
PHYSICAL REVIEW C 84, 044310 (2011)

Rotational states and masses of heavy and superheavy nuclei
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The macroscopic-microscopic model with the Lublin-Strasbourg drop, the Strutinsky shell-correction method,
and the BCS approach for pairing correlations is used with the cranking model to describe nuclear masses and
rotational bands in even-even Ra to Cn isotopes of actinide and transactinide nuclei. The single-particle levels
and potential-energy surfaces are calculated with the Yukawa-folded single-particle potential using the “modified
funny hills” (c, h) shape parametrization. A monopole pairing force is used in our calculations. At equilibrium
deformation the pairing strength is adjusted for every nucleus so as to reproduce the experimentally known
rotational E2+ state within the cranking model. The pairing strength obtained in this way is used to predict the
masses and rotational states in superheavy No to Cn nuclei. It is also shown that the rotational states with L � 10
in Ra to No nuclei evaluated using a simple rotational formula agree quite well with the data. We propose a simple
mechanism which takes into account a dynamical coupling of rotation with the pairing field that then allows
one to obtain an excellent agreement with the data up to the states with the largest angular momenta (L � 30)
measured in this mass region.
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I. INTRODUCTION

Experimentally known rotational EL+ states (up to L = 30)
of even-even Ra to No isotopes [1,2] are investigated within the
rotational model using the cranking moment of inertia [3]. The
potential-energy surfaces of these nuclei are obtained using the
macroscopic-microscopic method with the Lublin-Strasbourg
drop (LSD) [4] and the Strutinsky shell-correction method
[5], evaluated on the basis of a Yukawa-folded (YF) mean-
field potential [6]. Pairing corrections are calculated within the
BCS approach [7] with the pairing strengths adjusted for every
nucleus so as to reproduce the quadrupole E2+ rotational states
found in the experiment. The pairing strength obtained for a
given nucleus in this way is then used to write down a Z- and
N -dependent expression for it. The equilibrium deformations
are determined by minimizing the total energies on the two-
dimensional (c, h) grid of the “modified funny hills” (MFH)
shape parametrization [8], where c represents an elongation
parameter and h measures the neck degree of freedom. The
moment of inertia is shown to strongly depend on the pairing
gap which leads to a contraction of the theoretical rotational
spectra when one includes the coupling of the rotational and
pairing degrees of freedom (see also Ref. [9]). Our results turn
out to be close to those of Ref. [10]. We have finally used
our approach to predict the masses and E2+ energies of some
superheavy nuclei.

II. THEORETICAL MODEL

Nuclear energy is calculated within the macroscopic-
microscopic model [11] with the LSD expression [4] for
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macroscopic energy and the Strutinsky shell correction [5]
plus the BCS pairing-correlation energy for the microscopic
part:

E = ELSD + Ecorr. (1)

The microscopic correction needs to be determined separately
for protons and neutrons,

Ecorr = Eshell + Epair = E
p

shell + En
shell + Ep

pair + En
pair . (2)

The Lublin-Strasbourg drop energy is given as

ELSD = −bvol(1 − κvolI
2)A + bsurf(1 − κsurfI

2)A2/3

+ bcur(1 − κcurI
2)A1/3 + 3

5
e2 Z2

rch
0 A1/3

−C4
Z2

A
− C0 exp (−W |I |/C0), (3)

with the relative isospin I = (N − Z)/A and where the
parameters have been obtained in Ref. [4] by a fit to the known
masses of 2766 isotopes:

bvol = 15.4920 MeV, κvol = 1.8601,

bsurf = 16.9707 MeV, κsurf = 2.2938,

bcur = 3.8602 MeV, κcur = −2.3764,

rch
0 = 1.21725 fm, C4 = 0.91810 MeV,

C0 = 10 MeV, W = 42 MeV.

The deformation LSD energy is

ELSD
def = ELSD(c, h) − ELSD(1, 0). (4)

Note that (c=1, h=0) corresponds to the spherical shape.
The total deformation energy is similarly

Etot
def = E(c, h) − E(1, 0). (5)
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The shell-correction energy in Eq. (2) is defined as the
difference between the sum of single-particle (s.p.) energies
eν and its average value

Eshell =
∑

ν

eν − Ẽ, (6)

which is obtained from the sum of single-particle energies by
a Strutinsky-averaging procedure [5]

Ẽ = 2
∫ λ

−∞
eρ̄(e) de, (7)

where the smoothed level density distribution is

ρ̃(e) = 1

γ

∑
ν

f

(
e − eν

γ

)
, (8)

with a smoothing function f (u) given by a Gaussian multiplied
by a sixth-order correctional polynomial

f (u) = 1√
π

e−u2

(
35

16
− 35

8
u2 + 7

4
u4 − 1

6
u6

)
. (9)

The smoothing width γ has to be chosen in such a way as to
make the energy Ẽ of Eq. (7) stationary (fulfilling the so-called
plateau condition) which is generally the case when choosing
the smearing width slightly larger than the average major shell

spacing γ =1.2 h̄
◦
ω0, with h̄

◦
ω0 = 41/A1/3 MeV.

The Fermi level λ in Eq. (7) is determined by the particle-
number equation

N = 2
∫ λ

−∞
ρ̃(e)de, N = {N,Z}. (10)

The pairing correction energy is defined as the difference
between the BCS energy evaluated at the minimum with
respect to the variational parameters uν and vν and the sum of
s.p. energies eν minus the average pairing energy [12]

Epair = Emin
BCS −

∑
ν

eν − 〈Epair〉. (11)

The BCS energy of a system with even number of particles
and a seniority pairing force is given by [3]

EBCS =
∑
ν>0

2eνv
2
ν − G

(∑
ν>0

uνvν)

)2

− G
∑
ν>0

v4
ν , (12)

where vν =
√

(eν − λ)2 + 	2 is the occupation probability
amplitude of the pair {|ν〉, |−ν〉} with |−ν〉 being the time-
reversed of state |ν〉 and uν =

√
1 − v2

ν . The parameters 	 and
λ are the pairing gap and Fermi energy, respectively. The
minimum of the BCS energy Emin

BCS corresponds to 	0, which
one can evaluate from the coupled system of the gap and the
particle number BCS equations [3]. The pairing strength G is
the input parameter of the BCS theory and influences not only
the energies but also the cranking moments of inertia.

The nuclear ground-state mass is obtained as

Mth = ZMH + NMn − 0.00001433Z2.39 + E, (13)

where MH is the mass of the hydrogen atom and Mn the
neutron mass. The third term takes into account the effect

of the electronic orbits, and E is the binding energy of
Eq. (1).

The cranking moment of inertia [3] is given by

J = 2h̄2
∑
μ>0

∑
ν>0

|〈ν|ĵx |μ〉|2
Eμ + Eν

(uμvν − uνvμ)2, (14)

where μ and ν are labels of the s.p. states with quasiparticle
energies Eμ and Eν . The operator ĵx is the projection of
the total s.p. angular momentum on the axis around which
the rotation is performed in the intrinsic frame (x axis). The
ground-state rotational band for the lowest angular momenta
L can then be described by a simple rotational model:

EL+ = L(L + 1)h̄2

2J . (15)

III. CALCULATION

We have performed calculations as described above for 88
even-even nuclei from 226Ra up to 278Cn which are sketched in
Fig. 1 in the (N, Z) plane. Isotopes with measured E2+ states
(between 226Ra and 254No) are denoted by crosses. Superheavy
elements, where the rotational states E2+ are not yet known, are
marked by circles. For these nuclei, a prediction of the masses
and E2+ energies is given. The choice of this region is the same
as the one of Ref. [10]. It contains deformed even-even nuclei
which can exist due to shell corrections. Neutron separation
energies for these nuclei are positive indicating that they are
bound, and their rotational states should exist and be measured
in the future.

Our calculations were performed with the MFH shape
parametrization [8] on a two-dimensional deformation mesh
with elongation parameter c and neck parameter h: 0.8 � c �
1.6 and −0.4 � h � 0.4. The calculations are performed in
the following steps:
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FIG. 1. Nuclei investigated in the present paper: crosses indicate
nuclei for which rotational states are measured, open circles super-
heavy nuclei for which masses and E2+ energies are predicted. The
solid line corresponds to Green’s β stability line.
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FIG. 2. (Color online) Values of the pairing strength parameter
g0 needed to reproduce E2+ energies of even-even Ra to No
isotopes.

(i) First the YF s.p. potential is diagonalized for each
nucleus and the s.p. levels are obtained in every grid point
of the deformation landscape.

(ii) The microscopic corrections are then determined
making sure that the plateau condition of the Strutinsky method
is well satisfied.

(iii) Following Refs. [13,14], where the pairing strength
for protons and neutrons were approximated by a formula

GpZ2/3 = GnN
2/3 ≈ 0.3h̄

◦
ω0 with one constant only, we have

chosen the following expression for the pairing strength in our
model:

Gq = g0

A1/3 N 2/3
, N = {N,Z}, (16)

with the constant g0 in MeV (instead of h̄
◦
ω0 units) and

assuming that the pairing window contains
√

15N s.p. levels
closest to the Fermi surface.

In nuclei with experimentally known E2+ energy, the
theoretically determined E2+ will, generally, not quite coincide
with its experimental value. We therefore take the freedom
to adjust, for each nucleus, the value of the pairing-strength
parameter g0 in such a way that theoretical and experimental
E2+ agree perfectly. The resulting values of such pairing
strengths are presented in Fig. 2. To these results one average
g0 was fitted.

(iv) Using this optimal pairing strength g0 = 12.29 MeV,
the potential-energy surface of the nucleus is recalculated and
the equilibrium deformation (ceq, heq) is determined. At the
equilibrium point, the cranking moment of inertia is used
to evaluate the rotational levels for different L values with
the rotational formula (15). No stretching effect is taken into
account, since we have found that in this region of nuclei the
equilibrium deformation stays almost the same with growing
angular momentum. The rms deviation of the theoretical E2+
energies for all 39 investigated nuclei, where experimental
data exist, is 1.8 keV only, as compared to a rms deviation of
4.1 keV for the 27 isotopes discussed in Ref. [10].

In the following section we present a comparison of the
obtained rotational energies with the experimental data and
predict the positions of the E2+ states and the masses of
superheavy nuclei.

IV. RESULTS

Figure 3 shows for the nucleus 238Cm the different
ingredients of the total deformation energy Etot

def , namely, the

FIG. 3. (Color online) Energies and moments of inertia of 238Cm on the c, h plane.
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FIG. 4. Cross section of the potential energies E for 236U (top)
and 238Cm (bottom) nuclei as function of the mass-asymmetry
deformation parameter α at the first and second minima.

Strutinsky shell-correction energy Eshell, the pairing energy
Epair, the sum of both microscopic corrections Ecorr and
the macroscopic deformation energy ELSD

def , together with the
cranking moment of inertia J . One notices that shell and
pairing energies oscillate strongly with amplitudes of 10 and
5 MeV, respectively, but these corrections are almost in oppo-
site phases, so the total correction energy fluctuates much less.
The macroscopic LSD energy has a broad minimum around
the spherical shape (c = 1, h = 0), and the macroscopic saddle
point is located 2.1 MeV above the ground state at deformation
c = 1.4 and h = 1, so the correction energy modifies this
landscape dramatically. The total deformation energy of 238Cm
has two minima of comparable depth located, respectively, at
(c = 1.175, h = −0.12) and (c = 1.427, h = 0). The cranking
moment of inertia grows rapidly with increasing elongation c

and does not depend significantly on the neck parameter h. We
have calculated the rotational energies and masses in the first
minima for all nuclei.

All calculations presented here are made for shapes with
reflection symmetry, since the majority of investigated nuclei
have in the ground state a deformation α = 0 [15–17]. In Fig. 4
the cross section of the potential-energy surfaces in the α

direction at the first and the second minimum are shown for
236U and 238Cm. In both cases the stiffness with the reflection
asymmetry degree of freedom α is smaller for the ground state
than for the shape isomeric minimum.
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FIG. 5. Rotational energies EL+ of the 248Cm nucleus. Exper-
imental data (×) are taken from Ref. [2]. Estimates of a simple
rotational model, Eq. (15), are denoted by (◦) and those of the
dynamical model, Eq. (18), by (•). A standard average pairing energy
E0 of 2.3 MeV is used.

For the above selected even-even Ra to No isotopes,
the rotational energies are presented in Table I for angular
momenta up to L = 30. The E2+ energies evaluated using
the simple rotational L(L + 1) rule of Eq. (15), denoted as
“r” in the table, are compared with the experimental data “e”
taken from Refs. [1,2] and the energies “d” obtained taking
into account the dynamical coupling of the rotation with the
pairing mode as described by Eq. (18) below. For a majority
of investigated nuclei, a reasonably good agreement of the
pure rotational estimates is obtained for angular momenta up
to about L � 10. After that, at higher angular momenta and
excitation energies, it appears that the simple rotational model
does not work properly, as the experimental data no longer
fulfill the L(L + 1) rule and the corresponding level scheme
appears more stretched than the experimental one, as shown
for the 248Cm isotope in Fig. 5.

It is well known, however, that a rapid rotation influences
the pairing correlation. We therefore propose here a simple
model which allows us to explain this mechanism and obtain
some more quantitative estimates. In a standard calculation,
the ground-state pairing gaps for protons (	p

0 ) and neutrons
(	n

0) are determined from the BCS equation, i.e., looking for
the minimum with respect to 	q (q = p or n) of the BCS
energy of a nonrotating nucleus. From the cranking formula,
one can show that in the absence of pairing correlations (	p =
	n = 0) the moment of inertia is approximately equal to the
rigid-body moment of inertia Jrig but decreases with growing
	 [18,19]. Its 	 dependence can be approximated by

J (	) = Jrig

1 + a(	/	0)2
. (17)

Here 	/	0 corresponds to the line 	p/	
p

0 = 	n/	n
0 on the

(	p, 	n) plane, where, as above, 	
p

0 and 	n
0 are the ground-

state pairing gaps, and a = Jrig/J0 − 1 with J0 the ground-
state cranking moment of inertia. Such a dependence of the
moment of inertia reflects in the rotational energy (15) which
being inversely proportional to J (	) grows with 	 and shifts
the minimum of the BCS energy toward smaller 	. This effect
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TABLE I. Experimentally known high-spin rotational bands (e, in keV) of U to No isotopes compared with those evaluated using the
L(L + 1) rule (r) and the estimates obtained using the dynamical coupling of rotation and pairing mode (d).

Nucleus Lπ 2+ 4+ 6+ 8+ 10+ 12+ 14+ 16+ 18+ 20+ 22+ 24+ 26+ 28+ 30+

r 51.7 172.3 361.9 620.4 947.8 1344.2 1809.5 2343.7 2946.9 3619.0 4360.0 5170.0 6048.9 6996.7 8013.5
230U e 51.7 169.3 346.1 578.0 856.3 1175.6 1531.5 1921.1 2337.8

d 51.7 171.3 357.4 607.4 917.6 1284.1 1701.7 2165.3 2669.1 3207.1 3773.6 4363.0 4970.2 5591.0 6222.3
r 45.0 150.0 315.0 540.0 825.0 1170.0 1575.0 2040.0 2565.0 3150.0 3795.0 4500.0 5265.0 6090.0 6975.0

240U e 45.0 150.6 313.2 528.7 792.9 1100.5
d 45.0 149.1 311.1 528.7 798.8 1117.7 1481.2 1884.6 2322.7 2790.3 3282.2 3793.1 4318.3 4853.7 5396.0
r 44.6 148.7 312.2 535.2 817.7 1159.6 1561.0 2021.9 2542.2 3122.0 3761.3 4460.0 5218.2 6035.9 6913.0

236Pu e 44.6 147.5 305.0 515.7 773.5 1074.3 1413.6 1786.0
d 44.6 147.7 308.1 523.2 789.9 1104.3 1461.9 1857.7 2286.4 2742.5 3220.5 3715.1 4221.3 4735.1 5253.1
r 44.2 147.3 309.4 530.4 810.3 1149.2 1547.0 2003.7 2519.4 3094.0 3727.5 4420.0 5171.4 5981.7 6851.0

244Pu e 44.2 155.0 317.9 535.0 802.4 1115.9 1471.0 1863.5 2289.0 2742.0 3215.0 3690.0
d 44.2 146.5 305.7 519.7 785.5 1099.7 1458.1 1856.4 2289.7 2752.8 3240.8 3748.7 4271.7 4806.0 5348.0
r 42.3 141.0 296.1 507.6 775.5 1099.8 1480.5 1917.6 2411.1 2961.0 3567.3 4230.0 4949.1 5724.6 6556.5

242Cm e 42.3 138.1 288.3 489.1 735.9 1026.2 1355.2 1720.8 2119.5 2549.3 3008.8 3497.4
d 42.3 140.1 292.3 496.6 750.0 1048.9 1389.2 1766.3 2175.2 2610.7 3067.7 3541.2 4026.3 4519.1 5016.1
r 42.9 143.0 300.3 514.8 786.5 1115.4 1501.5 1944.8 2445.3 3003.0 3617.9 4290.0 5019.3 5805.8 6649.5

246Cm e 42.9 141.0 294.1 498.7 751.5 1048.3 1385.3 1758.4 2163.3 2596.3 3054.2 3533.3 4031.4
d 42.9 142.2 296.7 504.4 762.3 1067.2 1415.0 1801.3 2221.5 2670.6 3143.6 3635.6 4142.0 4658.9 5182.8
r 43.4 144.7 303.8 520.8 795.7 1128.4 1519.0 1967.5 2473.8 3038.0 3660.1 4340.0 5077.8 5873.5 6727.0

248Cm e 43.4 143.8 298.9 506.4 762.8 1064.1 1406.1 1783.9 2192.6 2627.0 3083.4 3559.5 4055.3 4572.3 5113.9
d 43.4 143.9 300.3 510.6 772.1 1081.4 1434.7 1827.7 2255.8 2714.1 3197.7 3702.0 4222.2 4754.5 5295.4
r 46.0 153.3 322.0 552.0 843.3 1196.0 1610.0 2085.3 2622.0 3220.0 3879.3 4600.0 5382.0 6225.3 7130.0

248Fm e 46.0 152.0 315.2 535.6 810.1 1133.1 1503.0
d 46.0 152.5 318.5 541.8 819.8 1149.0 1525.7 1945.6 2404.0 2896.1 3417.0 3962.0 4526.4 5106.4 5698.4
r 45.0 150.0 315.0 540.0 825.0 1170.0 1575.0 2040.0 2565.0 3150.0 3795.0 4500.0 5265.0 6090.0 6975.0

250Fm e 45.0 147.0 304.9 516.9 780.2 1092.0 1448.6 1846.2 2281.2 2749.8 3248.8
d 45.0 149.2 311.6 530.1 802.1 1124.3 1492.9 1903.9 2352.6 2834.3 3344.3 3877.8 4430.4 4998.1 5577.6
r 46.0 153.3 322.0 552.0 843.3 1196.0 1610.0 2085.3 2622.0 3220.0 3879.3 4600.0 5382.0 6225.3 7130.0

252No e 46.0 153.8 320.7 544.5 821.7 1150.1 1526.6 1942.3 2395.5 2879.2
d 46.0 152.6 318.7 542.4 821.0 1151.4 1530.0 1952.7 2415.0 2912.3 3439.9 3993.2 4567.8 5159.8 5765.7
r 44.0 146.7 308.0 528.0 806.7 1144.0 1540.0 1994.7 2508.0 3080.0 3710.7 4400.0 5148.0 5954.7 6820.0

254No e 44.0 145.3 304.5 518.6 785.9 1104.0 1470.6 1885.3 2341.3 2839.3 3375.3 3945.3
d 44.0 145.9 304.8 518.6 784.9 1100.6 1462.1 1865.4 2306.2 2780.0 3282.1 3808.1 4353.5 4914.6 5487.8

is illustrated in Fig. 6, where the sum of the BCS and rotational
energy

ER
BCS(	; L) = EBCS(	) + h̄2L(L + 1)

2J (	)
(18)

relative to the BCS ground-state energy EBCS(	0) is plotted
as a function of 	/	0. The dependence of the BCS energy on
	 is approximated by a cubic form

EBCS(	) = E0

[
−3

(
	

	0

)2

+ 2

(
	

	0

)3
]

, (19)

where E0 = −〈Epair〉 ≈ 2.3 MeV is the absolute value of the
average pairing correlation energy [20].

It is seen in Fig. 6 that the energy minima (black points)
corresponding to L = 20 and L = 30 are significantly shifted
down in comparison with the pure rotational-model estimates
(open circles). This dynamical coupling of rotation with the
pairing field brings the theoretical estimates to the experimen-
tal data as illustrated for 248Cm in Fig. 5. Such an effect of

a dynamical coupling of the rotation with the pairing mode
is taken into account for the estimates denoted by “d” in
Table I, where the longest (Lmax > 10) rotational bands in
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FIG. 6. Energy gap dependence of the pairing and rotational
energy.
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FIG. 7. (Color online) Mass discrepancies for Fm to Hs isotopes
as functions of neutron number N.

the region were shown. Let us insist here on the fact that
not a single parameter is adjusted to the data. As can be
seen in Fig. 5 these dynamical estimates are, indeed, close
to the experimental data, even for the levels with the largest
measured angular momenta, which proves that the coupling of
the rotation with the pairing mode is important and should be
taken into account in future calculations. All data presented in
Table I are evaluated without taking into account the change of
the equilibrium deformation with growing angular momenta,
since in this region of nuclei this effect is smaller than the one
described above.

Nuclear masses are a good test ground for the quality of the
model used to determine them, in particular for such different
ingredients as the nuclear deformation energies or the pairing-
energy strength. The deviations of the nuclear masses from
the experimental data are presented in Fig. 7 for the heaviest
elements Fm to Hs, where experimental data exist. The rms
deviation for the 17 isotopes presented here is 0.29 MeV
as compared with the LSD [4] rms deviation of 0.41 MeV
for the same sample of nuclei. It is seen that the difference
between experimental and theoretical masses (evaluated with
the pairing strength adjusted to the E2+ energies rather than to
the experimental mass differences) does not exceed 0.6 MeV.
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FIG. 8. (Color online) Theoretical and experimental masses for
No to Cn isotopes as functions of neutron number N.
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FIG. 9. (Color online) Theoretical rotational energies E+
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to Cn isotopes as functions of neutron number N.

Such a good result encourages us to predict the masses for other
superheavy nuclei. The result is shown in Fig. 8. To compare
with the results of our calculations, only a few experimental
masses are known in this superheavy region. They are denoted
by crosses or boxes and agree rather well with our predictions.

We have used also our model with the pairing constant g0 =
12.29 MeV to predict E2+ energies of a series of No up to Cn
superheavy nuclei. The trend for different isotopic chains is
shown in Fig. 9. We find E2+ energies in the range between 30
and 70 keV, as compared to a range between 40 and 60 keV
given in Ref. [10].

V. CONCLUSIONS

The deformation energies obtained for 88 even-even ac-
tinide and transactinide nuclei between Ra and Cn generally
show a deep, well-deformed first minimum and, in some
isotopes, a second minimum is also found. The location
of the potential-energy minimum turns out to be weakly
dependent on higher angular-momentum values and not too
large deviation of the pairing strengths.

Parallel to the standard way of fixing the pairing constant
g0 [Eq. (16)] from the mass difference of neighboring isotopes
(Z = const) and isotones (N = const) which gives in this
region of nuclei [14] g

p

0 = 12.26 MeV for protons and gn
0 =

11.77 MeV for neutrons, we have obtained the value of g0 =
12.29 MeV by reproducing the E2+ rotational energies when
assuming g

p

0 = gn
0 = g0. Such value of g0 was used to foresee

the rotational and binding energies of superheavy nuclei, where
such energies have not yet been measured.

This alternative method is especially suitable in the heaviest
nuclei region, where the chains of known isotopes and isotones
are rather short and one cannot effectively use the four-point
mass difference formula. The estimates of the binding energies
of the heaviest nuclei (see Fig. 7) evaluated with g0 fixed to
positions of the lowest E2+ states are close to the experimental
values, which in our opinion validates the new method.
Generally, one can say that the pairing strength adjusted to
E2+ positions reproduces well the binding energies in all cases
where one deals with good rotors, which is the case in very
heavy nuclei.
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The pure rotational model used to evaluate the excitation
energies of the rotational band gives a nice agreement with the
experimental data for the lowest rotational states up to L = 10,
wherever such data exist; but for the larger angular momenta,
the agreement becomes worse. We have shown that to obtain
a reasonable description for higher angular-momentum states
requires taking into account the dynamical coupling of the
rotation with the pairing field.

To obtain a still better description of the rotational states
with L > 10, we are planning to perform a minimization

procedure for every spin independently in a four-dimensional
space composed of the MFH (c, h) deformation parameters
and the pairing gaps 	p and 	n.
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J. Srebrny, Phys. Scr. T 88, 111 (2000).
[10] A. Sobiczewski, I. Muntian, and Z. Patyk, Phys. Rev. C 63,

034306 (2001).
[11] W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966); Ark.

Fys. 36, 343 (1967).

[12] B. Nerlo-Pomorska and K. Pomorski, Int. J. Mod. Phys. E 16,
328 (2007).
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