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Contribution of isovector mesons to the symmetry energy in a microscopic model
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We examine the potential energy contributions to the symmetry energy (in the parabolic approximation) arising
from the isovector mesons, π , ρ, and δ. The significance of a microscopic model that incorporates all important
mesons is revealed. In particular, we demonstrate the importance of the pion for a realistic investigation of
isospin-sensitive systems.
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I. INTRODUCTION

The physics of unstable nuclei is closely related to the
equation of state (EOS) for isospin-asymmetric nuclear matter
(IANM). In fact, applications of IANM are broad, ranging from
the structure of rare isotopes to the properties of neutron stars.
An important quantity that emerges from IANM studies is the
so-called symmetry energy. However, in spite of many recent
and intense efforts, the density dependence of the symmetry
energy is not sufficiently constrained by the available data, and
theoretical predictions show considerable model dependence.

Older theoretical studies of IANM can be found in
Refs. [1,2]. Interactions adjusted to fit properties of finite
nuclei, such as those based on the nonrelativistic Skyrme
Hartree-Fock theory [3] or the relativistic mean-field theory
(see, for instance, Ref. [4]), have been used to extract phe-
nomenological EOS. A review of Skyrme interactions, partic-
ularly popular for nuclear structure applications, can be found
in Ref. [5]. Variational calculations of asymmetric matter were
reported in Refs. [6,7], whereas extensive microscopic work
with IANM was undertaken by Lombardo and collaborators
[8,9] within the Brueckner-Hartree-Fock (BHF) approach.
Dirac-Brueckner-Hartree-Fock (DBHF) calculations of IANM
properties were performed by the Oslo group [10], the Idaho
group [11,12], and by Fuchs and collaborators [13].

In this paper, we concentrate on the role of the isovector
mesons for the symmetry energy. The latter is defined from an
expansion of the energy per nucleon in terms of the isospin
asymmetry parameter. In the parabolic approximation, it is
simply the difference between the energies per particle in
neutron matter and symmetric nuclear matter; see the next
section. Physically, it represents the energy “price” a nucleus
must pay for being isospin asymmetric.

The isovector mesons and their impact on the symmetry
energy have been discussed in the literature, particularly in
the context of mean-field approaches, both relativistic and
nonrelativistic [see, for instance, Ref. [14] for an extensive
review on reaction dynamics with exotic nuclei based on
effective interactions derived from quantum hadrodynam-
ics (QHD)]. Recently, considerable interest has developed
around the symmetry potential, which arises from the dif-
ference between neutron and proton single-particle potentials
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in isospin-asymmetric matter. With regard to that issue,
it is interesting to recall that, in relativistic mean-field
approaches, the introduction of the isovector scalar meson (the
δ or a0) is reported to invert the sign of the splitting between
the masses of the neutron and the proton in neutron-rich
matter [15].

Furthermore, in approaches based on QHD, such as those
originally proposed by Walecka and collaborators [16–18], the
dynamical degrees of freedom are essentially included through
coupling of the nucleons to the isoscalar scalar σ and vector
ω mesons. QHD-I models of nuclear matter do not include
the pion, which is perhaps the reason why the contribution of
the pion to the symmetry energy may have not been discussed
in sufficient depth. (Note, however, that Walecka’s QHD-II
model does include both π and ρ.)

We will explore the role of all isovector channels for the
symmetry energy from the point of view of an ab initio model.
The main point of the ab initio approach is that mesons are
tightly constrained by the free-space data and their parameters
are never readjusted in the medium (this is what we mean
by “parameter free”). Furthermore, the contributions from the
various mesons are fully iterated, thus giving rise to correlation
effects. The corresponding predictions can be dramatically
different than those which may be produced in first-order
calculations.

This paper is organized as follows: In the next section, we
present some facts and phenomenology about the symmetry
energy; then, in Sec. III, after a brief review of our theoretical
approach, we focus on exploring the potential energy contri-
butions of the isovector mesons to the symmetry energy. Our
conclusions are summarized in the last section.

II. SOME FACTS ABOUT IANM

Asymmetric nuclear matter can be characterized by the
neutron density ρn and the proton density ρp, which are related
to their respective Fermi momenta, kn

F and k
p

F , by

ρi =
(
ki
F

)3

3π2
, (1)

with i = n or p.
It is more convenient to refer to the total density ρ =

ρn + ρp and the asymmetry (or neutron excess) parameter
α = ρn−ρp

ρ
. Clearly, α = 0 corresponds to symmetric matter,
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and α = 1 corresponds to neutron matter. In terms of α and
the average Fermi momentum kF , which is related to the total
density in the usual way,

ρ = 2k3
F

3π2
, (2)

the neutron and proton Fermi momenta can be expressed as

kn
F = kF (1 + α)1/3 (3)

and

k
p

F = kF (1 − α)1/3, (4)

respectively.
Expanding the energy or particle in IANM with respect to

the asymmetry parameter yields

e(ρ, α) = e0(ρ) + 1

2

(
∂2e(ρ)

∂α2

)
α=0

α2 + O(α4), (5)

where the first term is the energy per particle in symmetric
matter and the coefficient of the quadratic term is identified
with the symmetry energy esym. In the Bethe-Weizsäcker
formula for the nuclear binding energy, it represents the
amount of binding a nucleus has to lose when the numbers
of protons and neutrons are unequal. To a very good degree of
approximation, one can write

e(ρ, α) ≈ e0(ρ) + esym(ρ)α2. (6)

The symmetry energy is also closely related to the neutron β

decay in dense matter, whose threshold depends on the proton
fraction. A typical value for esym at nuclear-matter density ρ0 is
30 MeV, with theoretical predictions spreading approximately
between 26 and 35 MeV. The effect of a term of fourth order
in the asymmetry parameter [O(α4)] on the bulk properties of
neutron stars is very small, although it may impact the proton
fraction at high density. More generally, nonquadratic terms
are usually associated with isovector pairing, which is a surface
effect and thus vanishes in infinite matter [19].

Equation (6) displays a convenient separation between the
symmetric and asymmetric parts of the EOS, which facilitates
the identification of observables that, for instance, may be
sensitive mainly to the symmetry energy. Presently, research
groups from GSI [20], MSU [21], Italy [22], France [23], and
China [24,25] are investigating the density dependence of the
symmetry energy through heavy-ion collisions. Based upon
recent results, these investigations appear to agree reasonably
well on the following parametrization of the symmetry energy:

esym(ρ) = 12.5 MeV
( ρ

ρ0

)2/3
+ 17.5 MeV

( ρ

ρ0

)γi

, (7)

where the first term is the kinetic contribution and γi (the
exponent appearing in the potential energy part) is found
to be between 0.4 and 1.0. Naturally, there are uncertainties
associated with all transport models. Recent constraints from
MSU [21] were extracted from simulations of 112Sn and 124Sn
collisions with an improved quantum molecular dynamics
transport model and are consistent with isospin diffusion data
and the ratio of neutron and proton spectra.

Typically, parametrizations like the one given in Eq. (7)
are valid at or below the saturation density ρ0. Efforts to
constrain the behavior of the symmetry energy at higher

densities are presently being pursued through observables
such as π−/π+ ratio, K+/K0 ratio, neutron-proton differential
transverse flow, and nucleon elliptic flow [26].

III. THE ROLE OF ISOVECTOR MESONS

A. Review of the theoretical approach

As stated in the Introduction, the starting point of our
many-body calculation is a realistic neucleon-nucleon (NN)
interaction, which is then applied in the nuclear medium with-
out any additional free parameters. Thus the first question to be
confronted concerns the choice of the “best” NN interaction.
After the development of QCD and the understanding of its
symmetries, chiral effective theories [27,28] were developed
as a way to respect the symmetries of QCD while keeping the
degrees of freedom (nucleons and pions) typical of low-energy
nuclear physics. However, chiral perturbation theory (ChPT)
has definite limitations as far as the range of allowed momenta
is concerned. For the purpose of applications in dense matter,
where higher and higher momenta become involved with
increasing Fermi momentum, NN potentials based on ChPT
are unsuitable.

Relativistic meson theory is an appropriate framework to
deal with the high momenta encountered in dense matter. In
particular, the one-boson-exchange (OBE) model has proven
very successful in describing NN data in free space and has
a good theoretical foundation. Among the many available
OBE potentials, with some being part of the “high-precision
generation” [29,30], we seek a momentum-space potential
developed within a relativistic scattering equation, such as the
one obtained through the Thompson [31] three-dimensional
reduction of the Bethe-Salpeter equation [32]. Furthermore,
we require a potential that uses the pseudovector coupling for
the interaction of nucleons with pseudoscalar mesons. With
these constraints in mind, as well as the requirement of a good
description of the NN data, Bonn B [33] is a reasonable choice.
The mesons included are the pseudoscalar π and η, the scalar
σ and δ, and the vector ρ and ω.

As our many-body framework, we choose the Dirac-
Brueckner-Hartree-Fock approach. We will now review the
main aspects of our approach and the various approximations
we perform through the application of the DBHF procedure.

The main strength of the DBHF approach is its inherent
ability to account for important three-body forces (TBFs)
through its density dependence. These are the TBFs originating
from virtual excitation of a nucleon-antinucleon pair, known as
“Z diagram.” The characteristic feature of the DBHF method
turns out to be closely related to the TBFs of the Z-diagram
type, as we will argue next. In the DBHF approach, one
describes the positive-energy solutions of the Dirac equation
in the medium as

u∗(p, λ) =
(

E∗
p + m∗

2m∗

)1/2
(

1
σ · �p

E∗
p+m∗

)
χλ, (8)

where the nucleon effective mass m∗ is defined as m∗ = m +
US , with US being an attractive scalar potential. (This will
be derived below.) It can be shown that both the description
of a single-nucleon via Eq. (8) and the evaluation of the Z
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diagram generate a repulsive effect on the energy per particle
in symmetric nuclear matter, which depends on the density
approximately as

�E ∝
(

ρ

ρ0

)8/3

(9)

and provides the saturating mechanism missing from con-
ventional Brueckner calculations [34]. (Alternatively, explicit
TBFs are used along with the BHF method in order to achieve
a similar result.)

The approximate equivalence of the effective-mass descrip-
tion of Dirac states and the contribution from the Z diagram
has a simple intuitive explanation in the observation that
Eq. (8), like any other solution of the Dirac equation, can
be written as a superposition of positive- and negative-energy
solutions. On the other hand, the “nucleon” in the middle
of the Z diagram is precisely a superposition of positive-
and negative-energy states. In summary, the DBHF method
effectively takes into account a particular class of TBF, which
is crucial for nuclear-matter saturation.

Having first summarized the main DBHF philosophy, we
now proceed to describe the DBHF calculation of IANM [11].
In the end, this will take us back to the crucial point of the
DBHF approximation, Eq. (8).

We start from the Thompson [31] relativistic three-
dimensional reduction of the Bethe-Salpeter equation [32].
The Thompson equation is applied to nuclear matter in strict
analogy to free-space scattering and reads, in the nuclear-
matter rest frame,

gij (�q ′, �q, �P , (ε∗
ij )0) = v∗

ij (�q ′, �q) +
∫

d3K

(2π )3
v∗

ij (�q ′, �K)
m∗

i m
∗
j

E∗
i E

∗
j

× Qij ( �K, �P )

(ε∗
ij )0 − ε∗

ij ( �P , �K)
gij ( �K, �q, �P ,(ε∗

ij )0),

(10)

where gij is the in-medium reaction matrix (ij = nn, pp, or
np), and the asterisk signifies that medium effects are applied
to those quantities. Thus the NN potential v∗

ij is constructed
in terms of effective Dirac states (in-medium spinors) as
explained above. In Eq. (10), �q, �q ′, and �K are the initial,
final, and intermediate relative momenta, respectively, and
E∗

i =√
(m∗

i )2+K2. The momenta of the two interacting particles
in the nuclear-matter rest frame have been expressed in terms
of their relative momentum and the center-of-mass momentum
�P through

�P = �k1 + �k2 (11)

and

�K =
�k1 − �k2

2
. (12)

The energy of the two-particle system is

ε∗
ij ( �P , �K) = e∗

i ( �P , �K) + e∗
j ( �P , �K), (13)

and (ε∗
ij )0 is the starting energy. The single-particle energy

e∗
i includes kinetic-energy and potential-energy contributions

[see Eq. (27) below]. The Pauli operator Qij prevents scat-
tering to occupied nn, pp, or np states. To eliminate the
angular dependence from the kernel of Eq. (10), it is customary
to replace the exact Pauli operator with its angle average.
Detailed expressions for the Pauli operator and the average
center-of-mass momentum in the case of two different Fermi
seas can be found in Ref. [11].

With the definitions

Gij = m∗
i

E∗
i ( �q ′)

gij

m∗
j

E∗
j (�q)

(14)

and

V ∗
ij = m∗

i

E∗
i ( �q ′)

v∗
ij

m∗
j

E∗
j (�q)

, (15)

one can rewrite Eq. (10) as
Gij (�q ′, �q, �P , (ε∗

ij )0)

= V ∗
ij (�q ′, �q) +

∫
d3K

(2π )3
V ∗

ij (�q ′, �K)

× Qij ( �K, �P )

(ε∗
ij )0 − ε∗

ij ( �P , �K)
Gij ( �K, �q, �P , (ε∗

ij )0), (16)

which is formally identical to its nonrelativistic counterpart.
The goal is to determine self-consistently the nuclear-matter

single-particle potential, which, in IANM, will be different
for neutrons and protons. To facilitate the description of the
procedure, we will use a schematic notation for the neutron-
proton potential. We write, for neutrons,

Un = Unp + Unn (17)

and, for protons,
Up = Upn + Upp, (18)

where each of the four pieces on the right-hand side of
Eqs. (17) and (18) signifies an integral of the appropriate
G-matrix elements (nn, pp, or np) obtained from Eq. (16).
Clearly, the two equations above are coupled through the
np component, and so they must be solved simultaneously.
Furthermore, the G-matrix equation and Eqs. (17) and (18)
are coupled through the single-particle energy (which includes
the single-particle potential, itself defined in terms of the
G matrix). So we have a coupled system to be solved
self-consistently.

Before proceeding with the self-consistency, one needs an
ansatz for the single-particle potential. The latter is suggested
by the most general structure of the nucleon self-energy
operator consistent with all symmetry requirements. That is,

Ui( �p) = US,i(p) + γ0U
0
V,i(p) − �γ · �pUV,i(p), (19)

where US,i and UV,i are an attractive scalar field and a
repulsive vector field, respectively, with U 0

V,i being the timelike
component of the vector field. These fields are, in general,
density and momentum dependent. We take

Ui( �p) ≈ US,i(p) + γ0U
0
V,i(p), (20)

which amounts to assuming that the spacelike component of
the vector field is much smaller than both US,i and U 0

V,i .
Furthermore, neglecting the momentum dependence of the
scalar and vector fields and inserting Eq. (20) in the Dirac
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equation for neutrons and protons propagating in nuclear
matter,

[γμpμ − mi − Ui( �p)]ui( �p, λ) = 0, (21)

naturally lead to rewriting the Dirac equation in the form

[γμ(pμ)∗ − m∗
i ]ui( �p, λ) = 0, (22)

with positive-energy solutions as in Eq. (8), m∗
i = m + US,i ,

and

(p0)∗ = p0 − U 0
V,i(p) . (23)

The subscript i signifies that these parameters are different for
protons and neutrons.

As in the symmetric-matter case [35], evaluating the
expectation value of Eq. (20) leads to a parametrization of the
single-particle potential for protons and neutrons [Eqs. (17)
and (18)] in terms of the constants US,i and U 0

V,i , which is
given by

Ui(p) = m∗
i

E∗
i

〈 �p|Ui( �p)| �p〉 = m∗
i

E∗
i

US,i + U 0
V,i . (24)

Also,

Ui(p) =
∑

j=n,p

∑
p′�k

j

F

Gij ( �p, �p′), (25)

which, along with Eq. (24), allows the self-consistent determi-
nation of the single-particle potential as explained below.

The kinetic contribution to the single-particle energy is

Ti(p) = m∗
i

E∗
i

〈 �p| �γ · �p + m| �p〉 = mim
∗
i + �p2

E∗
i

, (26)

and the single-particle energy is

e∗
i (p) = Ti(p) + Ui(p) = E∗

i + U 0
V,i . (27)

The constants m∗
i and

U0,i = US,i + U 0
V,i (28)

are convenient to work with as they facilitate the connection
with the usual nonrelativistic framework [36].

Starting from some initial values of m∗
i and U0,i , the

G-matrix equation is solved and a first approximation for Ui(p)
is obtained by integrating the G matrix over the appropriate
Fermi sea; see Eq. (25). This solution is again parametrized
in terms of a new set of constants, determined by fitting
the parametrized Ui , Eq. (24), to its values calculated at
two momenta, a procedure known as the “reference-spectrum
approximation.” The iterative procedure is repeated until
satisfactory convergence is reached.

Finally, the energy per neutron or proton in nuclear matter is
calculated from the average values of the kinetic and potential
energies as

ēi = 1

A
〈Ti〉 + 1

2A
〈Ui〉 − m. (29)

The EOS, or energy per nucleon as a function of density, is
then written as

ē(ρn, ρp) = ρnēn + ρpēp

ρ
(30)

or

ē(kF , α) = (1 + α)ēn + (1 − α)ēp

2
. (31)

Clearly, symmetric nuclear matter is obtained as a by-product
of the calculation described above by setting α = 0, whereas
α = 1 corresponds to pure neutron matter.

B. Results

In Table I we show the contributions of some major partial
waves to the potential energy of neutron matter (NM) and of
symmetric nuclear matter (SNM). The last column displays
their difference to signify the potential-energy contribution
to the symmetry energy. The chosen density is 0.185 fm−3,
corresponding to a Fermi momentum of 1.4 fm−1 in SNM and
1.76 fm−1 in NM [from Eq. (3) with α = 1]. (Summing up all
contributions and including the kinetic term yields 33.7 MeV,
which is very close to the actual value of our symmetry energy
at this density.)

We observe that spin-triplet waves, particularly 3S1, give
the largest contribution. It will be interesting to revisit this
point in conjunction with the role of the δ meson. We note
that, although the contribution of the δ meson to a quantitative
NN interaction is known to be relatively small, this meson is
a crucial mechanism to fine-tune the S waves, that is, 1S0 vs
3S1. Hence, its importance for isospin-dependent phenomena.

In Table II, we show the contributions to the potential
energy of SNM from the different mesons. We show these
contributions for potentials A and C as well [33]. The three
potentials differ mostly in the parameters used for the πNN
form factor, which has a large impact on the strength of the
tensor force, with Bonn A displaying the weakest tensor force
and Bonn C the strongest (as demonstrated by the predicted
D-state probabilities, which are 4.47%, 5.10%, and 5.53% for
A, B, and C, respectively.) These three potentials span the
uncertainty in our knowledge of the short-range tensor force.
Considering all three models will then provide information
on how the effects being examined (namely, the role of
the isovector mesons on the symmetry energy) change with
changing tensor force while maintaining consistency with the

TABLE I. Potential energy contributions (in MeV) for selected
partial waves to the energy of NM and SNM and their difference. The
density is equal to 0.185 fm−3.

Partial waves UNM USNM UNM − USNM

1S0 −18.71 −18.75 0.042
3P0 −1.88 −1.75 −0.126
1P1 0 4.045 −4.045
3P1 20.51 14.40 6.111
3S1 0 −20.29 20.29
3D1 0 1.564 −1.564
1D2 −4.250 −2.477 −1.773
3D2 0 −4.360 4.360
3F2 −1.022 −0.560 −0.462
3P2 −12.47 −7.697 −4.773
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TABLE II. Contributions (in MeV) to the potential energy of SNM from various mesons for three different potential models. The density
is equal to 0.185 fm−3.

Potential σ + ω σ + ω + π π σ + ω + π + ρ ρ σ + ω + ρ + δ δ All mesons

Bonn B −29.82 −45.89 −17.08 −38.69 7.21 −35.13 3.56 −34.24
Bonn A −33.27 −44.65 −11.38 −38.47 6.18 −36.90 1.57 −36.15
Bonn C −23.45 −45.21 −21.75 −38.74 6.47 −33.61 5.13 −32.98

free-space NN data. We believe that the latter constraint is
crucial for a reliable investigation of many-body effects.

We start by taking σ and ω together since a model with
only one of these mesons is entirely meaningless and would
produce a completely unrealistic correlated wave function,
especially so with σ alone, due to the absence of any
short-range repulsion. The fourth column is the difference
between the values shown in the third and second columns
and represents the contribution from the pion alone. Notice that
this contribution is attractive, as to be expected, recalling that
the pion’s tensor potential Vt generates a large and attractive
second-order term Vt

Q

E0−E
Vt when iterated in the Bethe-

Goldstone equation. Consistent with that, this contribution is
largest with Bonn C due to its stronger tensor force.

The contribution of the ρ meson is shown in the sixth
column as the difference between the values in columns five
and three. It is considerably smaller than the pion’s and is
repulsive since the tensor force generated by ρ typically
reduces the pion’s tensor force at short range. With regard
to ρ, it is useful to recall that the interaction Lagrangian that
couples vector mesons with nucleons contains both a vector
coupling and a tensor coupling,

LNNρ = −gρψ̄γμ�τψ · φμ
ρ − fρ

4M
ψ̄σμν �τψ · (

∂μφν
ρ − ∂νφμ

ρ

)
.

(32)

These are related to the electromagnetic properties of the
nucleon in the vector dominance model, where the nucleon
couples to the photon via a vector meson. In the framework of
the vector dominance model [37], a value of 3.7 is obtained
for the ratio of the tensor-to-vector coupling constant, κρ =
fρ/gρ , whereas a stronger value of κρ = 6.6 was determined
from partial-wave analyses [38]. In other words, a larger value
of the ρ tensor coupling as compared to its vector coupling
is well supported by evidence, a fact that is reflected in
meson-exchange models where, typically, the ratio κρ is about
6. Therefore, a Lagrangian density with only a vector coupling
for ρ [39], i.e., fρ = 0, may miss the most important part of
how this meson couples to the nucleon.

In Table II, the δ meson is included next, providing a small
and positive contribution. The last column displays the full
result, when the pseudoscalar meson η is included as well.
Table II is more insightful when examined together with
Table III. The latter shows the same physical quantities as
in Table II but for pure neutron matter. Here the contribution
of the pion is much smaller and opposite in sign. This is due to
the absence of the 3S1 partial wave in NM and, consequently,
the absence of a large part of the attractive second-order tensor
term mentioned above. The effect of the δ meson in NM is of
about the same size as the one observed in SNM but opposite
in sign. This can be easily understood recalling that the effect
of the isovector scalar meson is attractive in 1S0 and repulsive
in 3S1 and that the latter is absent from NM. With respect to
potential model dependence, the size of the effect is largest in
model C and weakest in model A. Model dependence should be
expected, as the parameters of the δ meson are quite different
for the three potentials.

Before proceeding to discuss the symmetry energy, we
show, for Bonn B, how the various mesons contribute to the
energy of symmetric nuclear matter [Fig. 1(a)] and neutron
matter [Fig. 1(b)]. From Fig. 1(a), one can see that the effect
of the pion is large at all densities. As argued previously,
this effect comes from the attractive second-order contribution
generated by the pion potential, which is clearly quite large
already at low density. As density increases, the second-order
tensor contribution is reduced by the Pauli operator (and
dispersion effects) and thus retains approximately the same
size. We also note the clear impact of the pion on the saturation
density of SNM, demonstrating the remarkable saturating
effect generated by the tensor force, particularly through the
3S1 partial wave.

For neutron matter, on the other hand, the contribution of
the pion comes mostly from the (repulsive) tensor force in
some major isospin-1 partial waves. Accordingly, Fig. 1(b)
shows that such a contribution is opposite in sign and weaker
as compared to the one in SNM, as already observed when
discussing Table III. Also, the effect increases with density,
in contrast to the case of SNM; see comments in the previous
paragraph.

TABLE III. As in Table II but for NM.

Potential σ + ω σ + ω + π π σ + ω + π + ρ ρ σ + ω + ρ + δ δ All mesons

Bonn B −17.00 −13.30 3.7008 −12.00 1.30 −15.21 −3.22 −16.09
Bonn A −20.10 −15.50 4.60 −14.00 1.50 −15.23 −1.23 −16.40
Bonn C −14.04 −11.37 2.67 −10.39 0.98 −15.48 −5.11 −16.05
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FIG. 1. (Color online) Contribution from the various mesons to
the equation of state of (a) symmetric matter and (b) neutron matter.

In Table IV, we show the difference between the potential
energy contributions to NM and SNM from the isovector
mesons as an estimate of the effect of each meson on the
potential-energy part of the symmetry energy. (The density is
the same as in the previous tables.) Clearly, in a microscopic,
meson-theoretic approach the impact of the pion on the
symmetry energy is the largest. We find this to be a point of
considerable interest since mean-field theories are generally
pionless. This is because the bulk of the attraction-repulsion
balance needed for a realistic description of nuclear matter can
be technically obtained from σ and ω only, an observation that
is at the very foundation of Walecka models such as QHD-I
[16]. However, in any fundamental theory of nuclear forces,
the pion is the most important ingredient. Chiral symmetry
is spontaneously broken in low-energy QCD, and the pion
emerges as the Goldstone boson of this symmetry breaking
[28]. Moreover, NN scattering data cannot be described
without the pion, which is also absolutely crucial for the
two-nucleon bound state, the deuteron.

When moving to nuclear matter (and regardless of the
possibility of obtaining realistic values of its bulk properties,
including the symmetry energy, with a pionless theory), this
conceptual problem is not removed. Isospin dependence is

TABLE IV. The difference between the potential energy contri-
butions (in MeV) to NM and SNM from isovector mesons.

Potential Uπ
NM − Uπ

SNM U
ρ

NM − U
ρ

SNM Uδ
NM − Uδ

SNM

Bonn B 20.78 −5.90 −6.78
Bonn A 15.98 −4.68 −2.80
Bonn C 24.42 −5.48 −10.24

carried by the isovector mesons: Because of their isovector
nature, these mesons contribute differently in different partial
waves, thus giving rise to isospin dependence. (This is not
the case with isoscalar mesons, which tend to contribute
similarly in all partial waves.) Thus, an important aspect of
the physics is missing in a discussion of isospin dependence
that does not include the pion. Also, conclusions concerning
the effect of other mesons (particularly ρ and δ) may be
distorted due to the absence of the pion. This may include, for
instance, observations concerning isospin-sensitive quantities,
such as the neutron-proton mass splitting in neutron-rich
matter.

As mentioned earlier, investigations of ρ and δ contribu-
tions to the potential symmetry energy have been reported,
such as the one in Refs. [14,40]. In Fig. 6-1 of Ref. [14], for
instance, those contributions are shown to be very large in size
(about −40 and 50 MeV at saturation density for δ and ρ,
respectively). Thus, the interplay between ρ and δ is described
as the equivalent, in the isovector channel, of the σ -ω interplay
in the isoscalar channel [40].

The dramatic differences between those and our present
observations originate from several sources, which include the
absence of the pion, the nature of the ρ coupling, and the fact
that our meson contributions, when iterated, are reduced by
the effect of the Pauli projector. As mentioned previously, the
role of the δ is important although subtle, and it is found in
its different contributions to I = 1 and I = 0 partial waves,
especially the S waves.

In Fig. 2 we show the density dependence of the sym-
metry energy with Bonn A, B, and C. The potential model
dependence comes almost entirely from differences among
predictions of the SNM energy. With the three sets of
predictions, we mean to estimate the uncertainty to be expected
when using different parametrizations for the isovector mesons
while respecting the free-space NN data.

Figure 3 displays the momentum dependence of the single-
proton and single-nucleon potentials in IANM, as predicted
by the three potentials. Differences are small, at most 10% at
the lowest momenta. We recall that the gradient between the
potentials shown in Fig. 2, closely related to the isovector
optical potential, is the crucial mechanism that separates
proton and neutron dynamics in IANM.

FIG. 2. (Color online) The symmetry energy as predicted with
Bonn A, B, and C.
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FIG. 3. (Color online) Momentum dependence of the single-
nucleon potentials in IANM Ui (i = p, n) predicted with Bonn (a)
A, (b) B, and (c) C. The total density is equal to 0.185 fm−3, and the
isospin asymmetry parameter is 0.4. The momentum is given in units
of the Fermi momentum, which is equal to 1.4 fm−1.

In concluding this section, we take note of Ref. [41], where
the effect of the short-range tensor interaction on the symmetry
energy is examined using an approximate expression for

the second-order tensor contribution [42]. It must be noted,
however, that the variations performed on the short-range
tensor interaction in Ref. [41] are unconstrained and thus to
some extent arbitrary.

IV. CONCLUSIONS

We have examined the effect of the isovector mesons
on the difference between the potential energies of pure
neutron matter and symmetric matter. Our findings are easily
understood in terms of the contributions of each meson to the
appropriate component of the nuclear force and the isospin
dependence naturally generated by isovector mesons.

We find that the pion gives the largest contribution to this
difference. The contribution of the pion is often overlooked,
possibly because this meson is missing from some mean-field
models, which are popular among users of equations of state.
It is our opinion that conclusions regarding the interplay of ρ

and δ in phenomenological models must be taken with caution.
We comment on fundamental differences between our

approach and the one of mean-field models, particularly
pionless QHD theories. First, these differences are of con-
ceptual relevance since free-space NN scattering and the
bound state are, essentially, pion physics. Furthermore, they
can impact in a considerable way conclusions with regard
to isospin-dependent systems and phenomena. In order to
have a fundamental basis, a microscopic theory of the nuclear
many-body problem has to start from the bare NN interaction
with all its ingredients.
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