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Microscopic and nonadiabatic Schrödinger equation derived from the generator coordinate method
based on zero- and two-quasiparticle states
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A new approach called the Schrödinger collective intrinsic model (SCIM) has been developed to achieve a
microscopic description of the coupling between collective and intrinsic excitations. The derivation of the SCIM
proceeds in two steps. The first step is based on a generalization of the symmetric moment expansion of the
equations derived in the framework of the generator coordinate method (GCM), when both Hartree-Fock+BCS
(HF+BCS) states and two-quasi-particle excitations are taken into account as basis states. The second step
consists in reducing the generalized Hill and Wheeler equation to a simpler form to extract a Schrödinger-like
equation. The validity of the approach is discussed by means of results obtained for the overlap kernel between
HF+BCS states and two-quasiparticle excitations at different deformations.
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I. INTRODUCTION

The generator coordinate method (GCM) is a very useful
approach to study large-amplitude collective modes. A review
on the GCM and quantized collective motion is given in
Ref. [1]. It is widely used for the study of ground-state
properties and low-lying collective states in even-even nuclei.
For instance, there is extensive work by the Tübingen group [2]
based on the GCM using different types of projected solutions
calculated with the VAMPIR approach (see, e.g., Ref. [2] and
references therein). Also, in Ref. [3] the Hill-Wheeler equation
is solved for the axial quadrupole collective coordinate, where
the basis states are angular-momentum and particle-number
projected Hartree-Fock-Bogoliubov states using the Skyrme
energy density functional. In this reference, the comparison
with experimental results is performed for the full calculation,
but the effects due to angular momentum projection and those
related to configuration mixing are discussed separately. The
Madrid group has performed extensive configuration-mixing
calculations based on the GCM using the effective D1S
interaction and various types of projections (Ref. [4] and
references therein) and, more recently, including variation after
projection effects and projection of angular momentum and
particle number [5]. Improvements have been made recently to
generalize the GCM studies by taking into account the triaxial
degree of freedom, with first results reported for 24Mg using a
Skyrme [6] or a finite-range [7] interaction. We mention also
the recent work of Yao et al. [8] where the GCM is used to
perform configuration mixing of three-dimensional angular-
momentum projected relativistic mean-field wave functions.

When used with the Gaussian overlap approximation
(GOA) and employed with the full quadrupole coordinate
the GCM has been transformed using a few reasonable
assumptions into a five dimensional collective Hamiltonian.

This model has been extensively put to the test recently in
Refs. [9,10], where predictions for yrast states up to 6+,
and nonyrast 0+

2 , 2+
2 , 2+

3 states have been compared with
experimental data. A time-dependent version of the GCM
has also been used to study the fission process [11,12]. In
these latter works, the collective dynamics is derived from
a time-dependent quantum-mechanical formalism where the
wave function of the system is of GCM form, and for which
a reduction of the GCM equation to a Schrödinger equation
has been made by means of the usual techniques based on the
Gaussian overlap approximation.

While some of the aforementioned works include (multi-)
quasiparticle excitations, the excited states are nevertheless
constructed on top of adiabatic GCM calculations. Collective
vibrations have been considered to be completely decoupled
from intrinsic excitations. In the 1970s, a few pioneering
works were published, in which the usual GCM was extended
to include two-quasiparticle (qp) excitations (GCM+QP)
[13,14]. In Ref. [14], the method was applied to A � 50
nuclei, for which excitation spectra display both collective
and noncollective features. In fact, calculations showed that
vibrational degrees of freedom may be important to describe
the 2+ and 4+ states, while 6+ states may be dominated by
2-qp components. In these calculations, the whole pf shell
was used as a basis assuming 40Ca as an inert core, and a
modified version of the Kuo matrix elements was considered
for the residual interaction. In a more recent work [15],
GCM+QP calculations, referred to as coupled-channels GCM
calculations, have been performed in 186Pb as a test case,
where the 2-qp BCS states have been taken as pairwise
excitation of the [514 9

2 ] time-reversed pair. In this reference,
the mixing of diabatic configurations is discussed as function
of the strength of the pairing. A GCM+QP approach is
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well suited for the study of many phenomena, for which
the coupling between collective and intrinsic states may play
a role: (i) shape coexistence where K = 0 individual states
could be coupled to low-lying vibrational collective states,
(ii) backbending phenomena in rotational bands, (iii) decay
of superdeformed states to normally deformed states, and
(iv) nonadiabatic effects during the fission process.

Where the fully microscopic treatment of the whole fission
process from the initial stage of the fissioning system up to
scission is concerned, GCM-based approaches are the best
suited. They enable one to treat the fission dynamics as
a time-dependent evolution in a collective space. Adiabatic
calculations have shown that the dynamics is very important
for fission fragment distributions [12]: It is responsible for
the large widths of the distributions. These results have vali-
dated the adiabatic hypothesis made as a first approximation
for the description of low-energy fission. In fact, nuclear
superfluidity induced by pairing correlations, in addition to
strongly influencing the magnitude of the collective inertia,
is responsible for a strong rearrangement of the individual
orbits with deformation. However, there are some experimental
indications that pairs are broken during the fission process. For
instance, manifestations of proton pair breaking are observed
in 238U and 239U nuclei for an excitation energy of 2.3 MeV
above the barrier: First, the proton odd-even effect observed
in the fragment mass distributions decreases exponentially for
an excitation energy slightly higher than 2.3 MeV [16] and
then the total kinetic energy drops suddenly [17,18]. Some
theoretical calculations have studied the dissipation during the
fission process, most of them are based on a semiclassical
formalism such as Focker-Plank equations [19–21], Hamil-
tonian equations with one-body dissipation and two-body
viscosity [22,23], or Langevin equations [24,25]. Here we
aim at developing a microscopic nonadiabatic Schrödinger
equation, in order to obtain a microscopic description of
the coupling between collective and intrinsic excitations. In
particular, we tackle the difficult problem of the inversion of
the overlap kernel, and outline a formalism that is independent
of the choice of effective nucleon-nucleon interaction. We
use in the following the abbreviation SCIM, which stands for
Schrödinger collective intrinsic model. The newly developed
SCIM formalism is presented in Sec. II. In Sec. III, the
calculation of the N-dimensional overlap kernel between 0
and 2-qp HF+BCS states is shown, and the dependence of its
moments on the deformation is analyzed in details. Section IV
is then devoted to the derivation of the inverse of the overlap
kernel. The Schrödinger equation is derived in Sec. V and
conclusions are drawn in Sec. VI.

II. DESCRIPTION OF THE FORMALISM USED
TO CONSTRUCT THE SCIM

Our derivation of the SCIM proceeds in two steps as
described in the two following paragraphs. The first step is
based on a straightforward generalization of the symmetric
moment expansion of the equations derived in the framework
of the GCM [26]. We refer to the extensive review of the GCM
given in Ref. [27], where most of the material and references

related to this subject are available. The second step consists in
reducing the equation obtained in Sec. II A to a simpler form
which will be the starting point to extract a Schrödinger-like
equation.

A. Generalization of the symmetric moment expansion

In order to take into account the coupling between collective
and intrinsic degrees of freedom we use the ansatz

|�〉 =
∫

dqf0(q)|�0(q)〉 +
∑
i �=0

∫
dqfi(q)|�i(q)〉. (1)

In the present study, �0(q) is the ground state at the q value of
the collective variable and �i(q), with i �= 0, are the associated
2-qp excitations whose precise definition and properties are
given in Sec. III A. Following the usual procedure, the weight
functions fi(q) are found by requiring that the total energy
〈�|Ĥ |�〉/〈�|�〉 calculated with the function defined in
Eq. (1) be stationary with respect to arbitrary variation δf ∗

i ,
which leads to the well-known Hill-Wheeler equation∑

j

∫
dq ′[Hij (q, q ′) − ENij (q, q ′)]fj (q ′) = 0, (2)

where the Hamiltonian and overlap kernels are defined in terms
of matrix elements such as

Hij (q, q ′) = 〈�i(q
′)|Ĥ |�j (q)〉,

Nij (q, q ′) = 〈�i(q
′)|�j (q)〉.

Equation (2) could be the starting point to derive a local
expansion by means of a Taylor expansion of the fi(q ′) around
q, as performed in Ref. [28]. However, we prefer here the
symmetric expansion [26] which, in our point of view, provides
a natural way to expand on the nonlocality. Its derivation is very
simple if we express the variational principle after performing
the change of the variables q̄ = (q + q ′)/2 and s = q − q ′
in the expression of the total energy. We only give here the
resulting Hill-Wheeler equation:∫

dseisP/2

[
H

(
q̄ + s

2
, q̄ − s

2

)

−EN

(
q̄ + s

2
, q̄ − s

2

)]
eisP/2f (q̄) = 0 (3)

with

P = i
∂

∂q
. (4)

Let us mention that in all the equations of this formalism,
we set h̄ = 1. At this stage it is important to mention that
Eq. (3) is obtained after performing successive integrations by
parts and, consequently, the form given here supposes that the
corresponding contributions of the integrated terms (surface
terms) vanish at the boundary of the integration domain.
Note that this is the case in all applications of the GCM
in spectroscopy studies [9,10], as well as in nuclear fission
studies [11,12]. In the following, we assume that we are in
such a situation and pursue our derivation with Eq. (3) as
given above. Now, the series expansion of the exponentials
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MICROSCOPIC AND NONADIABATIC SCHRÖDINGER . . . PHYSICAL REVIEW C 84, 044308 (2011)

is inserted in Eq. (3) and terms of the same order in s are
collected together. After integration with respect to s one
is led to a symmetric moment expansion that includes the
coupling between collective and intrinsic variables. Following
the notations in Ref. [27], except for the imaginary number i,
the moments of any operator A are defined as

A(n)(q̄) = in
∫ +∞

−∞
dssnA

(
q̄ + s

2
, q̄ − s

2

)
(5)

and symmetric ordered products of operators A(n)(q̄) and P as

[A(n)(q̄)P ](n) = 1

2n

∑
k

Ck
nP

n−kA(n)(q̄)P k. (6)

With the procedure described above and the notations just
given, Eq. (3) is transformed into

∑
n

1

n!
{[H (n)(q̄)P ](n) − E[N (n)(q̄)P ](n)}f (q̄) = 0. (7)

Equation (7) is the compact form of a set of coupled
equations for the different components fi(q). Note that the
moments occurring in its definition are square matrices whose
dimension depends on the number of excitations introduced
in the description. It is worth pointing out here that another
difference with the usual approach (no qp excitations) is that
all moments, odd or even, must be included in the summation.
In order to give more information about Eq. (7) we refer to
Sec. III where we elaborate on the properties of the selected
GCM collective excitations in the present work. There, it is
shown that, with such a selection, the even moments and
odd moments of Hermitian operators are represented by real
symmetric matrices and imaginary antisymmetric matrices,
respectively. As a consequence the operators in Eq. (7) are
Hermitian. Finally, since the Hamiltonian is time-reversal
invariant, it is easy to check that this operator is also invariant if
collective and intrinsic coordinates are time reversed as well.
We will comment later on the effect this result has on the
Schrödinger equation we derive in Sec. V.

B. Reduction of the symmetric moment expansion
to a Schrödinger-like equation

Equation (7) is an infinite series which is an exact expansion
of the Hill-Wheeler equations in terms of local operators. It can
be transformed into a local Schrödinger equation by inverting
the expansion of the overlap kernel. The latter can be written
formally as

N̂ (q̄) =
∑

n

1

n!
[N (n)(q̄)P ](n) = [N̂1/2(q̄)]+N̂1/2(q̄). (8)

In the following we use the definitions

N̂1/2(q̄) = Ĵ 1/2(q̄)
√

N (0)(q̄)
(9)

[N̂1/2(q̄)]+ =
√

N (0)(q̄)[Ĵ 1/2(q̄)]+,

with

Ĵ (q̄) = I + û(q̄)

û(q̄) = 1√
N (0)(q̄)

∑
n=1

1

n!
[N (n)(q̄)P ](n) 1√

N (0)(q̄)
. (10)

These notations require further explanation. We use the
property that any Hermitian operator A can be written in the
form A = S+S, with an operator S which is not necessarily
Hermitian. Then, for the sake of simplicity, the notation
S = A1/2 is used although it is not, strictly speaking, the square
root of A unless S+ = S.

We proceed further by defining a new set of collective wave
functions, {gi(q̄)}, through the matrix relation,

f (q̄) = N̂−1/2(q̄)g(q̄) = [N (0)(q̄)]−1/2Ĵ−1/2(q̄)g(q̄) (11)

to arrive finally from Eq. (7) at the local Schrödinger equation{
[Ĵ−1/2(q̄)]+

[∑
n

1

n!

1√
N (0)(q̄)

[H (n)(q̄)P ](n) 1√
N (0)(q̄)

]

× Ĵ−1/2(q̄) − E

}
g(q̄) = 0, (12)

where we have defined the operator

Ĵ−1/2(q̄) ≡ Ĵ−1/2(q̄). (13)

Equation (12) is formally the same as the one given
in Ref. [28] but differs from it in many respects. The
definitions of the moments and the operator û(q̄) are not
at all the same. Furthermore, the operators occurring in its
definition are represented by matrices, including, as already
mentioned, those corresponding to odd moments. Note that
the normalization ∫

dq̄[g(q̄)]+g(q̄) = 1 (14)

guarantees the normalization of the wave function defined in
Eq. (1). In this approach, the main difficulty is to determine the
operator Ĵ−1/2(q̄), which, according to the definitions given in
Eq. (10), is the solution of the equation

[Ĵ−1/2(q̄)]+[I + û(q̄)]Ĵ−1/2(q̄) = I. (15)

In order to reduce its complexity, one is led to assume that
the series expansion representing the overlap kernel converges
rapidly and can be truncated after the second-order moment.
That is to say, we approach Eq. (15) by use of the simpler one

[Ĵ−1/2(q̄)]+
[
I + 1√

N (0)(q̄)

{
[N (1)(q̄)P ](1)

+ 1

2
[N (2)(q̄)P ](2)

}
1√

N (0)(q̄)

]
Ĵ−1/2(q̄) = I. (16)

In Sec. IV we study Eq. (16) in some detail and explain how
it can be solved with parametrizations of the form

Ĵ−1/2(q̄) =
4∑

n=0

[j(n)(q̄)P ](n). (17)

The quantities j(n)(q̄) are unknown matrices which are deter-
mined by solving Eq. (16).
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Once the inverse Ĵ−1/2(q̄) is known it can be inserted
in Eq. (12), and by means of the formulas given in the
Appendix A, there is no difficulty in finding a general
expansion in terms of symmetric ordered products of operators.
In other words one can express Eq. (12) in the form∑

n

{[S(n)(q̄)P ](n) − E}g(q̄) = 0. (18)

Then a second-order differential Schrödinger equation is
derived by limiting the summation to n = 2. However, for
obvious practical reasons, one does not extract the S(n)(q̄)
with the full expansion of the Hamiltonian kernel but with
a truncation similar to the one introduced in the case of the
overlap kernel. Thus, in all that follows, our derivation of a
Schrödinger equation relies on the approximated expression(

[Ĵ−1/2(q̄)]+
1√

N (0)(q̄)

{
H (0)(q̄) + [H (1)(q̄)P ](1)

+ 1

2
[H (2)(q̄)P ](2)

}
1√

N (0)(q̄)
Ĵ−1/2(q̄) − E

)
g(q̄) = 0,

(19)

with Ĵ−1/2(q̄) satisfying Eq. (16).
Such an approach assumes that the series expansions of

the overlap and Hamiltonian kernels converge rapidly. If the
moments were independent of q̄ or if we could neglect their
variations, Eq. (7) would simply be a power expansion in the
collective momentum P . One then could conclude naturally
that this approach is limited to the study of collective motions
with momenta that are not too large, or, equivalently, at
moderate energies. Note, that if we approximate the kernels
with a Gaussian [27] of width σ (q̄) the expansion [Eq. (7)]
becomes a series with terms [σn(q̄)P

](n)
. In that form it appears

that a rapid convergence of Eq. (7) requires that the collective
wave functions, as well as the moments, are slowly varying
functions in a range given by the width of the Gaussian.
These arguments are only qualitative in the sense that they
do not give precise information regarding the energies up to
which one can expect the approximation to be reasonable. In
relation to this discussion we refer to the work by Bonche
et al. [29] which contains a detailed comparison between
two calculations of large amplitude quadrupole dynamics in
194Hg. One is based on a direct resolution of the Hill-Wheeler
equation (HWE) as extracted with the GCM, while the other
uses a collective Schrödinger equation (CSE) resulting from a
local expansion of the HWE into a second-order differential
equation. Although their approach to the CSE approximation
is not rigorously identical to the one described here, we think
that one can extract general deductions from their work. We
will only quote some of their conclusions here. The GCM
and the CSE reproduced the energies of most collective states
fairly well. However, one observes significant differences in
the collective wave functions at excitation energies around
6 MeV and above. More precisely the corresponding HWE
collective wave functions display more and more irregular
structures and rapid variations that a CSE approach is not able
to reproduce. We do not deny the fact that it is important to
have a fair description of the collective wave functions, but we

do make the observation that for excitations above 4 or 5 MeV
one also has to worry about their possible coupling with qp
excitations, which is the main motivation of this work.

At this stage one needs some more information on the kernel
overlap to proceed further in the reduction of the equations
given above. It is the purpose of the next section to present a
numerical study of this kernel in a wide range of deformations
that would be encountered in a microscopic description of the
symmetric fission of 236U.

III. THE N-DIMENSIONAL OVERLAP KERNEL

A. Selection of the 2-qp generating wave function

In this paragraph, a set of generating wave functions is
constructed by means of the constrained HF+BCS method
with the finite-range effective force D1S [30,31] as described
in Refs. [11,12]. We limit this study to the case of one generator
coordinate q associated to the total quadrupole deformation
of the even-even nucleus 236U. Furthermore, the calculations
are restricted to axial symmetry. As a consequence the qp
are characterized by their projection K of the total angular
momentum on the symmetry axis. We denote the ground state
(or Bogoliubov vacuum) at deformation q by |�0(q)〉 and
recall here its definition in terms of the qp destruction operators
ηi(q) and their time-reversal conjugate ηī(q) = T̂ +ηi(q)T̂ ,
where T̂ is the time-reversal operator:

|�0(q)〉 =
∏
i>0

ηi(q)ηī(q)|0〉. (20)

Furthermore, we restrict our calculations by introducing
another symmetry which is associated with the invariance of
the Bogoliubov fields when performing a reflexion with respect
to the x-y plane. In that case the parity π is an additional
quantum number and the qp operators are then characterized
by k ≡ {nk, πk,Kk} where nk is an index which distinguishes
single qp states inside the same block {πk,Kk}. At each
deformation we can then define a set of 2-qp excitations

η+
i1

(q)η+
i2

(q)|�0(q)〉. (21)

This study is limited to the description of the coupling of the
ground state with 2-qp excitations. Consequently, since the
Hill-Wheeler equation conserves the total projection of the
angular momentum on the symmetry axis (z) and since the
ground state is a state K = 0, it is clear that the quantum
number of 2-qp excited states must satisfy Ki1 + Ki2 = 0. In
addition, by using similar arguments with the time-reversal
transformation, we arrive at the conclusion that the qp
excitations must be symmetric under time reversal. Thus, the
N selected configurations at deformation q are written in the
form:⎧⎪⎨

⎪⎩
|�0(q)〉
|�i(q)〉 = 1√

2

[
1 + δi1i2

(
1√
2

− 1
)][

η+
i1

(q)η+
ī2

(q)

+ η+
i2

(q)η+
ī1

(q)
]|�0(q)〉, i = 1, N − 1.

(22)

Note that for the 2-qp states, the index i denotes the couple
(i1, i2). For simplicity of notation we have not added another
index to indicate whether the excited configurations are built
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with two neutrons or two protons qp. Finally, for sake of
convenience and since the 2-qps i1, i2 are in the same block
{πi,Ki} ≡ {πi1(2),Ki1(2)}, we also use in the following the
notation i = {Kπi

i , (ai)} where the letter ai which distinguishes
the couple (ni1 , ni2 ) in the same block {πi,Ki} is used if
necessary. These wave functions which are not eigenfunctions
of the proton and neutron number operators N̂p, N̂n should, in
principle, be projected on the subspace of states with good
particle numbers. The expression of the overlap kernel is
readily expressed with the usual techniques to calculate the
overlap between two Bogoliubov vacuum [32]. The difficulty
in projecting is essentially numerical, since the projection
method requires repeating the calculation of the overlap
at different angles in order to calculate an integral with a
discretization method [33]. Such calculation, if feasible in the
study proposed here, would represent a considerable amount
of computational work and numerical studies. At this stage
it is worth pointing out that a description of the fission
process from the first barrier to scission involves a wide
range of deformations typically in the interval [50 b, 550 b].
Furthermore, an accurate calculation of the potential energy
surface, in particular, close to the scission point, necessitates
the use of a very large dimensional space of harmonic oscillator
basis states. As an example, we indicate that in a one-center
basis the size of the K = 1/2 block is [150 × 150]. In view
of these remarks, we find some justification in presenting this
formalism with unprojected wave functions. We stress that
until now our formalism does not depend on the particular
model used to calculate the kernels. Finally, let us conclude
this section with a different issue which is still related to this
question of particle number. It concerns the restoration of the
correct average values of the number of protons and neutrons of
the Hill-Wheeler solutions. This problem is studied in details
in Ref. [29] where the authors introduce in the Hill-Wheeler
equation the kernels calculated with the two operators N̂p, N̂n

and their associated Lagrange parameters. The implementation
of this method in our formalism is straightforward.

B. Calculation of the overlap kernel

1. Generality

Calculations presented in this paper correspond to different
excitations along the symmetric fission barrier in 236U. The
HF+BCS equations are solved by expanding the single-
particle states onto an axial harmonic oscillator (HO) basis.
A one-center basis with N = 14 major shells has been used.
The calculations are performed with the Hartree-Fock+BCS
method and a constraint on the quadrupole operator. They
have been restricted to axial and left-right symmetries. The
full Bogoliubov approach has not been considered here for
reasons of computational time only. In the present microscopic
and self-consistent BCS approximation of the HF+BCS
formalism, the diagonalization of the full HFB generalized
matrix H has been replaced by the diagonalization of the
mean-field matrix, and the block matrix associated with the
pairing field has been taken as diagonal in this representation.
Because of the symmetries imposed in this calculation, the
Bogoliubov or (HF+BCS) transformation can be chosen to be
real. As a result, all quantities occurring in the formalism are

0 50 100 150 200 250 300 350 400
q (b)

-1780

-1775

-1770
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FIG. 1. HF+BCS potential energy along the symmetric fission
barrier in 236U.

real. This is the case, in particular, of the overlap matrix which
is denoted by

Nij (q, q ′) = 〈�i(q)|�j (q ′)〉. (23)

Calculations of this matrix have been performed at different
elongations along the symmetric barrier. The formalism
used to extract these matrix elements is given in detail in
Appendix B. In the following, the results are presented in the
variables q̄ and s defined in the first paragraph of Sec. II. More
precisely at each q̄ given in barns, we plot the matrix elements
Nij (q̄ + s/2, q − s/2) as function of s running in intervals
wide enough that the overlaps Nij (q̄ + s/2, q − s/2) drop to
zero. The {q̄} have been chosen in the range [20 b, 350 b] with
a step of 10 b up to q̄ = 100 b and a step of 25 b beyond. Let us
mention that deformations close to 160 b, namely q̄ = 150 b
and q̄ = 175 b, are not discussed here, since they correspond to
a junction between two valleys having different hexadecapole
deformations. Such a study requires treating explicitly the
hexadecapole degree of freedom [34,35].

The symmetric barrier is plotted in Fig. 1. The ground
state is located near 30 b, the first barrier at 50 b, the second
well at 80 b, and the second saddle point at 160 b. The
intrinsic levels chosen to construct the 2-qp excitations are
the lowest-energy proton Kπ = 1/2−, 1/2+, 3/2−, 3/2+, . . . ,
qp levels. Among them, the selected intrinsic excitations are
those which minimize the deviation from the average proton
and neutron numbers. Results are presented in the present work
only for proton excitations and similar results and conclusions
are expected for neutron excitations.

Some comments are in order concerning phase problems
that we encountered in the construction of these 2-qp excita-
tions. In fact, the qp states or operators ηi which result from
the diagonalization of the Bogoliubov Hamiltonian are defined
up to an arbitrary phase which in the present case is real, i.e.,
±1. The phases of two conjugate qps ηī, ηi are then the same
by construction and, consequently, the Bogoliubov vacuum
defined above does not depend on these phases. The same
conclusion applies to the case of two conjugate qp excitations
|�i(q)〉 = η+

i1
η+

ī1
|�(q)〉 but it is not the case for all other 2qp

excitations. It is worth stressing that if we were using the qp
as they come out of the diagonalization of the Bogoliubov
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Hamiltonian, the corresponding nondiagonal matrix elements
of the kernels can become discontinuous at random as function
of the deformation, which would prevent the extension of the
GCM with those excitations. In order to solve this problem,
the single-qp excitations used in the construction of the 2-qp
excitations have been followed continuously as a function
of deformation. This is achieved with the following simple
procedure. Any single-qp state |i, q + δq〉 at deformation
q + δq is associated with |i, q〉 by maximizing the single-
particle overlap |〈i, q|k, q + δq〉| among all k in the 1-qp
spectrum at deformation q + δq. This overlap is nothing but
the anticommutator {η+

i (q), ηk(q + δq)}. Denoting by k the
qp which achieves this maximization, we set |i, q + δq〉 ≡
ϕi(q)|k, q + δq〉 where a phase given by

ϕi(q) = 〈i, q|k, q + δq〉
|〈i, q|k, q + δq〉| (24)

has been introduced. It is clear that with such a procedure
the matrix elements of the overlap kernel become continuous
functions of the deformation. Let us mention that the problem
of the sign of the overlap has been recently addressed by L.
Robledo in Ref. [36] for general HF+BCS wave functions that
have no spatial symmetry (triaxial) and also breaking of the
time-reversal symmetry.

The evolution of the energy of 2-qp excitations is plotted
in Fig. 2 as a function of the deformation around q̄ = 70 b. It
shows that the lowest excitation is located around 3 MeV. No
significant difference is observed between proton and neutron
excitations. Let us mention that we need not limit ourselves to
excitations that conserve the average number of particles, but
as a result the number of excitations increases rapidly when
we allow the mean particle numbers N̄i and Z̄i to vary by 1
particle around their average value. For instance, for an energy
below only 5 MeV and with a mean particle number in the
range 92 − 1 � Z̄i � 92 + 1, 144 − 1 � N̄i � 144 + 1, we
already find 6.5 proton 2-qp excitations and 11.5 neutrons per
deformation.

As we follow the single-quasiparticle states by continuity
as a function of deformation, levels with the same K and π

quantum numbers can occasionally cross or be pushed back
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FIG. 2. (Color online) Energy of the selected 2-qp excitations
around q = 70 b as a function of deformation. Letters are used to
differentiate excitations with same Kπ .
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FIG. 3. Energy of the single-quasiparticle excitations around
q = 30 b for Kπ = 1/2+.

from each other. Such features are common and can occur
anywhere along the deformation. Such cases are illustrated in
Fig. 3 around q = 30 b for Kπ = 1/2+. The figure shows
that a repulsion occurs between the two first levels at a
deformation qr = 29.5 b, defined as the deformation where
the difference in energy between the two levels is minimal,
whereas crossings are observed at q = 34 b and q = 40 b.
Note that, unlike crossings, repulsions correspond to a mixing
of the two incoming levels.

C. Numerical results for the matrices Ni j (q̄ + s/2, q̄ − s/2)
of the overlap kernel

As already mentioned in Ref. [29], an accurate calculation
of the complex behavior of the overlap kernel requires a
careful determination of the HF+BCS states. The overlap
kernels are the determinants of the matrices built from the
overlaps of all pairs of individual orbits: They are very sensitive
to the details of those orbits. For this reason, one must
achieve a very accurate convergence of the HF+BCS wave
functions if one wants to get reliable values of the overlap
kernels. As a consequence, all the HF+BCS states here have
been obtained with a very high degree of accuracy. More
precisely, a convergence of 10−6 fm−3 has been achieved on
the generalized density matrix. Let us note that the parameters
of the harmonic oscillators used to develop the HF+BCS states
have been optimized in each region at the deformation q̄ (i.e.,
q = q ′) and kept constant for the neighboring deformations.
For reference we think it interesting to show the plot of these
matrices as function of s for different values of q̄ even though
the quantities which count in this formalism are their moments.
The latter are presented in Sec. III C3.

1. Calculation of the diagonal matrices Ni i (q̄ + s/2, q̄ − s/2)

In Fig. 4 the overlaps N00(q̄ + s/2, q̄ − s/2) between
HF+BCS solutions at different deformations are plotted as
functions of s for different values of q̄. At first glance, all
the overlaps shown in Fig. 4 suggest that they are close
to a Gaussian shape, independently of the mean quadrupole
deformation q̄. Although the SCIM formalism derived in this
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FIG. 4. (Color online) Comparison between the overlaps N00(q̄ + s/2, q̄ − s/2) calculated for different q̄ as functions of s for 20 b � q̄ �
100 b (a) and 100 b � q̄ � 350 b (b).

paper does not require that the overlaps be Gaussian, it is
instructive to check the validity of this assumption as a further
motivation for the more general moment-based approach we
use. The width of the overlap is found to strongly depend
on the deformation. In general, the width increases with the
deformation, with local minima all along the barrier. The extent
to which the Gaussian shape is a good approximation can be
investigated by comparing different ways to associate a width
to these overlaps. In fact, assuming that they can be represented
by a Gaussian

I (q, q ′) = e−(q−q ′)2/2σ 2
, (25)

their moments of even order should verify the relations

N (0)(q̄) =
√

2πσ (q̄),
(26)

N (2n)(q̄) = (−1)n
(2n)!

2nn!
σ 2n(q̄)N (0)(q̄),

which provide different ways to extract the width σ (q̄). The
same procedure can be applied a priori to all the diagonal
terms of N (q̄ + s/2, q̄ − s/2). In Fig. 5(a) a few diagonal
elements of the overlap matrix are plotted at q̄ = 50 b where
a comparison is made between overlaps of HF+BCS vacuum

and 2-qp states. The different overlaps are very close together,
but we notice some difference in the tails. As we will
see, these small deviations in the tails have a signifi-
cant influence on the value of the second-order moments.
Furthermore, we find that level crossings do not generate any
sizable change in N

(n)
ii (q̄), whereas repulsions are responsible

for a quite rapid but continuous change in the overlap. Three
different cases are plotted in Fig. 5(b). First, we observe that
the overlap (plotted as dashed line) of the excitation built with
two Kπ

i = 3/2+ qp, one of them being involved in a repulsion
at qr = 57 b, is not sizably disturbed by the repulsion.
Conversely, for the same configuration, one single excitation
involved in a repulsion at qr = 57 b, the overlap built with
Kπ

i = 1/2+ qp is sharper (smaller width) than the previous
one. The most pathological case is found for the overlap
built this time with two 5/2+ excitations involved in a mutual
repulsion at qr = 47.5 b, close to q̄ = 50 b. This overlap even
becomes negative in the region close to the level repulsion.
The comparison with a Gaussian overlap is, therefore, clearly
unjustified here. Let us note that these numerical results are
in agreement with the analysis of the repulsions we made in
Sec. III B1.
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FIG. 5. (Color online) Overlap kernel Nii(q̄ + s/2, q̄ − s/2) for HF+BCS solutions and different 2-qp excitations not involved in repulsions
[labeled Kπ (i)] at q̄ = 60 b, plotted as functions of s (a). Overlap kernel Nii(q̄ + s/2, q̄ − s/2) for HF+BCS solutions and different 2-qp
excitations involved in repulsions [labeled by Kπ (i), and qr the deformation where the repulsion occurs] at q̄ = 50 b, plotted as functions of s

(b). Letters are used to differentiate the same Kπ excitations in both figures.
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FIG. 6. (Color online) Widths of the overlap extracted from the moments of zero, second, and fourth orders, as functions of the elongation,
shown with the black circle, red cross, and blue triangle, respectively. Full lines correspond to the widths from N

(n)
00 terms and circles to diagonal

terms N
(n)
ii , i �= 0. (a) Results for a large range of deformation [0, 350 b]. (b) Widths from N

(n)
00 in the region [0, 110 b].

The widths, obtained from Eq. (26) using the moments
of zero, second, and fourth orders, are plotted in Fig. 6
as functions of the deformation for the overlaps N00(q̄ +
s/2, q̄ − s/2) and Nii(q̄ + s/2, q̄ − s/2). Particular attention
has been paid to the widths extracted from the N

(n)
00 (q) overlaps:

Calculations of the widths have been performed in the range
[20 b, 110 b] with a step of 0.5 b. In Fig. 6(b) we observe
that the three widths for N

(n)
00 (q) do not differ too much in

most cases, which corroborates the fact that the overlaps are
reasonably close to those from a Gaussian shape. For the lowest
deformations, the largest differences occur when the width is
minimum, at 46, 72, and 102 b with a maximal deviation of
22% at 72 b, between the widths extracted from the moments
of zero and fourth orders.

Widths of the overlaps Nii(q̄), with i �= 0 are also plotted
up to 350 b in Fig. 6(a). Since the excitations involved in
repulsions do not lead to Gaussian shapes, as illustrated in
Fig. 5(b), they are not taken into account in this analysis.
The maximal deviation between the widths obtained from
N (0)(q̄), N (2)(q̄), and N (4)(q̄) for a given excitation is found
to be about 19%. The average of this maximal deviation over
all the different excitations and over all the deformations is
about 5%. However, we emphasize that these deviations will
pose no problem in our approach since we do not rely on a
Gaussian-overlap assumption at all.

2. Calculation of the nondiagonal terms Ni j (q̄ + s/2, q̄ − s/2)

Nondiagonal overlaps Nij (q̄ + s/2, q̄ − s/2) (i �= j ) are
plotted in Fig. 7. N0i(q̄ + s/2, q̄ − s/2) are displayed in
Fig. 6(a), and Nij (q̄ + s/2, q̄ − s/2) in Fig. 6(b). For the sake
of visibility, only a few overlaps are drawn.

At this point, let us emphasize that nondiagonal overlaps
have no a priori reason to be even or odd functions of s.
However, they must be zero for s = 0, since, at the same
deformation, 2-qp excitations are orthogonal to the ground
state and any other 2-qp excitation. We observe on this plot
that, in fact, they are odd or even functions of s near the origin,
depending on the indices i,j of the excitations. Note that the
amplitudes of these nondiagonal overlaps are much smaller
than the diagonal ones. Furthermore, the overlaps between two
excited states are also small in comparison to those between the
ground state and excited states. The exceptions are found for
qp states having the same quantum numbers Kπ (i) = Kπ (j ),
as shown by the blue curve with open circles in Fig. 7(b).
This result is not surprising since, using the generalized Wick
theorem when Kπ (i) �= Kπ (j ), the following relation is found:

Nij (q̄ + s/2, q̄ − s/2)

= 1

N00(q̄ + s/2, q̄ − s/2)
N0i(q̄ − s/2, q̄ + s/2)

×N0j (q̄ + s/2, q̄ − s/2). (27)
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Kπ as a function of s. Letters are used to differentiate same Kπ excitations.
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We also mention here that the overlap matrix is not block-
diagonal in isospin, since

N τi τj

ij (q, q ′) = 〈�(q)|ητi

i2
η

τi

i1
η

τj +
j1

η
τj +
j2

|�(q ′)〉
is nonzero for τi �= τj .

Conclusions obtained for the diagonal terms of N (0)(q̄)
about repulsions and crossings still apply here: nondiagonal
overlaps are not disturbed by crossing levels but can vary
rapidly when a repulsion occurs. In Fig. 8 the overlap Nij

for a couple of 2-qp excitations i = (i1, i2) and j = (j1, j2)
with Kπ

i(j ) = 1/2− is depicted. In this case, i1 and i2 are both
involved in a mutual repulsion at qr = 218 b and i2 = j2.
The amplitude of this overlap is much larger than that of
the standard (without repulsion) nondiagonal overlap. Let us
mention that this kind of configuration is encountered several
times along the deformation and corroborates our observation
in Sec. III A that the qp states i1 and j1 are mixed in the
repulsion area.

3. Numerical study of the moments N (n)
i j (q̄), n = 0, 1, 2

According to our approximation [see Eq. (16)], the overlap
kernel has to be analyzed through its moments up to the
second order. At this point it is useful to introduce some
important properties of the moments defined in Sec. II A. Their
demonstration being straightforward, we only list them here:

(i) All moments of a Hermitian operator are Hermitian:

Â+ = Â ⇒ A(p)+ = A(p).

By applying this property to the overlap kernel, whose
matrix elements are real for reasons given at the
beginning of this section, the matrices associated with
even-order moments are found to be real symmetric
while those associated with odd-order moments are
imaginary antisymmetric.

(ii) Finally, let us indicate that the even moments of an
operator have the same parity with respect to the time-
reversal symmetry (T̂ ) as the operator considered, while
the opposite is true for odd moments

T̂ +ÂT̂ = εÂ ⇒ T̂ +A(p)T̂ = (−1)pεA(p),

where ε = ±1.

With these properties established, we can now analyze
numerical calculations of each of the three moments N

(n)
ij (q̄)

for n = 0, 1, 2.
The zero-order moment matrix N (0)(q̄). This matrix plays

an essential role in the formalism as observed in Eqs. (16)
and (19). In fact, it is the inverse of its square root which
occurs in these expressions and whose determination requires,
in principle, the diagonalization of N (0)(q̄) with a matrix U (q̄)
which itself depends on the deformation q̄. As a consequence,
the transformation of the symmetric operators in Eqs. (16) and
(19) to the new representation necessitates the calculation of
the first and second derivatives of U (q̄), thereby including a
number of terms which significantly increase the size of the
expressions (16) and (19). In light of the numerical calculations
presented above, we propose instead a set of reasonable
approximations to avoid these unnecessary complications.

First, in Fig. 9, the moment N
(0)
00 (q̄), as well as its first and

second derivatives, all of which intervene in various quantities,
are shown at different deformations.

The moment generally increases between 8 b and 37 b
as a function of the quadrupole deformation. Its first two
derivatives, N (0)′

00 (q̄) and N
(0)′′
00 (q̄), are found to be much smaller

by at least one order of magnitude. Their values vary rapidly
in the interval [−0.9, 0.5] for N

(0)′
00 (q̄) and [−0.4 b−1, 0.6 b−1]

for N
(0)′′
00 (q̄).

In Table I we give the matrix elements of N (0)(q̄) for
different excitations at q̄ = 60 b. At this deformation, we

0 100 200 300 400
q (b)

0

10

20

30

40

N
00

(0
)  (

b)

(a)

0 100 200 300 400
q (b)

-0.9

-0.6

-0.3

0

0.3

0.6

N
00

(0
)’

N
00

(0)’

0 100 200 300 400
-0.9

-0.6

-0.3

0

0.3

0.6

N
00

(0
)’

’  (
b-1

)

N
00

(0)’’

(b)

FIG. 9. (Color online) N
(0)
00 (q̄) (a) and its first and second derivatives (b) as functions of the deformation.
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TABLE I. Matrix elements of N (0)(q̄) at q̄ = 60 b. Centers of repulsion qr are mentioned if needed. Letters are used to differentiate the
same Kπ excitations.

Kπ 0 5/2−(a) 5/2−(b) 1/2− 1/2+(a) 1/2+(b) 3/2+(a) 3/2+(b) 5/2+

qr = 57 b qr = 57b

0 13
5/2−(a) 2.1 × 10−2 13
5/2−(b) −1.7 × 10−2 −6.0 × 10−3 13
1/2− −1.2 × 10−2 4.3 × 10−3 5.4 × 10−3 13
1/2+(a) 6.8 × 10−2 −2.1 × 10−3 −3.3 × 10−3 3.5 × 10−3 12
1/2+(b) −7.4 × 10−2 8.1 × 10−3 1.1 × 10−2 −1.3 × 10−2 −2.2 × 10−3 12
3/2+(a), qr = 57 b −4.5 × 10−2 6.3 × 10−3 8.4 × 10−3 −1.0 × 10−2 4.5 × 10−3 −2.0 × 10−2 12
3/2+(b), qr = 57 b −1.3 × 10−1 −3.1 × 10−3 −2.6 × 10−3 4.2 × 10−3 −4.0 × 10−3 9.2 × 10−3 5.2 × 10−3 12
5/2+ 8.9 × 10−3 5.4 × 10−3 6.6 × 10−3 −8.3 × 10−3 4.6 × 10−3 −1.7 × 10−2 −1.3 × 10−2 4.5 × 10−3 13

observe that the diagonal elements do not depend too much on
the 0- or 2-qp states under consideration: they are found to be
between 12.0 b and 13.4 b. Such a feature is also observed for
most of the deformations. However, let us mention that in a few
cases, repulsions between single-particle states induce larger
variations of the diagonal elements N

(0)
ii (q̄). This observation

suggests we should introduce the diagonal terms N
(0)
AV (q̄)

defined as

N
(0)
AV (q̄) = 1

N
Tr[N (0)(q̄)],

with N the dimension of the matrix N (0)(q̄). With such a
definition, the matrix N (0)(q̄) can then be written in the form

N (0)(q̄) = N
(0)
AV (q̄)[I + �(q̄)], �(q̄) = N (0)(q̄) − N

(0)
AV (q̄)I

N
(0)
AV (q̄)

.

The diagonal and off-diagonal matrix elements of � are all
found to be small for all deformations, and, therefore, the
inverse of N (0)(q̄) can be calculated by means of the series
expansion of [I + �(q)]−1/2. As a result of this study, it
appears that considering this inverse square root as diagonal is
a reasonable approximation.

At this point, we introduce normalized moments for non-
zero-order moments of the overlap kernel since they are the
quantities of interest in the formalism developed in Secs. IV

and V,

N̄ (p)(q̄) = 1√
N (0)(q̄)

N (p)(q̄)
1√

N (0)(q̄)
, p � 1. (28)

Taking advantage of our previous discussion, these moments
are calculated in the approximation that the inverse square
root of N (0)(q̄) is diagonal. Their properties are discussed in
the next paragraph.

(b) First-order matrix moment N̄ (1)(q̄). The matrix ele-
ments of normalized first-order moment N̄ (1)(q̄) are given in
Table II for different excitations at q̄ = 60 b. Since N̄ (1)(q̄) is
antisymmetric, the diagonal terms are zero. From Eq. (28), it
is clear that the value of N̄

(1)
ij (q̄) depends on the amplitude of

the overlap N
(1)
ij (q̄). As shown in Table II, the absolute value of

N̄
(1)
ij (q̄) is generally small although some specific excitations

associated with level repulsions lead to non-negligible values.
Over the whole range of deformation, the most singular

case concerns two excitations involved in a mutual repulsion
for which |N (1)

ij (q̄)| = 6.9 b. All along the deformation, only

27 matrix elements |N (1)
ij (q̄)| (of 612) are higher than 1 b.

(c) Second-order moment N̄ (2)(q̄). As we will see in
Sec. IV, the derivation of the inverse of Ĵ1/2(q̄) = [I +
û(q̄)]1/2 requires the determination of not only the second-
order moments but also its first and second derivatives. For the
sake of brevity, we display only in Figs. 10(a) and 10(b) those

TABLE II. Matrix elements of normalized first-order moment N̄ (1)(q̄) for different excitations at q̄ = 60 b. All the values are divided by i

in order to be real. Centers of repulsion qr are mentioned if needed. Letters are used to differentiate the same Kπ excitations.

Kπ 0 5/2−(a) 5/2−(b) 1/2− 1/2+(a) 1/2+ (b) 3/2+(a) 3/2+(b) 5/2+

qr = 57 b qr = 57b

0 0.0
5/2−(a) −7.9 × 10−2 0.0
5/2−(b) −9.8 × 10−2 −9.9 × 10−1 0.0
1/2− 1.2 × 10−1 3.7 × 10−4 −8.1 × 10−4 0.0
1/2+(a) −6.9 × 10−2 1.1 × 10−3 2.0 × 10−3 −1.8 × 10−3 0.0
1/2+(b) 2.5 × 10−1 −5.9 × 10−4 −2.5 × 10−3 1.5 × 10−3 7.3 × 10−2 0.0
3/2+(a), qr = 57 b 1.9 × 10−1 −3.1 × 10−4 −1.9 × 10−3 −1.2 × 10−3 −1.8 × 10−3 4.0 × 10−4 0.0
3/2+(b), qr = 57 b −7.3 × 10−2 −2.6 × 10−3 −2.2 × 10−3 −3.7 × 10−3 3.7 × 10−3 −7.6 × 10−3 2.5 × 10+0 0.0
5/2+ 1.5 × 10−1 −8.4 × 10−4 −4.5 × 10−4 6.1 × 10−4 −2.5 × 10−3 2.8 × 10−3 2.0 × 10−3 3.6 × 10−3 0.0
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FIG. 10. (Color online) The normalized second-order moment N̄ (2)(q̄) (a) and its first (black solid circles) and second (red solid triangles)
derivatives (b) of the nonexcited overlap along the deformation.

quantities in the case of the diagonal element in the ground
state.

In Fig. 10(a) we note that all these quantities not only vary
rapidly with the deformation but also undergo oscillations of
very large amplitude. The moment itself varies between −5 b2

and −211 b2 in a range of deformations [20 b, 350 b]. As for
the first and second derivatives, they are contained in the range
[−3 b, 6 b] and [−2.1, 1], respectively [Fig. 10(b)].

In Table III, diagonal and nondiagonal normalized second-
order moments are given for the HF+BCS minimum and
the selected excitations at q̄ = 80 b. Diagonal terms are
negative due to our definition of the second-order moment. As
expected from our discussion on nondiagonal matrix element
of the overlap, most of the nondiagonal terms are at least
two orders of magnitude smaller than the diagonal ones. It
is also seen that they strongly depend on the excitations.
Very similar features are observed for all deformations up
to q̄ = 350 b. However, the maximum value of a nondiagonal
term is found to be supi �= j, q̄|N̄ (2)

ij (q̄)| = 78.4 b2 at q̄ = 250

b, which corresponds to 44% of N̄
(2)
00 (q̄) in this region. This

case corresponds to i = (i1, i2) and j = (j1, j2) excitations for
which repulsion occurs between i1 and j1 at qr = 242 b and
between i2 and j2 at qr = 265 b.

It is worth stressing that perturbations in the overlap matrix
due to repulsions, such as the change in amplitude of a

nondiagonal term as depicted in Fig. 8 or the reduction of
the diagonal terms [see Fig. 5(b)], disturbs the values of the
moments, which are the quantities of interest in the present
formalism, in a brutal but still continuous way.

IV. STUDY AND DETERMINATION OF Ĵ±1/2(q̄)

In the previous section we have seen that the moments and
their derivatives vary rapidly as function of the deformation.
As we will see in the following these quantities occur
everywhere in the calculation of Ĵ±1/2(q̄) [with Ĵ±1/2(q̄) =
Ĵ±1/2(q̄)], which seriously complicates the derivation of
the inverse of the overlap kernel. This question of the
dependence of the moments on the deformation has been
studied in detail in the GOA [1] and in the symmetric-
moment expansion for the one-dimensional case of no intrinsic
excitations [37] (although, even in the one-dimensional case,
our solution below is more complete), but in the context
of the present study we have found no information on
this subject in the open literature. In the discussion that
follows, we will call [.P ](n) a symmetric operator of order
n despite the fact that, strictly speaking, an order cannot be
attributed to such an operator since it contains all orders up
to n.

TABLE III. Matrix elements of normalized second-order moment N̄
(2)
ij (q̄) for different excitations at q̄ = 80 b. Centers of repulsion qr are

mentioned if needed. Letters are used to differentiate the same Kπ excitations.

Kπ 0 3/2−(a) 3/2−(b) 1/2− 1/2+(a) 1/2+(b) 1/2+(c) 5/2+ 9/2+

qr = 82.5 b qr = 85 b qr = 85 b qr = 85 b
q ′

r = 86 b

0 −39
3/2−(a) 1.1 × 10+0 −26
3/2−(b) −1.9 × 10−1 1.2 × 10+0 −30
1/2− 2.4 × 10−2 4.3 × 10−1 3.2 × 10−2 −39
1/2+(a), qr = 85 b −3.7 × 10−1 1.1 × 10−1 2.7 × 10−3 6.3 × 10−3 −32
1/2+(b), qr = 85 b −8.7 × 10−2 −2.7 × 10−1 −2.1 × 10−2 −1.9 × 10−2 −2.2 × 10−2 −32

qr = 85 b
1/2+(c), 1.1 × 10−1 −2.4 × 10−1 −1.6 × 10−2 −1.9 × 10−2 2.4 × 100 2.3 × 10−1 −29

q ′
r = 86 b

5/2+ 2.3 × 10−1 8.6 × 10−1 6.6 × 10−2 7.1 × 10−2 1.5 × 10−2 −4.5 × 10−2 −3.8 × 10−2 −39
9/2+ 2.3 × 10−1 2.9 × 10−1 2.1 × 10−1 2.5 × 10−2 8.5 × 10−3 −1.5 × 10−2 −1.4 × 10−2 5.7 × 10−2 −39
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A. Discussion and generalities about the inversion
of the one-dimensional overlap kernel

The difficulty mentioned above already occurs in the
standard (one-dimensional) approach and, consequently, the
discussion is first restricted to this simple case. Let us
recall here that when the moments are independent of the
deformation, the derivation of the operators in question is
straightforward. They are given by [27]

Ĵ±1/2(q̄) = [1 + û(q̄)]±1/2 � 1 ± 1
2 û(q̄)

with

û(q̄) = N (2)(q̄)

2N (0)(q̄)
P 2.

This form is consistent with an expansion of the kernel
overlap up to second order in the collective momentum P .
Besides, we are justified in stopping the expansion of Ĵ−1/2(q̄)
at the second order in P since, in the usual derivation of
a Schrödinger equation, one neglects the derivatives of the
Hamiltonian kernel of order greater than 2. The situation is
quite different here since symmetric operators of order four
give contributions to the expansion of the Hamiltonian kernel
involving derivatives less then or equal to 2. In order to go
beyond this approximation, successive transformations have
been performed which allow Ĵ (q̄) to be expressed in a suitable
form for our purposes. First, the normalized moment N̄ (2)(q̄)
defined above (Sec. III) is introduced in the definition of û(q̄)
which leads to

û(q̄) = 1√
N (0)(q̄)

1

2
[N (2)(q̄)P ](2) 1√

N (0)(q̄)

= −1

2
C(2)(N (2), N (0)) + 1

2
[N̄ (2)(q̄)P ](2).

The derivation of this expression is given in Appendix C.
The coefficient C(2) is a function of the first and second deriva-
tives of the moment of zero order. If the latter were constant,
then C(2) would vanish. After inserting this expression in the
definition of Ĵ (q̄) given in equation (10) we obtain

Ĵ (q̄) = 1 + α(0)(q̄) + 1
2 [N̄ (2)(q̄)P ](2)

with

α(0)(q̄) = − 1
2C(2)(N (2), N (0)).

According to Fig. 11, α(0)(q̄) is not negligible since it can
reach 10% at several deformations. It is possible, however, to
rewrite Ĵ (q̄) in the following form:

Ĵ (q̄) = √
A(0)(q̄)

{
1 + α(1)(q̄) + 1

2

[
N̄

(2)
R (q̄)P

](2)
} √

A(0)(q̄)

with ⎧⎪⎪⎨
⎪⎪⎩

α(1)(q̄) = − 1
2C(2)(N (2), A(0))√

A(0)(q̄) = √
1 + α(0)(q̄)

N̄
(2)
R (q̄) = 1√

A(0)(q̄)
N̄ (2) 1√

A(0)(q̄)
.

(29)

Coming back to Fig. 11 we observe that α(1)(q̄) is at most 4%
(at q = 30 b) in the whole range of deformation. At this stage
it seems reasonable to neglect this term but it is clear that, if a
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FIG. 11. (Color online) Comparison between C(2)(N (2), N (0)) and
first iterated C(2)(N̄ (2), 1 + α) values as a function of the deformation.

better approximation is needed, one can iterate this procedure
starting with α(1) which gives the quantity A(1) and so on. If
one refers to Eqs. (16) and (19), one concludes in the light of
this study that the entire formalism remains unchanged with a
Ĵ (q̄) still given by

Ĵ (q̄) = 1 + û(q̄) = 1 + 1
2 [N̄ (2)(q̄)P ](2), (30)

provided we substitute in all expressions a renormalized
zero moment N

(0)
R (q̄) = ∏p−1

i=0 A(i)N
(0)(q̄) instead of the usual

moment N (0)(q̄). An index i is used to take into account
the number of times the procedure described above has been
iterated. From now on the notation is kept unchanged, with
the understanding that, in fact, a renormalized zero moment is
used.

Thus, we are led to determine Ĵ±1/2(q̄) with Ĵ (q̄) given in
Eq. (10). In fact, we are mainly interested in the determination
of Ĵ−1/2(q̄), since it is this operator we need to express the
contribution of the Hamiltonian kernel in Eq. (19). In the one-
dimensional case it must be solution of the equation:

Ĵ−1/2(q̄)
{
1 + 1

2 [N̄ (2)(q̄)P ](2)
}
Ĵ−1/2(q̄) = 1. (31)

As suggested in Ref. [27], we attempt to solve Eq. (31) with
an ansatz of the form

Ĵ−1/2(q̄) = A−1/2(q̄) + [B−1/2(q̄)P ](2) + [C−1/2(q̄)P ](4).

(32)

After inserting this ansatz in Eq. (31) we are led to a com-
plicated coupled set of nonlinear equations among A−1/2(q̄),
B−1/2(q̄), and C−1/2(q̄) and their derivatives up to high orders.
Solving these equations, including the second derivative of
N (2)(q̄) is not a trivial problem and it would be a considerable
amount of work. This is an extensive study in its own right
that goes far beyond the scope of the present paper. In the
following we take advantage of the fact that the size of the
problem is reduced considerably if we neglect these second
derivatives and, consequently, we limit ourselves to finding
solutions including only the first derivative of N (2)(q̄). Even in
this simple case it is important to find approximated solutions
as a starting point in order to overcome some difficulties in
solving Eq. (31). A natural choice for these approximated
solutions is to approach Ĵ±1/2(q̄) by the first terms of their
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series expansion. For instance, we will define a ĴA,1/2(q̄) as:

ĴA,1/2(q̄) ≡ 1 + 1
2 û(q̄) − 1

8 û2(q̄) ≈ [1 + û(q̄)]1/2,

where the operator û(q̄) is defined by Eq. (30). By inserting the
definition of u(q̄) in ĴA,1/2(q̄) we readily obtain this operator
in the form:

ĴA,1/2(q̄) = A1/2(q̄) + [B1/2(q̄)P ](2) + [C1/2(q̄)P ](4).

For the sake of brevity, the derivation of this expression and
the coefficients are given in Appendix C 2. At this stage we
have thought it interesting to study qualitatively the influence
of the derivatives of N̄ (2)(q̄) in this formalism. For this we
check the accuracy the approximation used by calculating
ĴA,1/2(q̄)ĴA,1/2(q̄) which we write in the form:

ĴA,1/2(q̄)ĴA,1/2(q̄) = 1 + û(q̄) + R(q̄).

The remainder R(q̄), whose calculation is given in details in
Appendix C 3, is in fact an operator

R(q̄) � A[N̄ (2)′′ (q̄)] + 1
2 [C(N̄ (2), N̄ (2)′ , N̄ (2)′′ )N̄ (2)(q̄)P ](2).

(33)

The symbol � is used to indicate that symmetric operators
[.P ](n), n > 2 are neglected in the expression of R(q̄). This
operator, which should be zero if the moments were constant,
provides some quantitative information on the accuracy of our
approximation as function of the first and second derivatives of
N̄ (2)(q̄). In Fig. 12 we give a plot of the coefficients A and C

over a wide range of deformations between 30 b and 350 b.
It is seen that supq̄ |A| = 1.9 × 10−2 and supq̄ |C| = 9.8 ×
10−2 over the whole range of deformations considered here,
which suggests that this ansatz is a reasonable zeroth-order
approximation, despite the large variations in the moments
N̄ (2). On the other hand, the expressions for the coefficients
A and C given in Appendix C tell us that A and C vanish
independently if one can neglect the second derivative of
N̄ (2)(q̄). In that case, ĴA,1/2(q̄) becomes an “exact” solution
consistent with the truncation we made in the expansion of
the kernel overlap. Note also that such an approximation takes
into account all the derivatives of N (0)(q̄) up to second order
and still includes the first derivative of N̄ (2)(q̄).
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FIG. 12. (Color online) A and C coefficients in Eq. (33) as
function of the deformation.

The same discussion applies to the operator ĴA,−1/2(q̄)
which is written in the form

ĴA,−1/2(q̄) = A−1/2(q̄) + [B−1/2(q̄)P ](2) + [C−1/2(q̄)P ](4),

with the coefficients A−1/2(q̄), B−1/2(q̄), and C−1/2(q̄) being
given in Appendix C 2. In particular, if we neglect N̄ (2)′′ (q̄)
this operator satisfies ĴA,−1/2(q̄)ĴA,+1/2(q̄) � 1 and, more
importantly, it is also solution of Eq. (31) up to second
order. Inspection of the equations reveals that the coefficient
C−1/2(q̄) is not completely defined at this order. A complete
determination of this coefficient is achieved by canceling the
contribution of fourth order in Eq. (31). Its value is then given
by

C−1/2(q̄) = 3
32 [N̄ (2)(q̄)]2

[
1 − 15

8 ξ (q̄) + 105
64 ξ 2(q̄)

]
with ξ (q̄) = [N̄ (2)′(q̄)]2/N̄ (2)(q̄).

To obtain this expression, the third and fourth derivatives of
C−1/2(q̄) are set to zero. It turns out that these conditions are
satisfied by the solution given above since we set to zero the
derivatives [N̄ (2)(q̄)](p), p � 2. Thus, we conclude that it is a
solution in the whole range of deformations consistent with
our assumptions on the derivatives of N̄ (2)(q̄). To summarize,
the operator

Ĵ−1/2(q̄) = 1 − 1
4

[
N̄ (2)(q̄)

[
1 − 3

8ξ (q̄)
]
P

](2)

+ 3
32

[
[N̄ (2)(q̄)]2

[
1 − 15

8 ξ (q̄) + 105
64 ξ 2(q̄)

]
P

](4)

is solution of Eq. (31) up to fourth order in the symmetric
operator [.P ](n). This expansion takes into account not only
the derivatives of N̄ (0)(q̄) up to second order but also the first
derivative of N̄ (2)(q̄). Even though it is not complete, since we
do not include the second derivative of N̄ (2)(q̄), this operator
represents a significant improvement over what was generally
used in previous works. We now proceed to the N -dimensional
case by following step by step the procedure described in this
section. Consequently, we will also neglect the contribution
of the second derivatives of N̄ (2)(q̄) in the expression of
the inverse overlap kernel. One finds a justification for this
approximation in the fact that the general structure of the
Schrödinger equation we derive does not depend on the precise
determination of the coefficients entering in the definition of
our ansatz for the inverse.

B. Determination of the inverse in the N-dimensional case

A similar analysis to the one-dimensional case can be
performed here by considering instead the operator

û(q̄) = 1√
N (0)(q̄)

{
[N (1)(q̄)P ](1) + 1

2
[N (2)(q̄)P ](2)

}
1√

N (0)(q̄)
.

First, it is written in terms of normalized moments according
to the expression

û(q̄) = [WN (q̄)P ](1) + 1
2 [N̄ (2)(q̄)P ](2) + α(0)(q̄),

where we have introduced the quantities:

WN (q̄) = N̄ (1)(q̄) + iC(1)(N (2), N (0))

α(0)(q̄) = i
2C(1)(N (1), N (0)) − 1

2C(2)(N (2), N (0)).
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The expression of C(1)(N (1), N (0)) is given in Appendix C 1.
According to the definition of Ĵ (q̄) [Eq. (10)] this operator
becomes

Ĵ (q̄) = I + α(0)(q̄) + [WN (q̄)P ](1) + 1
2 [N̄ (2)(q̄)P ](2).

The difference with the one-dimensional case is the occurrence
of an additional first-order symmetric operator and the fact
that all operators are matrices. At this stage we proceed as we
did in the one-dimensional case by introducing renormalized
zero-order moments and using an iterative procedure. Let us
mention here that our numerical result tell us that the matrix
elements of α(0)(q̄) never exceed 2 × 10−1. Consequently,
a series expansion with few terms gives the operator [I +
α(0)(q̄)]−1/2 with excellent accuracy. We recall that we keep
the same notation N (0)(q̄) to denote this renormalized moment.
With these renormalizations we are finally led to solve Eq. (31)
which can be written as

Ĵ−1/2(q̄)[I + û(q̄)]Ĵ−1/2(q̄) = I
(34)

û(q̄) = [WN (q̄)P ](1) + 1
2 [N̄ (2)(q̄)P ](2).

One could attempt to solve this equation with an appropriate
ansatz which, in the N -dimensional case, should also include
odd-order symmetric operators with an ansatz of the form

Ĵ−1/2(q̄) = A−1/2(q̄) + [D−1/2(q̄)P ](1) + [B−1/2(q̄)P ](2)

+ [E−1/2(q̄)P ](3) + [C−1/2(q̄)P ](4). (35)

This expression should be inserted in Eq. (34) but for reasons
given in the one-dimensional case, it is advantageous to start
with an approximation to ĴA,−1/2(q̄) chosen as the series
expansion of [I + û(q̄)]−1/2 up to second order in û(q̄), i.e.,
we set

ĴA,−1/2(q̄) = I − 1
2 û(q̄) + 3

8 û2(q̄),

with the operator û(q̄) defined this time by Eq. (34). It is
straightforward to express Ĵ−1/2(q̄) in a form similar to Eq. (35)
and to rewrite Eq. (35) as:

Ĵ−1/2(q̄) = I − 1

2
[WN (q̄)P ](1)− 1

2

[{
N̄ (2)(q̄)

2
− 3

16
[N̄ (2)′(q̄)]2

− 3

4
[WN (q̄)]2 − 3i

16
[WN (q̄)N̄ (2)′(q̄)]−

}
P

](2)

+ [E−1/2(q̄)P ](3) + [C−1/2(q̄)P ](4)

with the notation

(X, Y )± = XY ± YX.

The first derivative of WN (q̄) has been neglected since it
is generally very small. The operator defined by the first
three lines of this expression is solution to Eq. (34) up to
second order. The coefficients E−1/2(q̄) and C−1/2(q̄) can
then be determined by canceling the third- and fourth-order
contribution in Eq. (34). For practical reasons we neglect their
contributions and derive in the next section a Schrödinger

equation with the inverse defined by

Ĵ−1/2(q̄) = I − 1

2
[WN (q̄)P ](1)− 1

2

[{
N̄ (2)(q̄)

2
− 3

16
[N̄ (2)′(q̄)]2

− 3

4
[WN (q̄)]2 − 3i

16
[WN (q̄)N̄ (2)′(q̄)]−

}
P

](2)

.

(36)

Otherwise the expression would have contained an exceed-
ingly large number of terms. Again, we justify this approxi-
mation by the fact that it does not affect the general structure
of the Schrödinger equation that we propose.

V. DERIVATION OF A SCHRÖDINGER-LIKE EQUATION

According to Eq. (19) and taking into account the fact that
the inverse operator Ĵ−1/2(q̄) given by Eq. (36) is Hermitian,
the contribution of the Hamiltonian kernel to the Hill-Wheeler
equation reduces to the form

Ĵ−1/2(q̄)
1√

N (0)(q̄)

{
H (0)(q̄) + [H (1)(q̄)P ](1)

+ 1

2
[H (2)(q̄)P ](2)

}
1√

N (0)(q̄)
Ĵ−1/2(q̄).

Now, we proceed as we did in the case of the overlap kernel by
introducing this time normalized moments of the Hamiltonian
defined by

H̄ (n)(q̄) = 1√
N (0)(q̄)

H (n)(q̄)
1√

N (0)(q̄)

and rewrite the equation given above as function of these
moments

Ĵ−1/2(q̄)
[
H̄ (0)(q̄) + i

2C(1)(H̄ (1), N̄ (0)) − 1
2C(2)(H̄ (1), N̄ (0))

+ [[
H̄ (1)(q̄) + i

2C(1)(H̄ (2), N̄ (0))
]
P

](1)

+ 1
2 [H̄ (2)(q̄)P ](2)

]
Ĵ−1/2(q̄). (37)

The next step is to extract a Schrödinger-like equation
following the procedure described in [27]. To this end we insert
the definition from Eq. (36) in Eq. (37) and make an expansion
in terms of symmetric ordered product that we truncate at order
two. We illustrate in the following how we achieve this goal
by rewriting Eq. (37) in condensed notation

Ĵ−1/2(q̄)H(q̄)Ĵ−1/2(q̄),

with {
H(q̄) = ∑2

i=0[h(i)(q̄)P ](i)

Ĵ−1/2(q̄) = ∑2
i=0[j(i)(q̄)P ](i) ,

(38)

where the quantities j(i)(q̄), h(i)(q̄) are obtained by identifica-
tion of these operators with those defined in Eqs. (36) and (37),
respectively. With these notations we can rewrite Eq. (37) in
the convenient form

2∑
p,q,r=0

[j(p)(q̄)P ](p)[h(q)(q̄)P ](q)[j(r)(q̄)P ](r),
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which has the advantage of showing the typical terms occurring
in this formalism. The expansion we are looking for is then
derived very simply by means of general formulas that are
given in Appendix A [Eqs. (A3) and (A4)]. This derivation is
straightforward, but requires nevertheless quite cumbersome
manipulations that we do not describe here. Thus, we limit
ourselves to giving the final expression of a Schrödinger
equation which takes into account the coupling between
collective and intrinsic excitations. This equation is written
as

[H (q̄) − E]g(q̄) = 0,

H (q̄) = S(q̄) + [T (q̄)P ](1) + [U (q̄)P ](2), (39)

where the quantities S, T , and U are matrices whose expression
is

S = h(0) + 1
8

(
h

(2)
(0)j(2)

)
+ + 1

16j
(1)
(2) h

(2)
(0)j

(1)
(2) − 1

4

(
h

(1)
(0)j(1)

)
−

− 1
16j(1)h

(2)
(0)j(1) + 1

32

(
j(1)h

(2)
(0)j

(1)
(2)

)
A

T = h(1) + 1
2

(
h(0)j(1)

)
+ − 1

2

(
h

(1)
(0)j(2)

)
− − 1

16

(
j(1)h

(2)
(0)j(2)

)
S

− 1
8

(
j(1)h

(1)
(0)j

(1)
(1)

)
S

− 1
16

(
j(2)h

(2)
(0)j

(1)
(2)

)
A

U = h(2) + 1
2

(
h(0)j(2)

)
+ − 1

2

(
h

(1)
(2)j

(1)
(2)

)
+ − 1

4j
(1)
(2) h(0)j

(1)
(2)

− 1
8j(2)h

(2)
(0)j(2) − 1

8

(
j

(1)
(2) h

(1)
(0)j(2)

)
S

+ 1
2

(
h(1)j(1)

)
+

+ 1
4

(
h(1)j

(1)
(2)

)
− − 1

4

(
h

(1)
(2)j(1)

)
− + 1

4j(1)h(0)j(1)

+ 1
8

(
j(2)h

(1)
(0)j(1)

)
A

− 1
8

(
j

(1)
(2) h(0)j(1)

)
A

(40)

For the sake of convenience, the dependence in q̄ has been
removed in all the quantities in this formula where we use the
compact notation

(XYZ)S = XYZ + ZYX

(XYZ)A = XYZ − ZYX.

Furthermore, the expression for the matrix elements of the
moments of H (q̄) suggest that we make the same assumptions
as for the derivatives of the overlap moments. Thus in the
derivation of the formulas proposed here it has been assumed
that: ⎧⎪⎨

⎪⎩
h

(p)
(0) (q̄) = 0 for p � 3

h
(p)
(1) (q̄) = 0 for p � 1

h
(p)
(2) (q̄) = 0 for p � 2.

(41)

These assumptions serve to reduce significantly the number
of terms in the expressions of the different contributions S(q̄),
T (q̄), and U (q̄).

We discuss now some aspects related to the properties and
the general structure of the Schrödinger equation defined by
Eqs. (39) and (40) which contains all the necessary ingredients
to build it. First, we note that this Hamiltonian is Hermitian
and time-reversal invariant. This is easily demonstrated using
the properties of the matrix elements of the moments listed
in Sec. III C3. As a consequence, if we treat collective and
intrinsic excitations on the same footing, there is no dissipation
but only a reversible exchange of energy between these two
kinds of excitation. Note, in particular, that a linear term
as it occurs in Eq. (39) does not induce a dissipative force

as introduced in studies of fission using a macroscopic-
microscopic approach [23]. However, it may be that for
practical reasons we need to treat explicitly a reduced set
of intrinsic excitations and take into account the remainder
implicitly because they are too numerous and their spectrum
too dense. In that case we may be led to introduce a dissipation
mechanism. We do not consider for the moment applications
at high excitation energies where such situations would occur
[38]. Concerning the general structure of the Schrödinger
Eq. (39), we analyze separately the three different terms which
are present in its definition. In Eq. (40) we have arranged the
terms in such a way that even moments come first and odd
ones at the end in S(q̄) and U (q̄). We recall that odd moments
occur only in the multidimensional case. Accordingly, in
evaluating S(q̄) and U (q̄) in the one-dimensional case, we
must consider only the first three terms in S(q̄) and the first
six in U (q̄). Their expressions are readily obtained with the
formulas given previously but they are very long and, for the
sake of brevity, we do not give them here. Note that if we
neglect the derivatives of the overlap moments we recover,
as we should, the simple Hamiltonian given in Ref. [27]. In
the multidimensional case all the terms in Eq. (40) must be
retained. They involve products of matrices of the moments
of the overlap and Hamiltonian kernels and their derivatives.
Each of them can be interpreted as effective vertices inducing
transitions between excitations. At this point it is important
to note that these vertices, by the definition of the moments,
are the result of an average over a wide range of deformations
around q̄ and, consequently, the coupling between collective
and intrinsic degrees of freedom is very nonlocal in the
present work. This contrasts with the other approach [39]
which couples the nuclear collective dynamics to internal
excitations defined at every deformation along the adiabatic
fission path. To conclude this analysis, it is appropriate to
recast our Hamiltonian Eq. (39) in a familiar form. With more
conventional notations, first, we express its diagonal matrix
elements which leads to the expression

Hii(q̄) = 1

2

[[
1

M(q̄)

]
ii

P

](2)

+ Vii(q̄).

We have taken into account the fact that the matrix T is
zero along the diagonal and identified a collective potential
as V (q̄) = S(q̄). We also have defined the mass as M−1(q̄) =
2U (q̄). We recognize standard Hamiltonians which describe
separately the collective dynamics on each potential energy
surfaces built with the various 2-qp excitations considered.
In the same manner we introduce the coupling between 2-qp
surfaces by considering the nondiagonal matrix elements of
Eq. (39). They are written in the form

Hij (q̄) = 1

2

[ [
1

M(q̄)

]
ij

P

](2)

+ [Tij (q̄)P ](1) + Vij (q̄),

with the definition of a nondiagonal mass as [ 1
M(q̄) ]ij =

2Uij (q̄).
This form of the interaction term is interesting because it

separates the coupling between collective and intrinsic degrees
of freedoms into terms of different nature. The first two, which
depend on the collective momentum, can be interpreted as a
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dynamical coupling while the last contribution is a potential
coupling. In appearance the Hamiltonian derived here has a
general structure very similar to the classical Hamiltonian
given by the authors in Ref. [39]. However, their derivation
and ours rely on very different approaches. In particular the
one presented here is based on a quantum description from the
start, while the classical Hamiltonian in Ref. [39] needs to be
quantized after the fact.

For completeness, we could have included in our dis-
cussion the explicit calculation of the moments associated
with neutron- and proton-number operators, in order to use
the method [29] which incorporates the conservation of the
average particle number in the GCM formalism. Similarly, we
could have included the moments of the operator associated
with the subtraction of the center-of-mass energy of the
nucleus. These contributions are straightforward to calculate
but are omitted here in order to avoid further complicating the
expression for the Hamiltonian above.

VI. CONCLUSION

In this paper we have presented a theoretical framework, the
SCIM, which allows in a microscopic way, the simultaneous
coupling of single-particle and collective degrees of freedom.
Such an approach is based on a generalized GCM, where
the general GCM ansatz of the nuclear wave function is
extended by a few excited configurations. In fact, one considers
as generating wave functions not only HF+BCS ground-
state configurations with different values for the collective
generator coordinate but also 2-qp excited states. Such an
approach has the advantage of describing in a completely
quantum-mechanical fashion, and without phenomenological
parameters, the coupling of quasiparticle degrees of freedom
to the collective motion of the nucleons. Our derivation of
the SCIM proceeds in two steps. The first step is based on
the generalization of the symmetric moment expansion of the
equations derived in the framework of the GCM, including
the coupling between collective and intrinsic variables. The
moments occurring in the equations are matrices whose
dimensions depend on the number of excitations introduced
in the description. Contrary to the usual case—without qp
excitations—all moments, odd and even, must be included
in the summation. Such an exact expansion in terms of
local operators of the generalized Hill-Wheeler equation
is then transformed into a local Schrödinger equation by
inverting the expansion of the overlap kernel. A second-order
differential Schrödinger equation then is derived by limiting
the summation to second-order terms under the assumption
that the series expansion of the overlap and Hamiltonian
kernels converge rapidly. The derivation of the inverse of
the overlap has been seriously complicated by the fact that
the moments and their derivatives vary rapidly as function of
the deformation, as observed in the numerical study of the
overlap kernel in a wide range of deformations in 236U. A
quantitative information on the accuracy of our approximation
as function of the first and second derivatives of second-order
moment of the overlap has been given in the present paper for
the scalar case. The Schrödinger equation is finally written

in a convenient form that has the advantage of exhibiting
typical terms occurring in the formalism such as the potential
coupling and the dynamical coupling between intrinsic and
collective excitations. There are a number of avenues that
could be pursued now with this new formalism. Among them,
the study of the fission dynamics and the coupling between
intrinsic and collective excitations in the descent from saddle
to scission represents one of the most challenging problems
in many-body theory. Also, a particularly interesting use for
this new approach is in those nuclei which exhibit excitation
spectra showing collective as well as noncollective effects.
This would surely improve the energies of the 0+

2 states,
which is one of the problems of collective models today. In all
these studies, the microscopic nuclear wave function will be
analyzed to determine the influence of the different degrees of
freedom on nuclear properties. This would, of course, add to
the computational burden, but the ingredients to perform the
calculation are ready for the most part. We conclude this article
by commenting briefly about the generality and potential of
our model and applications we plan to explore in the future.
We recall, first, that Eq. (40) gives the definition of our
Schrödinger equation (SCIM) in terms of quantities that can be
calculated with any choice of interaction under the condition
that all matrix elements occurring in these quantities are well
defined. One also can imagine using moments calculated with
more sophisticated states than those considered in our study.
For instance, one could use states generated with different
projectors (projection on states with good particle number,
projection of states with good parity, etc.). Another option
would be to use the quasiparticle random-phase approximation
(QRPA) correlated ground state in place of the Bogoliubov
vacuum and to consider QRPA excitations instead of the
simple free two-qp excitations. Of course, the direct use of
Eq. (40) supposes that the approximations we made to invert
the overlap kernel are still valid in those cases. Concerning
future applications, in spectroscopy or fission studies, we will
use the D1S density-dependent interaction [30,31], which we
recall has the required properties of treating on the same
footing the mean and pairing fields. In passing we note that
this is an important feature since, as shown in Refs. [33,40],
it avoids divergences in the evaluation of the Hamiltonian
kernel with solutions projected on good particle number.
Finally, since D1S is density dependent we are going to be
confronted with the delicate problem of choosing a prescrip-
tion to extend its definition and calculate matrix elements
between two HFB solutions that are not only at different
deformations but also between two different excitations as
they occur in the present formalism. While prescriptions for
the overlap between HFB states at different deformations with
density-dependent interactions have been largely discussed
in the literature (see, for instance, Refs. [41,42]), the added
complexity of quasiparticle excitations in those states has not,
and we will explore this question in a future publication. A
more detailed discussion of the difficulties just mentioned
is far beyond the scope of present paper, which is mainly
concerned with deriving, in the framework of the GCM
approach, a general form of a Schrödinger equation accounting
for the coupling between collective and intrinsic degrees of
freedom.
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MICROSCOPIC AND NONADIABATIC SCHRÖDINGER . . . PHYSICAL REVIEW C 84, 044308 (2011)

ACKNOWLEDGMENTS

The authors warmly thank J. F. Berger and N. Dubray
for enlightening discussions and for very useful advice for
the computational part. This work was performed in part
under the auspices of the US Department of Energy by
the Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Funding for this work was provided
in part by the United States Department of Energy Office
of Science, Nuclear Physics Program pursuant to Contract
DE-AC52-07NA27344 Clause B-9999, Clause H-9999 and
the American Recovery and Reinvestment Act, Pub. L. 111-5.

APPENDIX A: SYMMETRIC ORDERED PRODUCT
OF OPERATORS

The symmetric ordered product of operators (SOPO) is
defined by [27] (p. 421):

[A(q + s/2, q − s/2)P ](n)

= 1

2n

n∑
q=0

Cq
nP n−qA(q + s/2, q − s/2)P q, (A1)

where A is any operator and P is the derivative operator P =
i ∂

∂q̄
. For instance, the first three SOPO are:

[AP ](0) = A,

[AP ](1) = 1
2 (AP + PA),

[AP ](2) = 1
4 (AP 2 + 2PAP + P 2A),

where the action of PA on a vector g(q) is

PAg(q) = A(1)g(q) + APg(q), (A2)

with A(n) defined as A(n) = (P nA) = (i)n ∂nA
∂qn . Let us note that

for a Hermitian operator A, A(n) is Hermitian or anti-Hermitian
according to the parity of n:

(A(n))+ = (−1)nA(n).

For any operators A, B, and C, which depend on the collective
variable q, we have the following properties:

(i) The symmetric ordered product is linear:

[AP ](n) + [BP ](n) = [(A + B)P ](n)

(ii) The symmetric ordered product preserves the hermitic-
ity:

A+ = A ⇒ ([AP ](n))+ = [AP ](n){
A+ = A

B+ = B
⇒ ([AP ](n)[BP ](q))+ = [BP ](q)[AP ](n)

(iii) More generally, the product of two and three SOPO
can be expanded as a linear combination of symmetric
ordered product. This property is used throughout the
paper in the derivation of various expressions.

We give these expansions in a form convenient for retrieving
the contribution of a SOPO of a given order

[AP ](n)[BP ](q)

=
n+q∑
i=0

1

2i

min(n,i)∑
s=max(0,i−q)

Cs
nC

i−s
q (−1)i−s[A(i−s)B(s)P ](n+q−i)

(A3)

[AP ](n)[BP ](q)[CP ](r)

=
n+q+r∑
p=0

(−1)p

2p

min(p,q+r)∑
i=0

min(p−i,n)∑
t=max(0,p−q−r)

Ct
nC

p−i−t

q+r−i (−1)t

× [A(p−i−t)F (B,C, r, i, t)P ](n+q+r−p) (A4)

with

F (B,C, r, i, t) =
min(i,q)∑

s=max(0,i−r)

(−1)sCs
qC

i−s
r (B(i−s)C(s))(t).

In particular, using (A4) with n = 0, q = 1, 2, r = 0 we find:

A[BP ](1)C = [ABCP ](1) + 1
2 (ABC(1) − A(1)BC)

A[BP ](2)C = [ABCP ](2) + [(ABC(1) − A(1)BC)P ](1)

+ 1
4 (A(2)BC − 2A(1)BC(1) + ABC(2)).

(A5)

Formulas (A5) and (A4) are the formulas used to develop
the formalism in terms of normalized moments. In fact, after
setting

A = C = 1√
N (0)

we obtain
1√
N (0)

[BP ](1) 1√
N (0)

= [B̄P ](1) + i

2
C(1)(B,N (0))

1√
N (0)

[BP ](2) 1√
N (0)

= [B̄P ](2) + iC(1)(B,N (0))

−C(2)(B,N (0)) (A6)

with the definitions

C(1)(A,N (0)) = 1√
N (0)

A

(
1√
N (0)

)′
−

(
1√
N (0)

)′
A

1√
N (0)

,

C(2)(A,N (0)) = 1

4

[(
1√
N (0)

)′′
A

1√
N (0)

+ 2

(
1√
N (0)

)′

×A

(
1√
N (0)

)′
+ 1√

N (0)
A

(
1√
N (0)

)′′]
.

APPENDIX B: OVERLAP KERNEL

The matrix elements of the overlap kernel are expressed
as Nij (q, q ′) = 〈�i(q)|�j (q ′)〉, where |�i(q)〉 is defined by
Eq. (22). More explicitly, their calculation involves quantities
of the form

〈�(q)|ηq

l̄
η

q

k η
+q ′
i η

+q ′

j̄
|�(q ′)〉. (B1)
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The calculation of the overlap kernel between two
HF+BCS states at different deformations is detailed in
Refs. [32,44]. We use the formalism in Refs. [32,44] be-
cause we are most familiar with it, but, of course, other
derivations can be found elsewhere in the literature (e.g.,
Refs. [13,27,29,43] and references therein). For example, in
Ref. [43] the generalized Wick’s theorem for multiquasipar-
ticle overlaps has been obtained out of the corresponding
statistical version. In this latter reference, the contractions
are given by compact expressions that can accommodate
many quasiparticle excitations. It is worth stressing that the
formalism given in Refs. [32,44] was developed especially for
applications in fission, where we encounter configurations with
very different shapes which require the use of single-particle
bases with different basis parameters that are function of the
deformation and possibly with different dimensions. These
references provide a nontrivial extension of Wick’s theorem
and overlap formulas in this circumstance. We comment on
this aspect briefly at the end of this Appendix.

Let us introduce the quantities “S, T , and Y ” of
Refs. [32,44]

Sij = 〈�(q)|a+q ′
j a

q ′
i |�(q ′)〉

〈�(q)|�(q ′)〉 ,

Tij = 〈�(q)|a+q ′
i a

+q ′
j |�(q ′)〉

〈�(q)|�(q ′)〉 , (B2)

Yij = 〈�(q)|aq ′
i a

q ′
j |�(q ′)〉

〈�(q)|�(q ′)〉 ,

where the particle operators {aq

i , a
+q

i } are related to the qp
operators {ηq

i , η
+q

i } through the BCS transformation:{
η

q

i = u
q

i a
q

i − v
q

i a
+q

ī

η
+q

ī
= u

q

i a
+q

ī
+ v

q

i a
q

i .
(B3)

By means of Wick’s theorem, Eq. (B1) is expressed in terms of

〈�(q)|η+q ′
i η

+q ′

j̄
|�(q ′)〉 = 〈�(q)|�(q ′)〉[uq ′

i u
q ′
j Tij̄ + u

q ′
i v

q ′
j Sji

− v
q ′
i u

q ′
j (δij − Sij ) + v

q ′
i v

q ′
j Yj ī

)]
,

〈�(q)|ηq

l̄
η

q

k |�(q ′)〉 = 〈�(q)|�(q ′)〉
∑
pp′

τ
qq ′
lp τ

qq ′
kp′

[
u

q

l u
q

kYp̄p′

−u
q

l v
q

k (δpp′ − Spp′ ) + v
q

l u
q

kSp′p

− v
q

l v
q

k Tpp̄′
]
, (B4)

where the transformation τ
qq ′
ij is defined through the relation

a
+q ′
j =

n∑
i=1

τ
qq ′
ij a

+q

i , (B5)

where n is the dimension of the basis at deformation q. The
different quantities in Eq. (B4) can be expressed as [32,44]:

〈�(q)|�(q ′)〉 = det(τ qq ′
)det(Z)

δij − Sij = (τ qq ′−1uqZ
′−1uq ′

)ij
(B6)

Tij̄ = (uq ′
Z−1vqτ qq ′

)ji

Yij̄ = −(τ qq ′−1uqZ
′−1vq ′

)ij ,

with Z = uq(τ+)−1uq ′ + vqτvq ′
and Z′ = uq ′

(τ )−1uq +
vq ′

τ+vq .
Note that Eq. (B5) is nothing more than the expansion of

the single-particle basis at q ′ on the states of the basis at q.
Since we do not use a complete basis in Eq. (B5), the matrix
τ

qq ′
ij is not a unitary transformation. As a consequence, note

that it is the matrix inverse τ qq ′−1 that appears in Eq. (B6)
rather than its adjoint. It may also happen that the dimensions
of the bases at q and q ′ are not the same. In that case, one can
proceed as explained in Ref. [32], p. 1003.

APPENDIX C: CALCULATION OF I + û(q) AND RELATED
QUANTITIES IN TERMS OF NORMALIZED MOMENTS

1. Calculation of I + û(q)

According to Eq. (16), the operator I + û(q) is

I + û(q) = I + 1√
N (0)(q)

{
[N (1)(q)P ](1)

+ 1

2
[N (2)(q)P ](2)

}
1√

N (0)(q)
. (C1)

By use of Eqs. (A5) and (A6), û(q) can be expressed, after
straightforward calculations, as

û(q) = C+
N (q) + [WN (q)P ](1) + 1

2 [N̄ (2)(q)P ](2) (C2)

with

WN (q) = N̄ (1)(q) + iC(1)(N (2), N (0))

C+
N (q) = i

2C(1)(N (1), N (0)) − 1
2C(2)(N (2), N (0))

and

C(1)(A,N (0)) = 1√
N (0)(q)

A

[
1√

N (0)(q)

]′

−
[

1√
N (0)(q)

]′
A

1√
N (0)(q)

C(2)(A,N (0)) = 1

4

{[
1√

N (0)(q)

]′′
A

1√
N (0)(q)

+ 2

[
1√

N (0)(q)

]′
A

[
1√

N (0)(q)

]′

+ 1√
N (0)(q)

A

[
1√

N (0)(q)

]′′}
.

It is worth noticing that in the scalar case, the coefficient
C(1)(A,N (0)) and N̄ (1)(q) are zero so that the operator u

reduces to

û(q) = − 1
2C(2)(N (2), N (0)) + 1

2 [N̄ (2)(q)P ](2).

2. Calculation of the operators [I + û(q̄)]1/2 and [I + û(q̄)]−1/2

For sake of simplicity, we restrict our discussion to the
standard (one-dimensional) case. Ĵ1/2(q̄) the square root of
the operator 1 + û(q̄) is approximated by the first terms of the
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series expansion up to the order û2(q̄):

Ĵ1/2(q̄) = [I + û(q̄)]1/2 = 1 + 1
2 û(q̄) − 1

8 û2(q̄) (C3)

with

û(q̄) = 1
2 [N̄ (2)(q̄)P ](2).

Using the property (A3), [û(q̄)]2 is

û2(q̄) = 1
4

(
1

16 [N̄ (2)′′ (q̄)]2 + 1
2 [{N̄ (2)′′(q̄)N̄ (2)(q̄)

− 2[N̄ (2)′ (q̄)]2}P ](2) + [[N̄ (2)(q̄)]2P ](4)
)

and the operator Ĵ1/2(q̄) can be expressed in terms of SOPO
as

Ĵ1/2(q̄) = A1/2(q̄) + [B1/2(q̄)P ](2) + [C1/2(q̄)P ](4) (C4)

with⎧⎪⎨
⎪⎩

A1/2(q̄) = 1 − 1
29 [N̄ (2)′′(q̄)]2

B1/2(q̄) = 1
4

{
1 + 1

16 N̄ (2)′′ (q̄) − 1
8

[N̄ (2)′ (q̄)]2

N̄ (2)(q̄)

}
N̄ (2)(q̄).

C1/2(q̄) = − 1
32 [N̄ (2)(q̄)]2

(C5)

The same derivation applies for Ĵ−1/2(q̄), the inverse of the
root square of 1 + û(q̄), which can be expressed as:

Ĵ−1/2(q̄) ≡ 1 − 1
2 û(q̄) + 3

8 û2(q̄) ≈ [I + û(q̄)]−1/2

= A−1/2(q̄) + [B−1/2(q̄)P ](2) + [C−1/2(q̄)P ](4)

with⎧⎪⎨
⎪⎩

A−1/2(q̄) = 1 − 3
29 [N̄ (2)′′ (q̄)]2

B−1/2(q̄) = − 1
4

{
1 + 1

16 N̄ (2)′′ (q̄) − 3
8

[N̄ (2)′ (q̄)]2

N̄ (2)(q̄)

}
N̄ (2)(q̄).

C−1/2(q̄) = 3
32 [N̄ (2)(q̄)]2

(C6)

3. Validity of the approximation used to calculate
the operator [I + û(q̄)]1/2

The validity of the truncation made on the expansion of
the square root of the overlap kernel Ĵ1/2(q̄), Eq. (C3), is
checked here, by estimating the extent to which the relation
[I + û(q̄)]1/2[I + û(q̄)]1/2 = [I + û(q̄)] is satisfied. In other
words, using the expression of [I + û(q̄)]1/2 given in Eq. (C3),
the residual R(q̄) is defined by the relation

[I + û(q̄)]1/2[I + û(q̄)]1/2 = [I + û(q̄)] + R(q̄)

with

R(q̄) = − 1
8 [û(q̄)]3 + 1

64 [û(q̄)]4.

Consistently with the truncations made in Sec. II, the residual
R(q̄) is restricted to its lower orders in its development in
symmetric ordered products. Thus R(q̄) is

R(q̄) = A(q̄) + 1
2 [C(q̄)N̄ (2)(q̄)P ](2).

Neglecting the derivatives [N̄ (2)(q̄)](p) for p > 2, after tedious
but straightforward calculations using Eqs. (A3) and (A4), the
coefficients A(q̄) and C(q̄) are

A(q̄) = −3

211
[N̄ (2)′′ (q̄)]3 + 73

218
[N̄ (2)′′ (q̄)]4,

C(q̄) = −1

29

{
9[N̄ (2)′′ (q̄)]2 + 32

N̄ (2)′′ (q̄)[N̄ (2)′(q̄)]2

N̄ (2)(q̄)

}

+ 5

213

{
34

[N̄ (2)′′ (q̄)]2[N̄ (2)′(q̄)]2

N̄ (2)(q̄)
+ [N̄ (2)′′ (q̄)]3

}
.

The smaller the residual R(q̄), and, by extension, A(q̄)
and C(q̄), the best the approximation. In particular, we find
A(q̄) = C(q̄) = 0 for N̄ (2)′′ (q̄) = 0. Similar conclusions are
found for Ĵ−1/2(q̄).
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