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Validity of the coupled-channel reduction in three-body scattering
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Near-threshold singularities of elastic scattering amplitudes in the coupled-channel reduction for collisions
of weakly bound projectiles with nuclear targets are studied within the framework of the three-body scattering
problem. The initial three-body scattering amplitudes are demonstrated to have artificial nonphysical singularities
near the pseudo-thresholds of inelastic channels. These singularities, similar to the atomic physics applications,
are originated from the discretization of the projectile sub-Hamiltonian continuum. However, in nuclear physics
applications, the presence of imaginary parts in optical potentials for the projectile fragments and target suppresses
strongly all the irregularities. The complete wave-packet discretization of three-body continuum is shown to lead
to quite smooth approximations for elastic partial amplitudes as functions of the total energy. Simultaneously
we prove that the pseudostate-continuum approximation for the channel three-body resolvent is rather accurate
when solving the three-body scattering problems.
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I. MOTIVATION OF THE STUDY

One of the most popular methods for solving quantum
scattering problems of composite particles in atomic, molecu-
lar and nuclear physics is a reduction to the coupled-channel
scheme. In fact, the majority of practical applications toward
the solution of realistic scattering problems is based just on
such a coupled-channel approximation (CCA) [1–11]. Despite
some special details, such approaches have common features
related to employment of some specific finite L2 basis for
the representation of the excitations of the projectile (or
target) into continuum states. In this way, the continuous
spectrum of the projectile and/or target becomes discretized.
The effects of such L2 continuum discretization to the energy
behavior of elastic scattering amplitudes have been studied
in detail previously within the pseudo-state expansion and
strong-coupling CCA methods mainly in the atomic physics
applications [1,2]. These effects are related to the appear-
ance of false resonances in three-body spectra near discrete
pseudostate eigenenergies and, as a sequence, they lead to
a rather singular energy behavior of elastic amplitudes. In
nuclear physics, this CCA approach is often done in the form of
the so-called continuum-discretized coupled-channel (CDCC)
method, which is quite popular for the treatment of composite
particle scattering by nuclear target [3–7]. The approach can
also be considered as a variant of the general CCA scheme.
Thus, quite similar to other continuum discretization schemes,
one should also observe, in general, some energy singularities
due to false thresholds corresponding to pseudostate energies.

In previous years, some active general discussions (see,
e.g., Ref. [12]) have been dedicated to the validity of the CCA
approaches in few-body scattering problems. One of the main
difficulties in the rigorous substantiation of the CCA treatment
for two- and few-body continuum states, like the CDCC
approach, lies in the fact that some part of channels (usually
the rearrangement channels) are neglected in such a treatment.
So that one cannot compare, e.g., the CDCC solution in the
case of three-body scattering with full Faddeev solution where
the rearrangement channels are fully incorporated. On the

other hand, the respective three-body Lippmann-Schwinger
equation (taken in one channel) has a non-Fredholm kernel,
so its direct numerical solution may lead to serious practical
problems, e.g., divergences or nonphysical near-threshold
singularities of the scattering amplitudes. However, as far as
the present authors are aware, the effects of such nonphysical
energy singularities to the scattering observables within the
conventional coupled-channel reduction have, to date, not been
studied in nuclear physics (e.g., in the CDCC-approach).

Thus, two important problems are related to the general
coupled-channel reduction for few- and many-body scattering
problems. First, the convergence of the CCA solutions to the
exact ones with increasing the number of channels involved.
The second one is how to treat (or remove) the false energy
singularities near the pseudo-thresholds and what is the real
impact of these singularities in the calculated cross sections.

The present work is aimed to elucidate these two important
issues and to shed some light on the validity of CCA in
nuclear physics applications. Also, we study the character
of the energy singularities and their dependence on the
interactions involved in the couple-channel reduction in some
test three-body scattering problems. So, as a first step we
study the convergence of the CCA results to the exact
ones and also the near-threshold singularities of the elastic
scattering amplitude within the conventional Schroedinger
CCA formalism. Then we present a new approach based on
the wave-packet expansion basis [13–16] that makes it possible
to smooth noticeably the artificial near-threshold singularities
in many cases and get some regular (in energy) scattering
amplitudes around the threshold energies.

Thus, we use the original wave-packet continuum dis-
cretization (WPCD) approach developed recently by the
present authors [13–16]. This approach allows us to find an
accurate solution of the initial three-body scattering problem
for its consequent comparison to the CCA results. For this
purpose we employ an integral formulation of the quantum
scattering problem, which allows us to take into account
different types of boundary conditions in the three-body

044002-10556-2813/2011/84(4)/044002(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.84.044002


O. A. RUBTSOVA, V. I. KUKULIN, AND V. N. POMERANTSEV PHYSICAL REVIEW C 84, 044002 (2011)

scattering [15]. So, the above discrete wave-packet approach
allows us to compare directly the results of the CCA and the
full three-body calculation within the same three-body model
(i.e., in the same model space).

In our previous paper [13], we have found an excellent
agreement between the results of our WPCD matrix approach
and the conventional CDCC-method predictions at a few
separate energies, i.e., without studying energy dependencies
of the observables in a near-threshold region. In the present
paper we have made a detailed and comprehensive comparison
between the CCA and accurate results and we have studied the
CCA impact on the energy behavior of the elastic scattering
amplitudes in three-body scattering.

The structure of the paper is as follows. In the Sec. II
we briefly outline the evaluation of the elastic scattering am-
plitude using the conventional Schröedinger and Lippmann–
Schwinger CCAs. Section III is devoted to the description
of the discretization scheme for the three-body Lippmann-
Schwinger equation and the CCA method via wave-packet ap-
proach. The study of validity for the above general approaches
for some test examples is presented in Sec. IV, while the
WPCD results for the deuteron off 16O target elastic scattering
is discussed in the Sec. V. Our general conclusions are given
in the Sec. VI.

II. COUPLED-CHANNEL REDUCTION IN THE
THREE-BODY SCATTERING

A. Schröedinger equation formalism

We will consider the three-body Hamiltonian, which de-
scribes the scattering of the two-fragment composite projectile
{12} (deuteron or other light nucleus) off the structureless
target A in the form

H = h12 + h0 + V1A + V2A, (1)

where h12 is the sub-Hamiltonian for the {12}-subsystem, the
h0 is the kinetic energy operator for the projectile center of
mass. The optical potentials V1A and V2A of fragment-target
interactions are usually assumed to be complex and energy-
dependent. However, the smooth energy dependence of the
input optical potentials is of no importance for our purposes
in the study and, thus, we omit it here. Also, we assume that
there is only one s-wave bound state |z0〉 (say, a deuteron) with
energy ε∗

0 in the subsystem {12}, and also the spin-dependent
effects as well as the Coulomb interaction will be ignored for
simplicity.

The total wave-function of the system with the Hamiltonian
Eq. (1) can be found from the three-body Schroedinger
equation:

H |�〉 = E|�〉, (2)

where E is the total energy. Due to complex parts of the
input optical potentials, there are no real bound states in the
subsystems {1A} and {2A}, so that the rearrangement channels
can be neglected as well [3,12].

In the CCA approach, the total scattering wave function
for the Hamiltonian Eq. (1) is expanded in some L2-basis
{|zi〉}Neff−1

i=0 corresponding to the projectile sub-Hamiltonian

h12 eigenfunctions and eigenvalues in the sense that

〈zi |h12|zj 〉 = δij ε
∗
i , (3)

where ε∗
i are the corresponding energies of the bound state

and pseudostates of the system (so, the total basis dimension is
Neff). Such a basis can be constructed, e.g., from the functions
obtained via the diagonalization of h12 in some L2-basis or
from the stationary wave packet set accomplished with the
bound-state wave function (see below). In the conventional
approach, one uses the expansion of scattering wave functions
in the basis set {zi(r)} in the coordinate representation

�(r, R) =
Neff−1∑
i=0

zi(r)χi(R), (4)

where r is the inner coordinate of the projectile, and R is
the coordinate of its center of mass motion relative to the
target. In the Eq. (4), the expansion coefficients χi(R) have the
meaning of the relative motion wave function. These functions
satisfy the system of the coupled-channel equations, which
(after partial-wave expansion) takes the form:[

h̄2

2m

(
d2

dR2
− Li(Li + 1)

R2

)
+ (E − ε∗

i )

]
χi(R)

=
∑

k

Wik(R)χk(R), i = 0, . . . , Neff − 1, (5)

where m is the projectile-target reduced mass, Li is the orbital
angular momentum of the projectile-target relative motion in
the channel i, and Wik(R) are the coupling potentials:

Wik(R) = 〈zi |V1A

(∣∣R + 1
2 r

∣∣) + V2A

(∣∣R − 1
2 r

∣∣)|zk〉. (6)

The boundary conditions at R → ∞ for functions χi(R)
corresponding to the scattering problem have a standard form:
incoming and outgoing waves in open channels (E − ε∗

i > 0)
and decaying solutions in closed channels (E − ε∗

i < 0):

χi(R) → h
(−)
L (P0R)δi0 −

√
Pi

P0
h

(+)
L (PiR)Si0, (7)

where Pi = √
2m(E − ε∗

i ), h
(±)
L (x) are the spherical Riccati-

Hankel functions, and {Si0} are the S-matrix elements. Here
we assume that there is the incoming wave only in the channel
0. The S-matrix dimension is equal to the number of the open
channels (the remaining elements of matrix S in Eq. (7) do not
have direct physical meaning).

By solving Eq. (5) with a regular boundary condition at
the origin χi(0) = 0 and matching the numerical solutions
with the asymptotical ones [Eq. (7)] at R = R0 (R0 is the
boundary of the interaction region), one gets, eventually, the
total multichannel S matrix.

The treatment of the closed channels represents in general a
nontrivial numerical problem within the CCA approach. In the
case of closed channels, there are the exponentially growing
solutions along with the decaying (physical) ones, which lead
to some instabilities and inaccuracies in the numerical solution
of the CCA Eq. (5). To avoid such problems, we employed here
the propagation matrix method [11]. The technique is based
on the following observation: when matching the numerical
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and asymptotical solutions at R = R0, it is sufficient to know
only the ratio of scattering wave functions at the neighboring
points D(R0) = χ (R0)/χ (R0 + h) (where h is the integration
step) while the wave functions χi(R) themselves are not
required. So, instead of finding the scattering wave functions,
one calculates a matrix containing such the ratios at all the
integration mesh points and derives the total S-matrix from
these [11]. This matrix of the ratios (it is called as a propagation
matrix) is bounded except for a finite number of points. In
the present work, we have used the above propagation matrix
method [11] for practical solving of the differential CCA
equations.

B. Integral equation formulation

In the case to be discussed, when the rearrangement
channels can be neglected, the transition operator T which
describes the elastic scattering of the projectile by the target
nucleus as well as the projectile breakup is found from a single
Lippmann-Schwinger equation (LSE) [13]:

T (E) = V̄ + V̄ G12(E)T (E), (8)

where V̄ ≡ V1A + V2A is the so called external interaction
and G12 = [E + i0 − h0 − h12]−1 is the channel resolvent
that determines the asymptotic states in the channel. This
operator can be found as a convolution of the respective two-
body subresolvents g12(ε) = [ε + i0 − h12]−1 and g0(ε) =
[ε + i0 − h0]−1, i.e.,

G12(E) = 1

2πi

∫ ∞

−∞
g12(ε)g0(E − ε) dε. (9)

Further, we will employ spectral representations for the both
resolvents, g12 and g0, using complete sets of the eigenfunc-
tions |ψ12(ε)〉 and |ψ0(ε)〉 of the sub-Hamiltonians h12 and h0,
respectively. By substituting these spectral expansions into the
convolution Eq. (9), one can get [13] two terms in three-body
channel resolvent G12(E) = GBC

12 (E) + G2C
12 (E), where

GBC
12 (E) =

∫ ∞

0
dε

|z0, ψ0(ε)〉〈z0, ψ0(ε)|
E + i0 − ε∗

0 − ε
(10)

G2C
12 (E) =

∫ ∞

0
dε

∫ ∞

0
dε

|ψ12(ε), ψ0(ε)〉〈ψ12(ε), ψ0(ε)|
E + i0 − ε − ε

.

Here the term GBC
12 (E) corresponds to the bound-continuum

(BC) couplings while the second term, G2C
12 (E), corresponds

to the continuum-continuum (2C) couplings of two subsystem
spectra.

It is straightforward to show further, if one employs a
pole approximation for the resolvent g12 for the discretized
continuum in Eq. (9), viz.

g12(ε) ≈
Neff−1∑
i=0

|zi〉〈zi |
ε − ε∗

i

, (11)

where |zi〉 and ε∗
i are eigenstates and eigenenergies of the sub-

Hamiltonian matrix h12 in two-body basis Eq. (3) (including
the bound state energy ε∗

0 ), then the above three-body LSE
Eq. (8) can be reduced to the multichannel two-body equations.
As a result of the pole approximation Eq. (11), one gets the

following representation for the three-body channel resolvent
G12 [instead of the Eq. (10)]:

G12(E) ≈
Neff−1∑
i=0

∫ ∞

0

|zi, ψ0(ε)〉〈zi, ψ0(ε)|
E + i0 − ε∗

i − ε
dε, (12)

where each term in the sum takes the form of the BC-part of
the resolvent. One can refer to such an approximation as the
Pseudostate-Continuum (PC) coupling.

After substitution of the representation Eq. (12) into three-
body LSE Eq. (8), one gets the set of two-body coupled integral
equations:

|χi(E)〉 = |ψ0(E − ε∗
0 )〉δi0 +

∑
k

g0(E − ε∗
i )Wik|χk(E)〉,

(13)
i = 0, . . . , Neff − 1,

where the coupling potentials Wik are defined by Eq. (6).
Equation (13) is equivalent to the differential system Eq. (5)
with boundary condition Eq. (7).

III. THREE-BODY LIPPMANN-SCHWINGER EQUATION
IN A DISCRETE REPRESENTATION

The initial three-body LSE Eq. (8) can be solved in the
WPCD approach by using a discretization of continuous
spectra of the both sub-Hamiltonians h12 and h0. In this
method, each spectrum is divided into nonoverlapping energy
bins [εi−1, εi]

Neff−1
i=1 and [εj−1, εj ]Mj=1 with widths Di = εi −

εi−1 and 	j = εj − εj−1, respectively. Then, one constructs
stationary wave-packets in each bin in a standard way [17]:

|zi〉 = 1√
Di

∫ εi

εi−1

dε|ψ12(ε)〉, (14)

|xj 〉 = 1√
	j

∫ εj

εj−1

dε|ψ0(ε)〉. (15)

So, one uses the wave-packet states [Eq. (14)] jointly with
the bound state function |z0〉 as the basis set [Eq. (3)] in the
{12}-subsystem and free wave-packet states [Eq. (15)] as basis
states in the projectile-target subsystem.

Then, the three-body wave-packet (3WP) basis states cor-
responding to the discretization of the three-body continuum
are built as products of two-body wave-packet basis states
|Sij 〉 = |zi, xj 〉. From these orthonormalized basis states, one
can construct a three-body projection operator:

P =
Neff−1∑
i=0

M∑
j=1

|zi, xj 〉〈zi, xj |.

Thus, after projection of the three-body wavefunctions and
scattering operators, one gets the respective vectors and
matrices in the 3WP space. Such a wave-packet representation
is very convenient in various applications because it is the
eigen representation for the projected channel Hamiltonian
H12 = h12 ⊕ h0 and the basis states correspond to exact
asymptotic states of the system.

In particular, the initial state wave function of the system
|�0(E)〉 ≡ |z0, ψ(E − ε∗

0 )〉, which defines the asymptotic free
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motion of the projectile, corresponds to a single basis state, i.e.,

P |z0, ψ0(E − ε∗
0 )〉 = |z0, xj0〉√

	j0

, (E − ε∗
0 ) ∈ [εj0−1, εj0 ].

(16)

One of the main advantages of the WPCD approach is the
fact that the three-body channel resolvent operator G12(E)
can be represented in the above wave-packet basis as a
diagonal matrix [13–15]. So, when one applies such a wave-
packet projection, one gets the following finite-dimensional
representation for the three-body resolvent operator G12(E) ≡
PG12(E)P :

G12(E) =
M∑

j=1

|z0, xj 〉gj (E − ε∗
0 )〈z0, xj |

+
Neff−1∑
i=1

M∑
j=1

|zi, xj 〉gij (E)〈zi, xj |. (17)

The first term is the discrete analog of the BC part of the
channel resolvent while the second term is the discrete analog
of the 2C-part of the operator [Eq. (10)]. Therefore, matrix
elements gj in the first and gij the second terms can be treated
as eigenvalues of the channel resolvent matrix in the 3WP
basis:

gj (E − ε∗
0 ) = 1

	j

∫ εj

εj−1

dε

E + i0 − ε∗
0 − ε

, (17a)

gij (E) = 1

Di	j

∫ εi

εi−1

∫ εj

εj−1

dεdε

E + i0 − ε − ε
. (17b)

These eigenvalues only depend upon the partitions of the
spectra of the two-body sub-Hamiltonians and can be found
easily in an explicit form [16].1

Eventually, after the wave-packet projecting of the opera-
tors, all the terms in the three-body LSE take a matrix form
and the T matrix can be found easily from a single matrix
equation:

T = V + VG12T, (18)

where V is the external interaction matrix in the three-body
wave-packet basis, G12 is the diagonal matrix of the channel
resolvent at the total energy E. To find the on-shell and half-
shell T -matrix elements, it is sufficient to find the solution
of Eq. (18) only for one column tp ≡ Tp,p0 , p = 1, . . . ,N
[we use here the multi-index p = (i, j ), so that the label p0 =
(0, j0) corresponds to the initial state]. The respective solution
can be found from the equation

(I − VG12)t = v. (19)

Here the notation is: vp ≡ Vp,p0 , p = 1, . . . ,N , and I is the
unit matrix. The S-matrix elements are interrelated to the

1To avoid some possible additional irregularities near bin endpoints
in such finite-dimensional approximations for the channel resolvent,
we usually add the averaging procedure for the eigenvalues Eq. (17)
over the external total energy (see the details in Ref. [14]).

t-vector elements by the relationship

Sel(E) = 1 − 2πi
tp0

	j0

, (E − ε∗
0 ) ∈ [εj0−1, εj0 ]. (20)

In the case of the CCA reduction (i.e., for the PC
approximation in the WPCD), instead of Eq. (17), one gets
the following finite-dimensional operator:

GPC
12 (E) =

Neff−1∑
i=0

M∑
j=1

|zi, xj 〉gj (E − ε∗
i )〈zi, xj |, (21)

where all the eigenvalues of the channel resolvent in this case
take the form of the BC-part eigenvalues2 given in Eq. 17(a).
So, the PC approximation corresponds to the case, when
all the discretized states “loose” their widths. In such a PC
approximation, the 3WP LSE Eq. (18) reduces to purely
two-body equations for coupled channels, those are being
discrete analogs of integral Eq. (13).

In this way, by making use the finite-dimensional represen-
tation given by Eq. (21) for the resolvent matrix in Eq. (19) and
via solving the resulted matrix CCA equations, one can directly
compare the full and CCA results for the initial three-body
scattering problem.

IV. COMPARISON OF THE CCA AND FULL THREE-BODY
CALCULATION RESULTS

To study a validity of the CCA reduction both in differential
and integral equation formulations, we employ, at first, the
test model with all the interactions given in the simple
Gaussian form for two types of the projectile fragment-target
interactions: (I) the case of weak and real fragment-target
interaction potentials, when bound states in {1A} and {2A}
subsystems are absent; (II) the case of complex fragment-target
potentials when the real part of the {1(2)A} potential gives one
bound state in {1(2)A} subsystem.

Below, three methods for calculation of scattering three-
body observables will be applied: numerical solution of
the CCA differential equations based on the propagation
matrix method [11] (which we refer to as the differential
CCA-calculation), solution of the LSE equation with PC
approximation, which corresponds to the solution of the
Eq. (13), and finally, full solution of the three-body LSE
without the coupled-channel approximations. For the last two
calculations, we will employ the WPCD method and will
refer to the results as “integral CCA” and “full WP” results
correspondingly. In this section, we discuss the dependence
of the elastic scattering observables on the projectile kinetic
energy Ekin ≡ E − ε∗

0 , where ε∗
0 is the projectile binding

energy (negative).

2In practical calculations, one should also use here additional
averaging over external total energy E.
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A. The model and the basis parameters

The interaction between fragments 1 and 2 in the projectile
is taken in the form of a Gaussian potential:

V12(r) = V0 exp(−γ r2), (22)

with parameters V0 = −72.15 MeV, γ = 0.454 fm−2. The
particles 1 and 2 are assumed to be the same and their masses
are equal to 1 a.m.u.

The interaction potentials in {1(2)A} subsystems are taken
also in the Gaussian form

ViA(ri) = U0 exp
( − βr2

i

)
, i = 1, 2, (23)

where the potential parameters for the models are the
following:

I : U0 = −15.0 MeV, β = 0.444 fm−2, (23a)

II : U0 = −50.0(1 + i ·q) MeV, β =0.444 fm−2, (23b)

and we will vary the imaginary parts of the potential depth U0

in the case II by changing the strength parameter q to study
energy behavior of the elastic scattering amplitudes.

In both models, we limit ourselves by s-wave bound and
continuum states in {12} and projectile-target subsystems.

To construct the discrete representation of the {12}-
continuum and to build the respective wave-packet states
|zi〉 we employ a diagonalization of the h12 Hamiltonian
matrix on a finite Gaussian basis. It was demonstrated in our
previous studies (see, e.g., Ref. [16]) that one can replace in
practical calculations exact stationary wave-packets (i.e., those
constructed using exact scattering states) with approximated
packets in the form of discrete pseudostates of the Hamiltonian
matrix found with some appropriate L2 basis.

Thus, for the diagonalization of the sub-Hamiltonian h12

matrix the following Gaussian basis with many radial scales
has been used:

φn(r) = An exp(−αnr
2), n = 1, . . . , N, (24)

where An are the normalization coefficients and the “fre-
quences” αn are taken in the form of geometric progression
[18]:

αn = α1

(
αN

α1

) n−1
N−1

, n = 2, . . . , N − 1. (25)

The key problem in the replacement of stationary wave-packets
by the respective pseudostates is a correct evaluation of the
normalization factors for the pseudostates or, alternatively, a
correct determination of the pseudostate widths. Because these
widths are tightly interrelated to the discretization bins, they,
in essence, are just derivatives from the pseudostate energy
distribution and can be found from the finite differences:

Di =

⎧⎪⎪⎨
⎪⎪⎩

[ε∗
1 +ε∗

2 ]
2 , i = 1,

[ε∗
i+1−ε∗

i−1]
2 , i = 2, . . . , N − 1,

DN−1, i = N.

(26)

We have used in our calculations the basis set Eq. (24) with
the scale parameters α1 = 0.001 fm−2, αN = 20 fm−2 for two
values of N : N = 20 and 40. In both cases, we have employed
not all N pseudostates, but only those with eigenenergies less

FIG. 1. (Color online) Partial phase shift δ (a) and inelasticity
parameter η = |Sel| (b) for the s-wave elastic scattering obtained
within differential (full curve) and integral (dots) CCAs and also by
full WP calculation (dashed curves) for model I. Vertical lines reflect
the positions of pseudostates in the {12} subsystem.

than 120 MeV. So, for both basis dimensions, the number of
pseudostates Neff used here are 12 and 20, correspondingly
(including the bound state).

To discretize h0 sub-Hamiltonian spectrum, the exact free
wave-packet basis {|xj 〉} [Eq. (15)] of the dimension M with
bin endpoint distributed on the Chebyshev grid [19] have been
employed:

εj = E0 tan

(
(2j − 1)

2M

π

2

)
, j = 1, . . . ,M. (27)

The common energy scale parameter E0 and the basis
dimension M are chosen separately for each potential model.

B. Results for model I

The three-body elastic s-wave partial phase shifts and
inelasticity parameters η = |Sel| found via differential and
integral CCAs and also by using the full WP calculation are
represented in the Fig. 1.

It is clearly seen that partial phase shifts found within
the both CCA approaches have the same singularities near
the pseudostate energy thresholds. So, this singular energy
behavior of the elastic amplitudes is caused directly by
the coupled-channel approximation rather than the possible
instabilities in numerical calculations. It should be stressed
that the full three-body WP calculation leads to a rather smooth
energy behavior of solutions.
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FIG. 2. (Color online) Inelasticity parameter for the s-wave
elastic scattering amplitude η obtained within the differential CCA
approach for model I for two basis sets of pseudostate with Neff = 12
(dashed curve) and Neff = 20 (solid curve).

Simultaneously, we observed that these irregularities do not
vanish but become more narrow when the pseudostate basis
dimension is increasing (see Fig. 2).

C. Results for model II

In this case, there are bound states in the fragment-target
subsystems (for the real part of fragment-target interactions),
and the full three-body system must include the rearrangement
channels. Thus, the single LSE has a unique solution only if one
includes the imaginary parts to the fragment-target interaction
potentials. The bound states are shifted to the complex energy
plane in that case.

FIG. 3. (Color online) Partial phase shifts δ (a) and inelasticity
parameters η (b) for the s-wave elastic scattering in model II obtained
within the differential CCA approach for three different imaginary
part parameter q of potential Eq. (23): q = 0 (dashed curves), q = 0.1
(solid curves), and q = 0.25 (dash-dotted curves). The filled circles
on the solid curve in the Fig. 3(b) show the integral CCA results,
while the vertical solid lines show pseudo-threshold positions.

In Fig. 3, the inelasticity parameters for potential Eq. (23b)
with three values of imaginary part parameters: q = 0, 0.1,
and 0.25 are represented. It is seen that the general energy
behavior of the CCA results does not change significantly
with increasing the coupling potential depths.

Also, it becomes clear that the energy irregularities near the
pseudo-thresholds become more narrow and less visible when
the imaginary parts of the coupling potentials get stronger.
It will be shown below that these irregularities are nearly
invisible for realistic optical fragment-target potentials and
do not affect the energy behavior of the elastic scattering cross
sections.

V. STUDY OF THE TEST CASE: d + 16 O ELASTIC
SCATTERING

For the comprehensive comparison with the CCA scheme,
we employed here some more realistic three-body model,
viz. the elastic scattering of deuterons by the 16O target
using energy-independent nucleon-16O optical potentials as
input ones and keeping only s-wave NN interaction. Such a
restriction does not effect to our main results and conclusions
derived because our prime interest here is the accuracy of the
CCA scheme in three-body scattering and the energy behavior
of the elastic scattering amplitude. As interaction potentials
in N + 16O subsystems, we will use the respective nucleon-
nucleus optical potentials (with parameter values taken from
Ref. [3]).3 In the present study, we consider the energy behavior
of the three-body amplitudes in the energy range Ec.m. =
5 ÷ 40 MeV. Also, we will take into account the Coulomb
interaction between deuteron center of mass and target nucleus.

The np interaction in deuteron channel is taken in the same
form of a Gaussian potential Eq. (22) with the same parameters
as in the previous section.

To construct the {np} subsystem pseudostates, we use
the same Gaussian basis Eq. (24) with scale parameters αn

distributed on the Chebyshev grid of the same type as Eq. (27)
with the common scale parameter α0. Our calculations have
been carried out at N = 15 (Neff = 11), t = 1, and α0 = 0.1.

In the {np} subsystem, we limit ourselves only by s-wave
bound and scattering states, while along the deuteron center-
of-mass coordinate all angular momenta at L � 30 will be
treated.

To discretize h0 sub-Hamiltonian spectrum (which in-
cludes the long-range projectile-target Coulomb interaction
in this case), we have used the Coulomb wave-packets [13]
constructed numerically from the regular Coulomb wave-
functions [similarly to the free wave-packet basis (15)] with
bin endpoint distributed on the Chebyshev grid Eq. (27) with
the dimension M = 150 and E0 = 20 MeV.

The energy behavior of elastic amplitudes near the inelastic
thresholds, as our study has demonstrated, does depend essen-
tially upon the strength of imaginary part of nucleon-nucleus
potential. Thus, to study this effect in detail we introduce some
extra factor u upon which the imaginary parts of potentials
ImVn(p)A are multiplied in three-body calculations.

3We take this optical potential at energy EN = 5.25 MeV.
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FIG. 4. (Color online) Inelasticity parameter η for the s-wave
elastic d + 16O scattering amplitude obtained within the full WP
approach (solid curves) and PC approximation (circles) for different
strengths of imaginary parts of the nucleon-nucleus interaction with
factors: u = 1.0 (1), u = 0.5 (2), u = 0.25 (3). Vertical dotted lines
define the positions of pseudostates in the {np} subsystem.

The inelasticity parameter η = |Sel| found from the elastic
s-wave S matrix obtained in the full WP approach and within
the PC approximation are presented in Fig. 4 for three values of

FIG. 5. (Color online) Inelasticity parameter η for the partial
elastic d + 16O scattering amplitudes obtained within the full WP
approach (solid curves) and PC approximation (circles) for optical
nucleon-target potential with half-strength imaginary parts (i.e., with
u = 0.5) at different values of the total angular momentum L.

FIG. 6. (Color online) Elastic d + 16O cross section obtained in
the full WP approach (solid curves) and in the PC approximation
(circles) for optical nucleon-target potentials with different extra-
factors u: 1 (a), 0.5 (b), and 0.25 (c).

the extra-factor u = 1 (the initial nucleon-nucleus potentials),
0.5, and 0.25. From the figure it is quite clear that the false
near-threshold singularities in scattering amplitudes at u = 1
are invisible, while they are seen clearly at smaller values u =
0.5 and 0.25. These singularities are interrelated directly to the
pseudostate energies. However, in the full WP calculation (i.e.,
that without CCA reduction) these singularities are smoothed
out noticeably (see Fig. 4).

Then we study the higher partial amplitudes. The inelastic-
ity parameter ηL at various angular momenta L are displayed in
Fig. 5 for the half-strength imaginary part of nucleon-nucleus
potentials. Our study has shown that the amplitude oscillations
are seen only at lower partial waves, while at L > 4 these
near-threshold irregularities are practically absent. This means
that such irregularities in energy should be of no importance
in the total cross-section behavior.

The cross-section energy dependence for the elastic scat-
tering found with usage of the full WP calculation and PC
approximation for three variants of the imaginary parts of the
potentials is presented in Fig. 6. In this calculation, we have
used the following formula for the elastic cross section:4

σel = π

P 2

Lmax∑
L=0

(2L + 1)
∣∣1 − SL

el

∣∣2
, (28)

4We do not take into account the Coulomb part of the cross section
here, only the nuclear part.
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FIG. 7. (Color online) Inelasticity parameter η for s-wave elastic
d + 16O scattering amplitudes obtained within the full WP approach:
the convergence over maximal excitation energy in the {np} sub-
system Emax for the full-strength (a) and half-strength imaginary
parts (b) of the optical nucleon-nucleus potentials: Emax = 15 MeV
(dash-dotted curve), Emax = 25 MeV (dashed curve), the full set of
pseudostates (solid curve).

where P is the total momentum of the projectile and we
employed the wave-packet approximation Eq. (20) for the
elastic S-matrix element SL

el .
As is seen in Fig. 6, the PC approximation (i.e., CCA)

leads to some distortion of the cross-section energy behavior
only for the four-times reduced imaginary parts of the optical
potentials. However, in such a case our full WP calculation
gives a rather smooth result without any irregularities.

To complete the study, we considered a contribution and the
effect of closed channels in the {np} subsystem to the energy
dependence of the elastic scattering amplitudes. For this study,
we used three sets of s-wave pseudostates: (i) all the discrete
pseudostates with energies ε∗

i � Emax = 15 MeV, (ii) all the
pseudostates up to Emax = 25 MeV, and (iii) the whole set of
the pseudostates up to Emax = 100 MeV.

For all three variants we calculated the inelasticity parame-
ter η for the s-wave elastic amplitude found with the complete
WPCD approach for two complex optical potentials with full-
strength and half-strength imaginary parts; see Fig. 7. It fol-
lows from the results presented here that if the Emax value used
is rather low and not sufficient to achieve the full convergence
of the results, one has a wrong energy dependence for the scat-
tering amplitudes (although rather smooth) even at the energies
much less than Emax. It confirms the well-known fact that the
closed channel contribution is quite important at low collision
energies.

VI. CONCLUSION

In this work we have examined the effects of the coupled-
channel reduction in three-body scattering. We have demon-
strated that the employment of the CCA when the two-body
continuum is discretized with the conventional pseudostates
leads to an appearance of irregularities in the three-body
elastic scattering amplitudes near the pseudostate energies
at lower total angular momenta. Such irregular behavior is
better expressed at small imaginary parts of the nucleon-
nucleus optical potentials. Nevertheless, the employment of
the complete WPCD-technique (which is based on the full
three-body continuum discretization) makes it possible to
smooth false threshold effects. Also, we have shown that
accurate account of close channel contributions is highly
important at small and intermediate collision energies.

However, at energies Einc � 20 MeV typical for nu-
clear physics and when the low-L partial amplitudes are
strongly suppressed by absorption effects, the CCA, e.g.,
in the form of the CDCC approach [5] is fully valid and
reproduces the accurate results for the restricted (neglecting
the rearrangement channels) three-body scattering problem.
Moreover, we found that all the irregularities are smoothed
strongly by increasing the imaginary part of the nucleon-
nucleus interaction. Thus, our study seems to give the
positive answer to the problem posed in long-term theoretical
discussions about the general validity of the CCA and CDCC
approaches in three- and few-body scattering problems (see,
e.g., Ref. [12]).
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