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Stability of triaxial shapes in ground and excited states of even-even nuclei in the A ∼ 70 region
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Total-Routhian-surface calculations by means of the pairing-deformation-frequency self-consistent cranked
shell model have been carried out for even-even germanium and selenium isotopes to search for possible stable
triaxial deformations of nuclear states. The maximum triaxiality of |γ | ≈ 30◦ is found in the ground and excited
rotational states of the nuclei 64,74Ge. The calculations are compared with available experimental data, giving a
general agreement with observed triaxiality in the isotopes.
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I. INTRODUCTION

The study of deformed shapes of atomic nuclei suggests
that 85% of nuclei in the nuclear chart have prolate shapes [1].
The semiclassical periodic-orbit theory addresses that closed
orbits predominate at prolate shapes as compared with oblate
shapes [2–4], pointing in particular to the role of the flat bottom
of the nuclear potential and the spin-orbit interaction. Related
effects originate from the shell filling of high-j orbits. As
seen in the deformed diagrams of single-particle levels, high-j
low-� orbits have a strong prolate-driving force, while high-j
high-� orbits have an oblate-driving force. When sufficient
oblate-driving orbits are occupied, the nucleus can develop
into a stable oblate shape in its ground state (g.s.). For example,
it has been found that neutron-deficient mercury in which the
outermost valence neutrons occupy the high-j high−� orbits
of the i13/2 subshell have oblate shapes [5–7]. Certain particle-
hole excitations can also drastically modify the nuclear shape,
as evidenced in the excited 0+ states of certain Pb isotopes,
see Ref. [8] and references therein. Spherical and oblate shapes
make the next two largest groups of nuclei, though other shapes
(such as octupole deformations) are possible.

There is an interesting question why the nonaxial γ

deformation is not favored in the ground states of even-even
(e-e) nuclei. In the mathematical expression of the nuclear
shape, the quadrupole γ deformation seems to be equally
important as the quadrupole β2 parameter that describes axially
symmetric shapes. Evidence for nonaxial γ deformations
has been widely found in collective rotational states. The
γ deformation has led to very interesting characteristics of
nuclear motions, such as wobbling [9], chiral band [10], and
signature inversion in rotational states [11]. There is no doubt
that the γ softness and Coriolis coupling belong to the most
important mechanisms that break the axial symmetry of the
system dynamically [12]. The quest for stable triaxial shapes
in the ground states of e-e nuclei, with a maximum triaxial
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deformation of |γ | ≈ 30◦, is still a major theme in nuclear
structure [13]. An early work using the Skyrme-Hartree-Fock
(SHF) model with the neutron-proton interaction predicted the
coexistence of prolate and oblate shapes in the ground states of
e-e germanium isotopes [14]. However, their calculations were
restricted to axially symmetric shapes. In a recent investigation
employing the SHF and Gogny Hartree-Fock-Bogoliubov
(HFB) approaches, it was pointed out that most of the germa-
nium isotopes have soft triaxial deformations in their ground
states, but the results are sensitive to the choices of model
parameters [15]. Studies of the general evolution of shapes in
this mass region were presented previously in Ref. [16].

II. MODEL

In the present work, we use the cranked Woods-Saxon
(WS) shell model to investigate possible triaxial shapes in
ground and collective rotational states. The cranked WS model
with the parameters [17] used in our calculations reproduces
rather well at the mean-field level the oblate-prolate shape
coexistence and the evolution of the two shapes with neutron
number in light Kr isotopes as well as in neutron-deficient Pb
isotopes. One may therefore render some confidence in the
predictions of our work.

Experimentally, it is difficult to determine the value of the
triaxial parameter for a nucleus. When the axial symmetry
breaks, one cannot determine at the same time the quadrupole
deformation parameters of both β2 and γ from the experimen-
tal B(E2) value. Andrejtscheff et al. used the sum-rule method
to estimate the asymmetry from experimental electromagnetic
transition matrix elements [18,19]. In the method, the deviation
from the axial symmetry is written approximately as [18]
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√
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where 〈Q2
g.s.〉 ≈ ∑

j=1,2 |〈0+||E2||2+
j 〉|2 and 〈i||E2||j 〉 is the

experimental reduced E2 matrix element between the ith and
j th states. The parameter of

δeff = 1
3 arccos(〈cos 3δg.s.〉) (2)

gives an effective asymmetry of the nucleus [18,19]. However,
the asymmetry parameter δeff includes contributions from both
the static (rigid) and dynamic (soft) γ deformations [18,19].
In the rigid case, the parameter δeff corresponds to the usual
geometric-model parameter of the γ deformation [19]. In the
sum-rule method, the symmetric quadrupole deformation is
defined by [18,19]

βrms = 4π

3ZR2
0

√〈
Q2

g.s.

〉
. (3)

Again, such a definition includes contributions from both static
and dynamic symmetric deformations, which corresponds to
the usual β2 parameter in the rigid case [19].

With the above approximation, the asymmetry of about
70 e-e nuclei in A ≈ 50–80 [19] and 90–190 [18] were
estimated with the available experimental E2 matrix elements.
The most pronounced triaxiality in ground states was found in
the nuclei of 70–76Ge and 74–82Se [19]. Indeed, the maximum
triaxiality is very rare in the ground state. The sum-rule
method provides an approximation to deduce the value of
the triaxial parameter from the experimental data. However,
such an analysis is unable to determine whether the triaxiality
described by δeff is caused by the γ softness (dynamic) or
static γ deformation [18,19]. For a γ -soft deformed nucleus,
the γ -vibrational effect on collective rotation is pronounced,
and one expects low-lying γ -vibrational states to be observed
experimentally. According to the works of Refs. [20,21], one
should not expect rigid triaxiality in the ground state of any
nucleus.

In this paper, we investigate the possible maximum tri-
axiality of |γ | ∼ 30◦ in the ground states of e-e nuclei. The
total-Routhian-surface (TRS) method (see, e.g., Refs. [22,23])
has been used to determine the stability of the triaxiality with
rotational frequency. The TRS at zero frequency corresponds
to the usual potential energy surface (PES) for the ground state.
The TRS calculations are carried out by means of the pairing-
deformation-frequency self-consistent cranked shell model
[22,23]. In this model, pairing and deformation changing
as a function of rotational frequency are determined self-
consistently. In practical calculations, for a given frequency
and deformation, pairing is treated self-consistently by solving
the cranked pairing-correlated Hamiltonian and then the shape
of a given state is determined by minimizing the calculated
TRS (for details, see Refs. [22,23]). The single-particle
energies are obtained with the nonaxial deformed WS potential
[17]. Particle number projection is approximated by the
Lipkin-Nogami (LN) approach [22,24,25]. Both monopole and
quadrupole pairings [26–28] are considered with the monopole
pairing strength G determined by the average-gap method [29]
and quadrupole strengths obtained by restoring the Galilean
invariance of the paired many-body Hamiltonian [26,27].
The quadrupole pairing has an important influence on the
collective rotation [23,30]. In the cranked model calculation
[22,23], the nuclear energy at zero frequency is calculated
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FIG. 1. Deformation parameters β2 and γ obtained from calcu-
lated PESs for the ground states of even-mass 64–80Ge, indicated by
filled circles with solid lines. Open circles with dashed lines are
for βrms (in upper panel) and δeff (in lower panel) values given in
Ref. [19] using the sum-rule method with available experimental
reduced E2 matrix elements. For δeff , the authors of Ref. [19]
estimated experimental errors which are indicated by error bars.

by the Strutinsky method [31] with the standard liquid-drop
energy [32]. Calculations are performed in the lattice of
quadrupole (β2, γ ) deformations with the hexadecapole β4

variation.

III. CALCULATIONS AND DISCUSSIONS

Calculated deformation values deduced from the PES
calculations for the ground states of even-mass 64–80Ge are
shown in Fig. 1. At each grid point of the PES quadrupole
deformation (β2, γ ) lattice, the calculated energy has been
minimized with respect to the hexadecapole deformation β4.
A prolate (oblate) shape corresponds to γ = 0◦ (±60◦). For
the ground states of germanium isotopes, we see the shape
transitions from a triaxial shape in 64Ge to nearly oblate shapes
in 66–72Ge, and to a γ = −30◦ triaxial shape again in 74Ge,
and toward weakly deformed prolate shapes in 78,80Ge (note
that, for a ground state, the PES is reflection symmetric about
γ = 0◦). This is in agreement with the possible existence of
a shape transition around N = 40 as predicted by Lecomte
et al. [33].

It is a striking observation that the stable nucleus 74Ge
is calculated to have a deformed |γ | = 30◦ triaxial shape in
the ground state, which would be a unique case in the whole
nuclear chart. To determine the stability of the triaxiality in
74Ge, we performed the TRS calculations presented in Fig. 2 at
the rotational frequencies of h̄ω = 0.0, 0.3, 0.9, and 1.2 MeV,
corresponding to a spin range of I ∼ (0–24)h̄. It appears
that the triaxial minimum at β2 ≈ 0.23 and γ ≈ −30◦ exists
starting from the ground state (h̄ω = 0) up to a rotational
frequency of h̄ω ≈ 1.1 MeV (correspondingly I ≈ 18). The
triaxial minimum keeps yrast up to h̄ω ≈ 0.9 MeV (I ≈ 14)
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FIG. 2. Calculated TRSs for the lowest positive-parity rotational
states in 74Ge, at (a) h̄ω = 0.0, (b) 0.3, (c) 0.9, and (d) 1.2 MeV.
The black dot indicates the lowest minimum. The energy difference
between neighboring contours is 200 keV.

and disappears at h̄ω ≈ 1.2 MeV. A noncollective oblate
minimum at β2 ≈ 0.24 and γ = 60◦ becomes yrast at h̄ω ≈
1.0 MeV. One should also note that the depth of the triaxial
minimum increases with increasing the rotational frequency
in the range of 0.0 � h̄ω � 0.9 MeV. Our calculations show
that a rotational alignment of a pair of neutron g9/2 orbits
takes place at h̄ω ≈ 0.5 MeV and again one pair of proton g9/2

orbits align at h̄ω ≈ 1.0 MeV, resulting in the decrease of the
collectivity of the triaxial minimum and the appearance of the
noncollective oblate minimum.

Experimentally, 0+
2 , 2+

2 , 4+
1 states in 74Ge were observed to

have almost degenerate energies at about twice the energy of
the 2+

1 state [34]. These three excited states were viewed as
vibrational states [34]. However, the work by Toh et al. [35]
disagrees with the vibrational interpretation. Instead it was ar-
gued that the 0+

1 , 2+
1 , and 4+

1 states form a rotational band, while
the 0+

2 level is an intruder spherical state [35]. Based on the
analysis of the Coulomb excitation, a similar suggestion was
put forward also for 72Ge [36]. The present TRS calculations
do not reproduce reasonably the experimental energies of the
observed excited states. The calculated TRSs in Fig. 2 for the
spin range of I ≈ 0–4 are, in particular, soft toward spherical
deformation, having only about a 300 keV difference between
the spherical shape and the triaxial minimum in 74Ge. This
implies that the low-energy excitation spectrum in the spins
of 0 � I � 4 will be dominated by the vibrational motion

that is not included in the TRS model. In addition, at triaxial
deformations, one should invoke three-dimensional cranking
calculations to better describe the energies of collective
rotational states. The present TRS calculations show that
the triaxial shape becomes more stable at I � 6, which can
form a triaxial deformed rotational band with I = 6–18,
providing a useful prediction for the possible experimental
observation of the band including wobbling sequences. The
nuclei 72,76Ge are calculated to be very soft in both γ and β2

deformations, implying an appreciable effect from triaxiality
on the vibrational excitation spectrum but no static triaxial
deformation.

In Fig. 1, we also displayed the deformation parameters
given in Ref. [19] for even-even 70−76Ge, which were deduced
from the available experimental reduced E2 matrix elements
using the sum-rule method and considered as experimental
quadrupole-deformation values [18,19]. In the 74,76Ge cases,
the βrms values estimated by the sum-rule approximation are
clearly larger than the β2 values obtained in calculated PESs.
However, our calculations show that these two nuclei are
specially soft in both β2 and γ deformations in their ground and
lowly excited states (see, e.g., Fig. 2 for 74Ge), and therefore
the larger βrms values will indicate the large contribution from
the softness (dynamic).

For selenium isotopes, shown in Fig. 3, the PES calculations
give large oblate deformations in the ground states of 68–76Se,
and a change into a weakly deformed prolate shape at
78Se. This agrees with the experimental suggestions of well-
deformed oblate shapes for the ground states of 68Se [37],
70,72Se [38], and 74Se [39]. The asymmetry feature in 74–82Se
was given in Ref. [19] using the available experimental E2
matrix elements. However, as has been mentioned, the sum-
rule approximation employed in Ref. [19] cannot distinguish
whether the γ deformation (static) or the γ softness (dynamic)
causes the asymmetry feature. Our PES calculations show
that 74–82Se have soft quadrupole deformations that can result
in significant dynamical deformation effects. Recently, the
authors of Ref. [40] calculated low-lying states in 68,70,72Se
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FIG. 3. Similar to Fig. 1, but for even-mass 68–82Se.
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FIG. 4. Calculated WS single-proton levels versus the γ defor-
mation. Solid (dot-dashed) curves stand for positive-parity (negative-
parity) levels. The calculation is done with fixing β2 = 0.23 and
β4 = 0.0 (corresponding to the deformation values of the ground
state of 74Ge). The proton numbers of Z = 32 and 34 are indicated.
The neutrons have similar single-particle levels.

using the local quasiparticle-random-phase approximation
(local QRPA) which includes large-amplitude shape mixing.
Their calculations showed remarkable dynamic triaxiality in
the selenium isotopes [40].

Single-particle level diagrams can give a further under-
standing of the origin of the triaxiality. In Ref. [41], a deformed
γ ≈ 30◦ shell gap at Z(N ) = 32 was revealed already. Figure 4
displays the calculated WS diagram against the triaxial
deformation γ , which gives a similar level structure to the
Nilsson diagram of Ref. [41]. Indeed, the PES calculations
show that the nucleus 64Ge (Z = N = 32) has a triaxial shape
with γ ≈ −25◦ (see Fig. 1). At N = 34, however, an oblate
shell gap appears, which results in an oblate shape in 66Ge
(N = 34). With increasing neutron number, the effect from the
N = 34 oblate gap decreases, and hence the deformations of

heavier germanium isotopes change toward the triaxiality (or
prolate). Single-particle spectra for protons and neutrons are
rather similar, having shell gaps at the same particle numbers.
The Z = 34 oblate gap, combined with the effect from the
neutron N = 34 oblate gap, will be the reason for the e-e
selenium isotopes lighter than 78Se to have oblate shapes (see
Fig. 3).

IV. SUMMARY

In summary, using the self-consistent total-Routhian-
surface model, we investigated the shapes of ground and
excited rotational states in even-mass 64–80Ge and 68–82Se
isotopes. The shape phase transition from oblate, through
triaxiality, to prolate deformations has been found in ger-
manium isotopes. Especially the 74Ge nucleus has the most
pronounced triaxiality starting from the ground state. Still,
the Ge and Se isotopes have γ -soft shapes, resulting in
significant dynamical triaxial effects. There is no evidence
in the calculations pointing toward rigid triaxiality in ground
states. In 6 � I � 18, however, 74Ge has a stable γ ∼ −30◦
(β2 ≈ 0.22) triaxial shape, which can lead to a well-deformed
triaxial rotational band, providing a useful prediction for
a future experimental search of the band. The quantitative
descriptions of the experimental energies of the excited states
can be improved by the inclusion of the vibrational dynamics,
such as in the local QRPA calculation [40].
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