Eq. (28)]. The
CDBonn’s inelasticities η�j for each partial wave are presented
in Fig. 14 as a function of energy. As expected η�j is equal to
1 for energies below 25 MeV since the CDBonn potential is
purely real from −38 to 25 MeV. We observe that the loss of
flux above 25 MeV for each partial wave as a function of energy
is larger for �+ states than for �− ones starting at energies
	50 MeV, which reflects the presence of a non-negligible
spin-orbit content in the imaginary part of the CDBonn
self-energy. As expected, this difference is more pronounced
for higher orbital angular momenta. In the range of energies
considered all the inelasticities are always larger than 0.7.

We contrast these results with the inelasticities derived from
the DOM potential for the same partial waves, as shown in
Fig. 15. The inelasticities derived from the DOM potential
display little variation in the considered energy range and
saturate quickly and relatively close to 0.5. As anticipated
the DOM potential is, therefore, more absorptive than the
CDBonn self-energy. This difference can be attributed to the
lack of surface dynamics of the latter. We also note the absence
of an appreciable imaginary spin-orbit potential in the DOM
potential, in contrast with the CDBonn result. It is unclear
whether the absence of an imaginary spin-orbit potential in
the DOM is due to a compensating contribution that is not
present in the current CDBonn self-energy. It is also unclear
without further analysis whether the apparent absence of a need
for a nonlocal potential in the analysis of elastic scattering is
due to the truly local character of the self-energy or due to
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FIG. 15. (Color online) In each panel, the inelasticity η�j for the
indicated states as a function of the center-of-mass energy obtained
from the DOM potential. The solid (dashed) lines correspond to
j = |� + s| (j = |� − s|) states. The short dotted line indicates 0.5;
note that the DOM potential predicts inelasticities about 0.5 without
significant variations with energy or orbital angular momentum.
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a conspiracy of other contributing factors. We perform some
initial analysis into this issue in the next section.

H. Analysis of the CDBonn self-energy

Improving the analysis of elastic-scattering data above the
Fermi energy and observables related to quantities below
the Fermi energy in a DOM framework appears to depend
sensitively on the treatment of nonlocality in the imaginary part
of the self-energy. It is, therefore, useful to gain some insight
into the properties of microscopic self-energies which may
offer guidance how to implement such features in the future.
We, therefore, performed a few simple fits to represent the
central part of the imaginary part of the CDBonn self-energy
in coordinate space at a given energy assuming the following
form of the potential

WNL(r, r ′) = W0

√
f (r)

√
f (r ′)H

(
r − r ′

β

)
. (44)

We deviate from the standard Perey prescription for nonlo-
cality by employing square-root factors of the function f (r)
which is still represented by the conventional Woods-Saxon
form factor

f (r) = 1

1 + e
r−R
a0

, (45)

with R = r0A
1/3. The function H determines the degree

of nonlocality and is assumed to be a Gaussian following
Ref. [23]

H

(
r − r′

β

)
= 1

π3/2β3
exp

( |r − r′|2
β2

)
. (46)

When the angular dependence in H is projected out, an analytic
solution is obtained for each orbital angular momentum �

W�
NL(r, r ′) = W0

√
f (r)

√
f (r ′)

4

π1/2β3

× exp

(−r2 + r ′2

β2

)
i�(−1)�j�(iz), (47)

where z = 2rr ′/β2 and j� is a spherical Bessel function with a
purely imaginary argument. The fact that an analytic projection
is possible provided the motivation of the choice of Eq. (44).
In arriving at the result of Eq. (47) use has been made of
the relation between the spherical Bessel functions and the
Legendre polynomials P�:

j�(z) = 1

2i�

∫ +1

−1
dt eiztP�(t). (48)

We have chosen to fit the imaginary part at 65 MeV partly
because we expect that only at such energies the imaginary
part of the microscopic self-energy has real relevance since
the role of LRC is expected to be diminished. In practice, this
means that only the � = 0 self-energy needs to be represented
in terms of Eq. (47). If the choice of Eq. (44) is appropriate,
the other � values will be adequately represented as well. In
Fig. 16 we display the diagonal of the central imaginary part of
the self-energy in coordinate space for � = 0 for the CDBonn
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FIG. 16. (Color online) Diagonal part of CDBonn imaginary self-
energy at 65 MeV (solid) and the corresponding parametrized self-
energy (dashed). The results shown are for � = 0.

potential by the solid line. The fit according to Eq. (44) is quite
satisfactory and given by the dashed line. Quantitative results
for diffuseness a0, radius r0, and the nonlocality parameter β

are discussed below.
Another useful check on the overall relevance of the

parametrization of the nonlocal content of the potential is
to integrate over the variable r ′ in Eq. (47) to sample the
nondiagonal components and compare with the corresponding
integral for the CDBonn self-energy. The result of this
procedure is identified by �∗

int and shown in Fig. 17 as a
function of r for the parametrization (dashed) and CDBonn
self-energy (solid) for orbital angular momentum � = 0. This
more stringent test, including the sampling of nondiagonal
components of the self-energy, still yields a satisfactory
representation of the microscopic potential. It is interesting to
note that the shape of the “local” potential is more reminiscent
of a standard volume absorption.

Another useful quantity to gauge the characteristic of an
absorptive potential is the volume integral. For local poten-
tials this quantity is well constrained by experimental cross
sections [20,21]. A recent analysis of the FRPA self-energy
reveals useful insights into the comparison of microscopic
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FIG. 17. (Color online) CDBonn imaginary self-energy at
65 MeV integrated over r ′ (solid) and the corresponding inte-
grated parametrized self-energy (dashed). The results shown are for
� = 0.
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FIG. 18. (Color online) Imaginary volume integrals for the
CDBonn self-energy at 65 MeV (circles) and the corresponding result
for the parametrized self-energy (squares).

self-energies with DOM potentials at lower energy [24]. As
in Ref. [24] we define the volume integral for a given orbital
angular momentum � by

J �
W (E) = 4π

∫
dr r2

∫
dr ′r ′2 Im �∗

� (r, r ′; E). (49)

For a local potential it reduces to the standard definition of the
volume integral.

The implied � dependence of the chosen nonlocal potential
leads to predictions for higher � values for this quantity once
a fit to the � = 0 component of the self-energy has been
made. The result of the corresponding volume integrals per
nucleon are shown in Fig. 18 as a function of the � values
considered for the CDBonn self-energy. We employ dots for
the CDBonn results and circles for the predictions based on
Eq. (44). The agreement appears very satisfactory and may be
useful to extract the properties of the CDBonn self-energy
for even higher � values without recourse to an explicit
calculation.

The properties of the imaginary part of the CDBonn
self-energy in terms of its nonlocality content are summarized
in Table IV for four different energies, one below and
three above the Fermi energy. In all cases a substantial
imaginary part of the CDBonn self-energy is present at the
chosen energies. The parameters are fitted at each energy to
reproduce the essential properties of the self-energy including
the volume integral for � = 0, as discussed above for the case of
65 MeV.

TABLE IV. Parameters from nonlocal fits to the imaginary part
of the proton self-energy at different energies. W0 is in MeV; r0, a0,
β are in fm; and JW is in units of MeV fm3.

Energy W0 r0 a0 β |JW/A| |JW/A|
MeV CDBonn

−76 36.30 0.90 0.90 1.33 193 193
49 6.51 1.25 0.91 1.43 73 73
65 13.21 1.27 0.70 1.29 135 135
81 23.90 1.22 0.67 1.21 215 215

-200 0 200 400 600
E [MeV]

0

100

200

300

400

500

J W
/A

 [
M

eV
 f

m
3 ]

FIG. 19. (Color online) Imaginary volume integrals for the
CDBonn self-energy as a function of energy for different � values:
� = 0 (solid), � = 1 (dashed), � = 2 (short-dashed), � = 3 (dash-dot),
and � = 4 (dash-dash-dot).

We observe that the values for the diffuseness generate
standard values for the higher energies but are substantially
larger for 49 and −76 MeV. The radius parameter is quite
small below the Fermi energy but yields rather standard values
at positive energy. The value of the nonlocality parameter is
quite a bit larger than typically assumed for real nonlocal
potentials. Wave function corrections for nonlocality in the
analysis of (e, e′p) reactions typically assume values of β =
0.85 fm [53]. The DOM analysis of Ref. [22] introduced a
nonlocal Hartree-Fock potential to allow the calculation of
additional properties below the Fermi energy from the spectral
functions that are the solutions of the Dyson equation. The
adjusted nonlocality parameter in that work corresponded to
0.91 fm.

We note that with increasing energy the nonlocality
parameter decreases, suggesting a trend to a more localized
potential. Since for a local potential there is no � dependence
of the volume integral, we have investigated the behavior
of J �

W for different � values in a wide energy domain. The
results of this analysis are shown in Fig. 19. The degree of
nonlocality appears to be largest below the Fermi energy with
a substantial separation between the different � values. The
result for � = 0 also demonstrates that it is possible to have
the “wrong” sign for the volume integral. This can happen be-
cause the microscopic self-energy develops negative lobes off
the diagonal and a positive volume integral cannot be guar-
anteed as a result, as must be the case for a local potential.
Although the imaginary part above the Fermi energy is
negative, it is conventional to plot the imaginary volume
integral as a positive function of energy [21]. At positive
energy the volume integrals for different � at first exhibit a
spread although not as large as below the Fermi energy. Above
300 MeV, however, the curves apparently become similar
suggesting a trend to a more local self-energy.

IV. CONCLUSIONS

This paper presents calculations of elastic-scattering cross
sections that were derived from a microscopic calculation
of the nucleon self-energy at positive energies incorporating
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the effects of short-range correlations. A comparison of this
self-energy at positive and negative energy with the DOM
self-energy for the same nucleus provides relevant information
for future DOM fits and also clarifies the need for future
improvements of the microscopic calculation.

The properties of the microscopic self-energy of nucleons
derived from the realistic CDBonn interaction have been
studied for 40Ca. The calculation involves a two-step procedure
starting with the calculation of a GNM-matrix interaction in
nuclear matter for a fixed energy and density. In a second step,
the Fermi structure of the finite nucleus is incorporated by
expanding the finite-nucleus GFN matrix in the nuclear matter
one, including up to second-order terms. The self-energy is
obtained by including the corresponding self-energy terms
with imaginary parts above and below the Fermi energy,
with associated real parts obtained from the appropriate
dispersion relations. The analysis of the solutions of the Dyson
equation below the Fermi energy includes spectral functions
calculated in momentum space, momentum distributions,
quasihole properties (including spectroscopic factors), natural-
orbit properties, the nuclear charge density, and the energy of
the ground state of 40Ca.

An important motivation for the present work is to generate
insight from microscopic calculations what functional forms
of the nucleon self-energy can be employed fruitfully in the
analysis of experimental data in the DOM framework. Recent
DOM work has also focused on 40Ca and a parallel comparison
with DOM results is, therefore, pursued throughout the paper.

Nucleon spectral functions for the CDBonn potential
exhibit similar features as those from earlier work for 16O using
the Bonn-B potential although the former interaction appears
somewhat softer. This leads to a less pronounced presence
of high-momentum components at very negative energies.
The energy distribution of these momenta differs somewhat
from the one generated by the DOM self-energy although the
fraction of high-momentum particles is about 10% in both
calculations.

Since noninteracting intermediate states are employed in
the CDBonn self-energy and, therefore, LRC are not well
incorporated, there is no imaginary part in a substantial region
around the Fermi energy. As a result, only the lowest s1/2

state is broadened in accordance with experiment, whereas all
other quasihole states are represented by discrete states. The
DOM calculation exhibits a more realistic distribution of the sp
strength, including appropriate widths for p states as well. The
location of the quasihole states in the CDBonn calculation is
in reasonable agreement with experiment but the particle-hole
gap is larger than experiment. The associated spectroscopic
factors are close to 0.9 consistent with the 10% fraction of
high-momentum nucleons. The DOM spectroscopic factors
are about 0.2 smaller since the DOM self-energy includes
a strong coupling to the nuclear surface, leading to better
agreement with the analysis of (e, e′p) reactions.

The calculation of natural orbits demonstrates that the
largest occupation numbers are close to 0.9, very similar to
a recent DOM calculation, even though substantial differences
in spectroscopic factors occur, as discussed above. It appears
that nuclear natural orbits always generate such occupation
numbers in contrast with finite drops of 3He atoms, where

they can be substantially smaller in accordance with the much
stronger repulsion of the underlying interaction.

The nuclear charge density from the CDBonn self-energy
exhibits too-small a radius and too much charge at the origin
but is otherwise not too dissimilar from the DOM results.
Future work along these lines will have to include, for example,
a better treatment of self-consistency as it is nowadays possible
for nuclear matter calculations [32]. An important difference,
however, is the presence of a substantial nonlocal imaginary
self-energy below the Fermi energy in the microscopic calcu-
lations. This leads to a good convergence with orbital angular
momentum for the number of particles which amounts to 19.3
neutrons when �max = 4. No such convergence is obtained with
DOM calculations on account of the locality of the imaginary
self-energy, thereby overestimating the number of particles.
We therefore conclude that the introduction of nonlocality in
the imaginary DOM potentials in the future is an essential
ingredient that may also lead to a much better description of
the nuclear charge density.

The distribution of high-momentum nucleons from the
CDBonn calculation leads to their large contribution of 67% to
the energy per particle in agreement with earlier observations
for 16O. The more realistic distribution of high momenta
leads to about 2 MeV more binding per nucleon than from
the DOM self-energy while still underbinding by 2 MeV
the experimental result, pointing to the need of an improved
treatment of intermediate states in the self-energy and the
consideration of higher-order contributions in the nuclear-
matter GNM-matrix interaction.

We also performed an investigation of the CDBonn self-
energy at positive energy. The lack of higher partial waves
considered in the calculation leads to an underestimate of
the total cross section. A comparison with the same number
of partial waves in the DOM calculation demonstrates that
above 70 MeV there is reasonable agreement between the
two approaches, suggesting that volume absorption is well
represented by the present calculation but surface contributions
(LRC) are missing. The differential cross sections are not in
good agreement with the corresponding DOM results (which
generate good fits to the data when all contributing partial
waves are included). This lack of agreement is worrisome
but suggests that a lot more work is needed, in particular the
inclusion of LRC.

Finally, an analysis of the nonlocality of the imaginary part
to the CDBonn self-energy reveals that its main properties can
be quite well represented by a Gaussian nonlocality. Typical
nonlocality parameters are somewhat larger than those found
in the literature. Volume integrals indicate that nonlocality
is very important below the Fermi energy. Above the Fermi
energy, it is initially substantial but appears to weaken at higher
energies.

ACKNOWLEDGMENTS

This work was partly supported by the US National
Science Foundation under Grant No. PHY-0968941, Grant No.
FIS2008-01661 from MEC and FEDER (Spain), and Grant No.
2009SGR-1289 from Generalitat de Catalunya.

044319-15
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