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Search for long-range force between a neutron and an atom with a trap of ultracold neutrons
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A method of using a gravitational ultracold neutron (UCN) spectrometer for the search for long-range forces
between neutrons and atoms is proposed. The constraints on the strength of long-range forces within the range of
10−10–10−4 cm can be obtained from experiments on measurements of the total cross section of the interaction
of UCN with atoms of noble gases (He, Ne, Ar, Kr) and data on the coherent neutron-scattering length of the
nucleus. The first result of such an analysis is presented. Further prospects for the UCN method are discussed.
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I. INTRODUCTION

The search for deviations of gravitational interaction from
the 1/r2law (inverse-square law) in the range of small distances
is extremely important to verify both theories assuming the
existence of additional dimensions [1,2] and supersymmetric
theories in which the existence of new very light particles is
assumed. The exchange of these particles leads to additional
interactions between nucleons [3–5]. A review of theoretical
and experimental works on the search for deviations from
the inverse-square law is presented in Refs. [6,7]. In this
paper we will discuss forces that can appear at distances of
10−10–10−4 cm. From the point of view of the search for
deviations of gravitational interaction from the inverse-square
law these forces should be defined as short-range forces. But in
nuclear interactions there is a characteristic scale of distances
of the order of 10−13 cm, therefore for nuclear physics the
interaction at distances of 10−10–10−4 cm is carried on by
long-range forces. We have defined these forces as long-range
forces because it is a question of the interaction of a neutron
with a nucleus.

There are different methods of searching for long-range
forces in the interaction of elementary particles [6–8]. Within
the range of 10−11–10−9 cm investigations are carried out
by means of neutrons at an energy of the order of electron
volts [9,10]. For distances 10−4–10−2 cm the laboratory
experiments on the gravitational interactions of bodies are
performed [11–20]. Within the range of 10−10–10−4 cm there
are rather effective methods using thermal and cold neutrons
[9,21]. The present paper will discuss the possibility of using
ultracold neutrons (UCNs) for the range 10−10–10−4 cm.

The scattering amplitude of a neutron by atoms can be
expressed in the following way:

f (q) = fnucl + fn-e(q) + flong-range(q), (1)

where fnucl is a nuclear scattering amplitude, which is usually
expressed in terms of scattering length b, fnucl = −b, and
fn-e(q) is the amplitude of neutron-electron scattering, which
arises due to neutron scattering by charges distributed inside
the nucleus and the electron shell of atoms. Further we will not
consider contribution from n-e interactions because this effect
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occurs mainly for fast neutrons [22]. The last term in Eq. (1)
relates to a hypothetical long-range interaction (compared to
the nuclear one) of a neutron with a nucleus; flong-range(q) is a
spin-independent amplitude of interaction, which is likely to
arise as a result of exchange by a scalar or vector boson. In the
case of the scalar type of interaction the potential of interaction
is written as an attractive potential; for a vector boson
exchange the potential of interaction is written as a repulsive
one.

ϕ (r) = ±g2
±Mh̄ce−r/λ

4πr
, (2)

where M is the mass of the interacting particle expressed
in units of nucleon mass mn, λ is the effective radius of
interaction, and g2

± is a dimensionless coupling constant. It
should be noted that in the general case M = m1m2/m

2
n,

where m1 and m2 are masses of interacting particles. In our
consideration we have assumed that the protons and neutrons in
the atom couple equally to the free neutron via the long-range
force and that the electrons do not couple to the free neutron.
In formula (2) the upper sign corresponds to a vector type
of interaction, whereas the lower sign corresponds to a scalar
type of interaction.

In a similar way, the amplitude within the Born approxima-
tion can be presented in the form

flong-range(q) = − m

2πh̄2

∫
ϕ(r)e−i �q�rdV

= ∓2m

h̄2

g2
±Mh̄c

4π

λ2

(λq)2 + 1
, (3)

where m is a reduced mass m = mnmA

mn+mA
, the mass of an atom of

gas mA = mnM , q = |�k′ − �k| is the momentum transferred to
a neutron, and �k and �k′ are wave vectors of the neutron within
the center of mass before and after collision. The momentum
q is bound with the neutron recoil energy ε by a simple ratio:
q =

√
2εmn

h̄
.

An experimental search for additional terms in the scat-
tering amplitude can be based on the fact that a long-range
interaction contributes to the scattering amplitude either at
small transferred momentum q or at small scattering angles.

044001-10556-2813/2011/84(4)/044001(11) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.84.044001


A. P. SEREBROV et al. PHYSICAL REVIEW C 84, 044001 (2011)

The scattering amplitude at θ = 0 or q = 0 can be measured
at high accuracy in neutron-optical experiments with an
interferometer [21]. This result should be compared with
fnucl = −b to find the presence of additional terms in Eq. (1).
For example, comparing measurements by interferometers and
experiments with the Bragg diffractometer allows us to obtain
restrictions [9] that are strong enough.

Recently, the method of studying quantum states of a
neutron in Earth’s gravitational field near the matter surface
[23] has been actively discussed. However, there is lack of real
statistics in this research; therefore we are going to propose a
more statistical method in this paper.

A direct method of research would be the method of small-
angle scattering, as the existence of long-range forces results
in scattering occurring at small angles. In this method there
are obvious problems caused by the existence of small-angle
scattering resulting from scattering on the texture of the matter
and multiple scattering. In addition, the initial divergence of a
beam does not permit us to distinguish scattering at very small
angles from the beam divergence.

This paper suggests reconsidering the approach to the
method of small-angle scattering and using the registration
of small-recoil energy instead of small angles of scattering.
This approach suggests using a gas of UCNs as a target that
collides with the flux of atoms in the same trap. The criterion
of a signal of the scattering induced by long-range forces is
a transfer of the ultimately small recoil energy of ∼10−7 eV,
registered with a trap of ultracold neutrons.

For thermal neutrons the recoil energy to a neutron of
∼10−7 eV corresponds to a scattering angle of ∼2 × 10−3 rad,
which is within the divergence of an incident neutron beam.
For cold neutrons this scattering angle is twice as high, but it
does not yet exceed the divergence of a neutron beam.

The method of an ultracold neutron trap filled with the
investigated gas (He, Ne, Ar, or Kr) allows a recoil energy of
about 10−7 eV to be registered. On the other hand, the total
cross section of a UCN with a gas will not involve areas with
recoil energy smaller than 10−7 eV. Thus, it is possible to com-
pare the scattering amplitude from interferometer measure-
ments f (0) with the amplitude obtained by the UCN method.

II. EXPERIMENTAL SETUP

One of the possible schemes of an experiment is shown
in Fig. 1. It enables us to use the available equipment of
Petersburg Nuclear Physics Institute (PNPI) in Institut Laue-
Langevin (ILL). UCNs fill the trap (3) at an opened valve
(2) and closed valves (5). The absorber (4) is placed in the
bottom position at a distance h from the trap bottom. When
equilibrium density in the trap is achieved, the valve (2) is
closed. There are two foils installed at the trap entrance and
the trap exit. The critical energy of the foils is Efoil

UCN = mngh.
Foils can be installed in the UCN guide or removed from

the UCN guide. They will be used sometimes for forming the
UCN spectrum at the trap entrance and for analysis of the
UCN spectrum at the trap exit. Normally, UCNs fill the trap
when the entrance foil is removed. The UCNs are stored in
the trap for a predetermined time thold to form the spectrum
with maximal UCN energy equal to mngh. Then the absorber

FIG. 1. The experiment setup: 1, entrance foil with critical energy
Efoil

UCN = mngh; 2, the entrance valve; 3, UCN trap with the critical
energy E

trap
UCN; 4, the absorber for formation of UCN spectrum; 5, the

exit valve; 6, exit foil with critical energy Efoil
UCN = mngh; 7, the UCN

detector.

(4) is pulled up to the upper position near the top of the
trap.

Ultracold neutrons interact with trap walls and with the
investigated gas, which fills the trap. The trap and the investi-
gated gas are maintained at room temperature. The temperature
of the UCN gas is 10−3 K. In coherent reflection from matter
the energy of the UCN is conserved. Inelastic scattering occurs
when a neutron is scattered by atoms of gas and when UCNs
penetrate into the substance reflecting from the wall. In both
cases there is energy transfer on the order of kT . Energy
transfer of the order of 10−7 eV is of low probability for
the above-mentioned processes. Nevertheless, in reflecting
from the substance there is a quasielastic scattering that was
revealed experimentally [24]. Due to the long-range interaction
with atoms of gas a quasielastic scattering at a recoil energy
of the order of 10−7 eV would be also possible. Processes
of energy transfer of the order of kT and ∼10−7 eV are
easily distinguished in the present installation, as UCNs that
have obtained energy ∼kT leave an experimental trap. Such
neutrons are not detected. Neutrons that have obtained a small
recoil energy can still be stored in the trap if their energy
near the bottom is less than critical energy of the trap. The
critical energy of the foil is equal to mngh. Therefore neutrons
that have obtained a small recoil energy can overcome the
potential barrier of the foil (6) and finally can be registered
by a detector (7). For the registration of these neutrons the
valve (5) is opened just after lifting the absorber. The closed
valve (5) is used for measuring the background at the detector
(7). To distinguish between the processes of quasielastic
scattering on the surface of the trap and scattering with the
investigated gas, measurements are to be made both with the
investigated gas and without it. The above-described scheme
of measurement permits us to determine an extremely low
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energy transfer. Such a scheme was used in our measure-
ments of lower-energy up scattering of UCNs from the trap
walls [24].

For measuring the total cross section of UCN interaction
with a gas the detector (7) is applied to measure the number
of UCNs in the trap after different holding times with a closed
valve (5). In this case the foil (6) is removed from the guide.
Measuring UCN storage time at different gas pressures, we
can determine the total cross section of UCN interaction with
atoms. The measurement of UCN storage time in the trap τstor

is a conventional procedure. It consists of measurements of
the number of UCNs in the trap N (t1) at the moment t1 after
closing the entrance valve (2) and the number of UCNs in the
trap N (t2) at the moment t2. The storage time τstoris determined
according to the formula τstor = ln[N (t1)/N (t2)]/(t2 − t1). As
UCNs are sensitive to a small energy transfer, this cross section
will include the interaction induced by long-range forces. We
can compare the obtained results with the nuclear scattering
cross section.

Summing up, one can conclude that two experimental
methods have been discussed: the method of total cross-section
measurements where the exit foil (6) is not used and the method
of above-barrier neutron measurements using the exit foil (6).
The potential sensitivity of both methods will be discussed
below.

III. NUMERICAL CALCULATIONS AND ESTIMATIONS

Let us calculate the differential cross section depending
on the recoil energy transferred to the ultracold neutron. To
simplify the problem we will assume an UCN before collision
to be at rest. The atoms of gas are scattered on UCNs. Neutrons
obtain the recoil energy. We will consider the amplitude of an
additional long-range interaction of a neutron with an atom
consisting of M nucleons.

The differential cross section of scattering of a neutron with
an atom should take into account the amplitude of nuclear

scattering and that of scattering (3) due to an additional
contribution from potential (2):

dσ = ∣∣fnucl + flong-range

∣∣2
d	

=
(

b2
free-nucl ± g2

±M

π

bfree-nuclmc2

h̄c

λ2

(λq)2 + 1

+ f 2
long-range

)
d	, (4)

where the element of solid angle d	 is bound with the energy
of an incident atom EA according to the following formula:

d	 = π (M + 1)2

M

dε

EA

. (5)

For the differential cross section the following expression
has been derived:

dσ = π

[
(M + 1)2

M
b2

free-nucl ± g2
±M(M + 1)

π

bfree-nuclmnc
2

h̄c

× λ2

2mnελ2/h̄2 + 1
+ g4

±M3λ4

4π2

(
mnc

h̄

)2/

× (2mnελ
2/h̄2 + 1)2

]
dε

EA

. (6)

Figures 2(a) and 2(b) show the dependence of the differ-
ential cross section of scattering on the recoil energy for two
different cases, λ = 10−8 cm and λ = 10−6 cm, for a repulsive
and an attractive potential, respectively. The given calculations
have been made in Fig. 2 for the fixed energy of an incident
atom of helium equal to 2.5 × 10−2 eV. For λ = 10−8 the
differential scattering cross section spans the full range of
energies from 0 to εmax = EA4M/(1 + M)2. At λ = 10−6 cm,
the differential cross section changes rapidly at recoil energies
of the order of 10−7 eV. At λ = 10−4cm recoil energies at
which the long-range forces will give a sensible contribution
to the cross section are too small.

FIG. 2. Dependence of the differential cross section on recoil energy εR transferred to a neutron for various values of parameter l. (a) The
case of a repulsive potential and (b) the case of an attractive potential.
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Now we will integrate expression (6) over a recoil energy from ε1 up to ε2.

σ (ε2, ε1, EA) = π

[
(M + 1)2

M
b2

free-nucl(ε2 − ε1) ± g2
±M

h̄cbfree-nucl(M + 1)

2π
ln

(
2mnλ

2ε2/h̄2 + 1

2mnλ2ε1/h̄2 + 1

)

+ (g2
±M)2

(
mnc

2πh̄

)2
Mλ4(ε2 − ε1)

(2mnλ2ε2/h̄2 + 1)(2mnλ2ε1/h̄2 + 1)

]
1

EA

. (7)

The integral UCN scattering cross section when UCNs escape from the trap with critical trap energy E
trap
UCN is

σ escape
(
Etrap

UCN
, EA

) = π

{
4b2

free-nucl

[
1 − Etrap

UCN
(M + 1)2

4EAM

]
± g2

±M
h̄cbfree-nucl(M + 1)

2πEA

ln

[
8mnλ

2EAM/h̄2(M + 1)2 + 1

2mnλ2E
trap
UCN /h̄2 + 1

]

+ (g2
±M)2

[
mncM

πh̄(M + 1)

]2 λ4
[
1 − Etrap

UCN
(M + 1)2/ 4EAM

]
[8mnMλ2EA/ (M + 1)h̄2 + 1]

(
2mnλ2E

trap
UCN /h̄2 + 1

)
}

. (8)

The lower-energy UCN scattering cross section when UCNs are still stored in the trap is

σ low(
Etrap

UCN
, EA

) = π

[
(M + 1)2

M
b2

free-nucl

Etrap
UCN

EA

± g2
±M

h̄cbfree-nucl(M + 1)

2πEA

ln
(
2mnλ

2Etrap
UCN

/
h̄2 + 1

)

+ (g2
±M)2

(
mnc

2πh̄

)2 Mλ4Etrap
UCN

/EA(
2mnλ2E

trap
UCN /h̄2 + 1

)
]
. (9)

The total scattering cross section of UCN with an atom is

σ total
scatt (EA) = π

{
4b2

free-nucl ± g2
±M

h̄cbfree-nucl(M + 1)

2πEA

ln[8mnλ
2EAM/h̄2(M + 1)2 + 1]

+ (g2
±M)2

[
mncM

πh̄(M + 1)

]2
λ4

8mnMλ2EA/(M + 1)h̄2 + 1

}
. (10)

It should be mentioned that for the sake of simplification
we have assumed initial UCN energy to be equal to zero. Such
a simplification does not matter, but it makes the calculation
much easier. Formulas (7)–(10) are written for the fixed kinetic
energy of an atom. For further calculations we should integrate
over the flux of incident atoms. As has been noted above, the
installation setup enables us to measure the total cross sections
of the interaction of UCNs with a gas using the detector without
the exit foil (6) and the differential cross sections of a very
small energy transfer using the detector with the exit foil (6).
In the following section the first experimental observables are
considered in detail.

IV. MEASURING THE TOTAL INTERACTION CROSS
SECTION OF A NEUTRON AND ATOMS OF A GAS

The probability of UCN storage in a trap is the sum of
probability of UCN losses:

τ−1total
stor = τ−1

n + τ
−1gas
stor + τ−1walls

stor , (11)

where τ−1
n is the neutron decay probability, τ

−1gas
stor is the

probability of UCN losses due to interaction with gas atoms,
and τ−1walls

stor is the probability of UCN losses due to interaction
with the trap walls.

The probability of UCN losses caused by neutron interac-
tion with gas atoms can be measured as the difference of UCN

storage probability in a trap with gas density nA and with zero
gas density:

τ
−1gas
stor (nA) = τ−1total

stor (nA) − τ−1total
stor (nA = 0). (12)

Now let us calculate the magnitude of the value of
τ

−1gas
stor (nA), taking into account an additional contribution

made by the long-range interaction. The probability of UCN
losses induced by collision with gas atoms can be written as
follows:

τ
−1gas
stor (nA) =

∫ ∞

Emin

d�(EA)
∫ EA

4M

(M+1)2

εmin

dσ (ε) + nAV2200σ
0
capt

= nAV̄Aσ total
A , (13)

where d�(EA)/dEA is a flux of atoms incident on an
ultracold neutron, dσ/dε(ε) is a differential cross section
depending on the recoil energy, according to formula (6),
σ 0

capt is the capture cross section reduced to neutron velocity
V2200 = 2.2 × 105cm s−1, and σ total

A is the total cross section,
which consists of the scattering cross section σscat and the
capture cross section σ 0

capt: σ
total
A = σscat + σ 0

captV2200/V̄A. (The
scattering cross section σscat takes account of a nuclear
and long-range interaction.) Emin is the minimum energy of
atoms after colliding with which a neutron is able to escape
the trap Emin = E

trap
UCN(M + 1)2/4M , and εmin is minimum

recoil energy when UCNs escape from the trap. To simplify,
the UCN initial energy is equal to zero, εmin = E

trap
UCN, and
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EA4M/(M + 1)2 is the maximum neutron recoil energy. The
flux of atoms is

d�(EA)/dEA = nAV̄A

(kT )2
EA exp

{
−EA

kT

}
, (14)

where nA is the number of atoms (in cm−3) at temperature
T , V̄A is the average velocity of atoms of mass mnM at
temperature T , and V̄A = 4(kT / 2πmnM)1/2. The gas density
nA (cm−3) = 2.687 × 1016 × PA (mbar) × 273/T (K), where
PA is an experimentally measured gas pressure.

We can rewrite formula (13) in the following way:

(
τ

gas
stornAV̄A

)−1 − σ 0
captV̄2200/V̄A

= π (M + 1)2

M
b2

free-nucl

∫ ∞

E
trap
UCN

(M+1)2

4M

dEA

∫ EA
4M

(M+1)2

E
trap
UCN

× EA

(kT )2
e−EA/kT

[
1 ± g2

±M2

π (M + 1)

mnc
2

bfree-nuclh̄c

× λ2

2mnελ2/h̄2 + 1
+ (g2

±M)2 M2

(M + 1)2

×
(

mnc

2πh̄bfree-nucl

)2
λ4

(2mnλ2ε/h̄2 + 1)2

]
dε

EA

. (15)

After integration one can subtract the contribution made by
long-range forces as follows:

�Pτ nucl
1

=
[(

τ
gas
stornAV̄A

)−1 − σ 0
captV2200/V̄A

4πb2
free-nucl

e
E

trap
UCN
kT

(M+1)2

4M − 1

]

= ±g2
±M(M + 1)

8πbfree-nucl

(
h̄c

kT

)
ez(λ)E1[z(λ)]

+ g4
±
4

M2(M + 1)2

(8πbfree-nucl)
2

(
h̄c

kT

)2
ez(λ)E2[z(λ)]

z
, (16)

where E1(z) and E2(z) are exponential integrals. The value

z(λ) ≡ (M+1)2

4M
( h̄2

2mnkT λ2 + Etrap
UCN
kT

) is a function of a few variables:
M, λ, and T .

The expression in the square brackets following the first
equals in formula (16) is an expected experimental effect
resulting from the long-range interaction. It is defined as
�Pτ nucl

1 since in this analysis we compare the nuclear scattering
cross section and the scattering cross section obtained from
(Pτ ) measurements with UCNs. We assume that information
on the nuclear scattering cross section (4πb2

free-nucl) is available.
In fact, this information can be obtained from a neutron-
scattering experiment at a neutron energy of about 1 eV
because at large recoil momentum the contribution from a
long-range interaction is negligible.

Let us calculate the value of an expected experimental
effect �Pτ nucl

1 depending on g2 and λ. The case of a repulsive
potential (a vector boson) and the case of an attractive potential
(a scalar boson) significantly differ by the effect shape. In the

case of a vector boson the effect is positive for any g2 and
λ. For a scalar boson the effect can change sign depending
on g2 and λ. The shape of a possible effect for both cases is
shown in Figs. 3(a) and 3(c). Figures 3(b) and 3(d) show the
correlation between g2 and λ, which arises when this surface is
crossed by the planes �Pτ nucl

1 = ±0.3, �Pτ nucl
1 = ±0.03, and

�Pτ nucl
1 = ±0.003. In the case when ϕ > 0, the value �Pτ nucl

1
can be only positive. In the case when ϕ < 0, �Pτ nucl

1 can
have any sign. Therefore at �Pτ nucl

1 > 0 the determination of
a potential sign from an experiment is ambiguous. As a rule
we are compelled to analyze both cases: ϕ > 0 and ϕ < 0.

As seen from Fig. 3 the method of comparing the scattering
cross section of UCNs and the nuclear scattering cross
section becomes insensitive in the area of 10−8–10−4 cm.
This is due to a slightly increasing logarithmic dependence
in (8) at sufficiently high energy of incident atoms at room
temperature (lowering the temperature of the gas may result
in some progress). Thus, the integral measurement method
of UCNs essentially determines the scattering cross section
in the field of forces less than 10−8 cm (λ < 10−8cm). The
method of measuring low-energy neutrons is sensitive down to
λ ≈ λ̄UCN, i.e., 10−6 cm (λ̄2

UCN = h̄2/2mnE
trap
UCN). [In formula

(9) under the logarithm there is the squared ratio of λ to
λ̄UCN.] To identify long-range forces at λ > 10−6 cm, one
should compare the scattering cross section of UCNs with
the value of 4πb2

free-int, where bfree-int is a scattering length
measured by a neutron interferometer: bfree-int = bfree-nucl +
blong-range. The method using the scattering length measured
by a neutron interferometer will probably be more insen-
sitive (by a few centimeters) in the area of λ than the
coherence length of the neutron beam in measurements by
interferometers.

Recently, we realized the preliminary measurements of Pτ

for He with an accuracy of about 1% [Pτ = (427 ± 4) mbr s].
Results of our measurements are in agreement with results
of the similar measurements published in Ref. [25] [Pτ =
(467 ± 33) mbr s].

Using the obtained value of Pτ , we can express the total
cross section with the formula σ

He
scat + σ 0

He-captV2200/V̄He =
(nHeV̄Heτ

gas
stor)

−1 = (Pτ
gas
stor × 2.687 × 1016 × 273/293 V̄He)−1,

where 2.687 × 1016 is the number of helium atoms in 1 cm3

at a pressure of 1 mbar and temperature T = 273 K, V̄He is the
average velocity of helium atoms at room temperature (293 K),
V̄He = 1.240 × 105cm s−1, and Pτ = (427 ± 4)mbr s. Then
σ

He
scat + σ 0

He captV2200/V̄He = (0.753 ± 0.006) × 10−24 cm2.
The capture cross section of natural He because of an
admixture of He3 is equal to 0.0075×10−24 cm2 for a
velocity of 2200 m/s; correspondingly, the capture cross
section for the average velocity 1.240 × 105cm s−1 is equal
to 0.0133 × 10−24 cm2. Then the scattering cross section
σ

He
scat(exp .P τ ) = (0.740 ± 0.006)×10−24 cm2.

The nuclear scattering cross section σ He
free-nucl measured

by the transmission of neutrons with energy from 0.19
up to 6.19 eV through a volume with He gas [26] gives
0.773 ± 0.009 × 10−24 cm2. The measurements carried out
before [27] give 0.73 ± 0.05×10−24 cm2. In the tables of
the neutron cross-section data [28] the recommended average
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FIG. 3. (Color online) Dependence of an expected experimental effect �Pτ nucl
1 on parameters g2 and λ for He. (a) The case of a repulsive

potential, i.e., an exchange by a vector boson. (b) Correlation between parameters g2 and λ for a repulsive potential if the effect �Pτ nucl
1 is

equal to 0.3, 0.03, and 0.003. (c) The case of an attractive potential, i.e., an exchange by a scalar boson. (d) Correlation between parameters g2

and λ for an attractive potential if the effect �Pτ nucl
1 is equal to ±0.3, ±0.03, and ±0.003.

value of 0.76 ± 0.01×10−24 cm2 is presented. Using this value,
we obtain the following �Pτ nucl

1 value:

�Pτ nucl
1,He =

[
σ

He
scat(exp .P τ )e

E
trap
UCN
kT

(M+1)2

4M

σ He
free-nucl

− 1

]
= −0.026 ± 0.015(1.7σ ).

We do not see any real effect, and for simplicity we
can estimate the upper limit for �Pτ nucl

1,He as +0.03 or as
−0.03 at a confidence level of 95% (2σ ). In Fig. 4 the
restriction area (g2, λ) at a confidence level of 95% is shown

for the case of an attractive potential and for a repulsive
potential.

Now it is necessary to compare the nuclear scattering cross
section measured by means of the Pτ method and the coherent
scattering cross section measured by means of interferometers.
The measurements of scattering lengths by means of interfer-
ometers bfree-int should also include the scattering length of
long-range interaction (bfree-int = bfree-nucl + blong-range) since
the scattering length is measured at zero scattering angle,
i.e., 4πb2

free-int = 4π (bfree-nucl + blong-range)2. Therefore we can
obtain the following formula:

�Pτ int
2 =

[(
τ

gas
stornAV̄A

)−1 − σ 0
captV2200/V̄A

4πb2
free-int

e
E

trap
UCN
kT

(M+1)2

4M − 1

]

= ±g2
±M

{
(M + 1)

8πbfree-int

(
h̄c

kT

)
ez(λ)E1[z(λ)] −

(
M

M + 1

)
λ2

πbfree-int

mnc

h̄

}
044001-6
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+ (g2
±M)2

{
(M + 1)2

4(8πbfree-int)
2

(
h̄c

kT

)2
ez(λ)E2[z(λ)]

z
+

(
M

M + 1

)2 (
mncλ

2

2πh̄bfree-int

)2

−
(

mncMλ2

16π2h̄b2
free-int

) (
h̄c

kT

)
ez(λ)E1[z(λ)]

}
≈

[
1 ∓ 1

2
J0(g2

±, λ)

]2

− 1, (17)

where J0(g2
±, λ) = g2

±M2

π(M+1)
λ2

bfree-intλ̄C
and λ̄C is the Compton

neutron wave length, λ̄C = h̄
mnc

.

The analysis using the simplified formula (17) for �Pτ int
2

and for λ > 10−7cm is also shown in Fig. 4. The value
bbound-intwas taken from Ref. [30] (bbound-int,He = 3.26 ±
0.03fm). Since in our case one discusses scattering with a
free nucleus, we should recalculate the scattering length for
bound He nucleus in regard to the scattering length with
a free nucleus of helium using the equation bfree-nucl,He =
bbound-nucl,HeMHe/(MHe + 1) = 0.2608(24)×10−12 cm. Ac-
cordingly, the cross sections with a free nucleus, cal-
culated from the scattering length with a free nucleus,
will be σ He

0 = 4πb2
free-nucl,He = 0.855(16) × 10−24cm2. At the

same time the scattering cross section σ
He
scat(exp .P τ ) =

(0.740 ± 0.006)×10−24 cm2. Then

�Pτ int
2,He =

⎡
⎣σ

He
scat(exp .P τ )e

E
trap
UCN
kT

(M+1)2

4M

4πb2
free-int,He

− 1

⎤
⎦

= −0.134 ± 0.018(7.5σ ).

FIG. 4. (Color online) The dark shaded area corresponds to
constraints for g2and λ from our preliminary measurements of the
Pτ value for He [Pτ = (427 ± 4)mbr s] and the nuclear scattering
cross section σ He

free-nucl (0.76 ± 0.01×10−24 cm2) measured by the
neutron transmission [26–28]. The light shaded area corresponds to
constraints for g2and λ from Refs. [9,10]. The upper inclined area
�Pτ int

2,He corresponds to values of g2and λ from a comparison of the
Pτ method for He [Pτ = (427 ± 4)mbr s] and the interferometer
method [29] for He. The other inclined areas �int-nucl

He , �int-nucl
Ar , and

�int-nucl
Kr correspond to values of g2 and λ from a comparison of the

scattering cross sections measured by the transmission method [26]
and by mean interferometer [29] for He, Ar, and Kr. For all cases
�Pτ int

2,He , �int-nucl
He , �int-nucl

Ar , and �int-nucl
Kr the solution exists only for

repulsive potential.

At a confidence level of 95% (2σ ) the effect lies in the
range (−0.17, −0.1). The area (g2,λ) is shown in Fig. 4 at a
confidence level of 95% for the case of a repulsive potential.
There is no solution for an attractive potential. One can see
that the determined area of values of g2 and λ are excluded by
analysis results [9,10].

It would be very interesting to have now precise Pτ data for
the heavy atoms. But this is not measured yet; therefore we will
use the scattering cross sections measured by the transmission
of the collimated neutron beam with different energies (from
0.07 up to 6 eV) through the sample with the studied gas [26].
We can compare these cross sections with the cross sections
measured by means of an interferometer [29] for the same
gases. Making the comparison, we have to take into account
the correction for incoherent scattering cross section, and we
have to recalculate the bound cross section to the scattering
cross section on the free atom. The results of the comparison
are shown in Table I. One can see that the values measured
by the transmission method, except for the neon case, are
less than similar values obtained from neutron interferometer
data.

The analysis of the effect of the long-range forces can be
done by using the following formula:

�int-nucl = σ ∗∗
coh-free

σ ∗
coh-free

− 1

= 1

4

[
g2

±M2

π (M + 1)

]2 (
λ2

bfree-nuclλ̄C

)2

± g2
±M2

π (M + 1)

λ2

bfree-nuclλ̄C

, (18)

where the coherent cross sections σ ∗
coh-free measured with the

transmission method is σ ∗
coh-free = σscat-free − σinc-free. The total

scattering cross section σscat-free was taken from Ref. [26].
The incoherent scattering cross section σinc free =

[M/(M + 1)]2σinc, and the bound incoherent cross section σinc

is taken from Ref. [31]. σ ∗∗
coh-free = 4π [M/(M + 1)]2b2

c , where
bc is taken from Ref. [29]. bfree-nucl = √

σ ∗
coh-free/4π .

The result of this analysis is presented in Fig. 4 at a
confidence level of 95% (2σ ). One can see that the determined
area of g2 and λ is excluded from analysis results [9,10]. The
difference between the results of the transmission method and
neutron interferometer measurements cannot be explained by
the n-e scattering because the n-e scattering length is much
smaller than the experimental discrepancy.

The presented discrepancy is likely to be due to a systematic
experimental error. To clarify the problem new measurements
are to be made for Pτ data, but it is also important to test
the measurement of scattering lengths by means of the inter-
ferometer. Finally, if there is some chance that the observed
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TABLE I. The coherent cross sections σ ∗
coh-freemeasured by the transmission method [26] and the coherent cross sections σ ∗∗

coh-freemeasured
by the neutron interferometer [29].

Gas Transmission method σ ∗
coh-free(10−24 cm2) Neutron interferometer σ ∗∗

coh-free(10−24 cm2) �σ = σ ∗
coh-free − σ ∗∗

coh-free

He 0.773 ± 0.009 0.855 ± 0.016 −0.082 ± 0.018(4.5σ )
Ne 2.42 ± 0.03 2.44 ± 0.04 −0.02 ± 0.05(0.4σ )
Ar 0.424 ± 0.008 0.51 ± 0.01 −0.086 ± 0.012(7σ )
Kr 6.19 ± 0.17 6.94 ± 0.11 −0.75 ± 0.20(4σ )

difference is caused by long-range forces, it could be tested
by using the method of measuring the flux of above-barrier
neutrons. This method is sensitive to the long-range forces also.

The method of measuring the flux of above-barrier neutrons
will be considered in the next section.

V. THE METHOD OF MEASURING THE FLUX
OF ABOVE-BARRIER NEUTRONS

If there is no gas in the trap, the number of neutrons up
scattered within an energy range from the critical energy of
the foil Efoil

UCN to that of the trap E
trap
UCN is determined by UCN

collision with the trap walls and is equal to

Nlow(0) =
∫ ∞

0
N0(0)e−t/τ total

stor (nA=0)ανdt

= N0(0)αντ total
stor (nA = 0), (19)

where α is the probability per one collision that UCN will be
up scattered within the range Efoil

UCN to E
trap
UCN, ν is frequency

of UCN collision with the trap walls, τ total
stor (nA = 0) is UCN

storage time without gas, and N0(0) is the number of UCNs
in the trap without gas at the moment of the beginning of the
lower up-scattering effect measurements.

When a gas at density nA is available, the number of
neutrons up scattered within the same energy range will be
equal to

Nlow (nA) =
∫ ∞

0
e−t/τ total

stor (nA)N0(nA)
[
αν + W low

at (nA)
]
dt

= N0(nA)
[
αν + W low

at (nA)
]
τ total

stor (nA), (20)

where W low
at (nA) is the probability that UCNs will be up

scattered within the range Efoil
UCN to E

trap
UCN, τ total

stor (nA) is the
storage time of UCNs in the trap with the available gas at
density nA, and N0(nA) is the total number of UCNs in the
trap with the gas at the moment of the beginning of measuring
the lower-energy up-scattering effect.

Combining Eqs. (19) and (20), one can obtain the following
equation for subtraction of W low

at (nA)from the experiment:

W low
at (nA) = Nlow(nA)

N0(nA)τ up
tot.st(nA)

− Nlow(0)

N0(0)τ up
tot.st(0)

. (21)

Let us calculate W low
at (nA), taking into account the effect of

long-range forces.

W low
at (nA) =

∫ εt

εf

dσ (ε)
∫ ∞

ε
(M+1)2

4M

d�(EA)

= π
(M + 1)2

M
nAb2

free-nucl

(
V̄A

kT

) ∫ εt

εf

e−ε
(M+1)2

4M
/kT

×
[
1 ± g2

±M2

π (M + 1)

mnc

bfree-nuclh̄

λ2

2mnελ2
/
h̄

2 + 1

+ (g2
±M)2 M2

(M + 1)2

(
mnc

2πh̄bfree-nucl

)2

× λ4

(2mnλ2ε/h̄2 + 1)2

]
dε. (22)

In calculating integral (22) we assume εt and εf to have the
same order of magnitude; therefore a variable εis replaced by
its average value of integration interval ε̄ = (εt + εf )/2. Now
we can subtract the contribution made by nuclear scattering
and obtain the following equation for g2

± and λ:

W low
at (nA)

/
nAV̄A

(εt − εf )

kT
4πb2

free-nucl
(M + 1)2

M

= 1

4

[
1 ± 1

2
J1(g2

±, λ)

]2

, (23)

where

J1(g2
±, λ) = g2

±M2

π (M + 1)

1

bfree-nuclλ̄C

λ2

λ2/λ̄̄2
UCN + 1

. (24)

Here λ̄̄UCN is the de Broglie wave length (λ̄̄2
UCN = h̄2/2mnε̄)

of the neutron with kinetic energy ε̄ = (εt + εf )/2.
The left part of Eq. (23) implies W low

at (nA)determined
from the experiment according to Eq. (21). This equation
contains the ratio of the counting rate of neutrons at the energy
above Efoil

UCN to that of neutrons at the energy below Efoil
UCN.

The counting efficiency of neutrons depends on energy; thus
achieving a very high accuracy of W low

at (nA) is a particular
problem. This problem can be solved using the method of
relative measurements. For this purpose it is necessary to take
the ratio of Eq. (23), for example, for 86Kr and He[

W low
at (nA)/nAV̄A

(εt−εf )
kT

4πb2
free-nucl

(M+1)2

M

]
Kr[

W low
at (nA)/nAV̄A

(εt−εf )
kT

4πb2
free-nucl

(M+1)2

M

]
He

≈
{

1 ±
[

M2
Kr

(M + 1)Krb
Kr
free-nucl

− M2
He

(M + 1)Heb
He
free-nucl

]

× g2
±

2πλ̄C

λ2

λ2/λ̄̄2
UCN + 1

}2

. (25)

In this ratio efficiencies of the detector are cancelled, and
the correction in the right part for He is much less than for86Kr.
From this formula one can see that for λ > λ̄̄UCN the method
sensitivity comes to saturation. In a similar way we can get the
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FIG. 5. (Color online) Dependence of �
low-energ-nucl
3 on g2and λ: (a) for ϕ > 0 and (b) for ϕ < 0.

value of �
low-energ-nucl
3 :

�
low-energ−nucl
3

=
[
W low

at (nA)/nAV̄A
(εt−εf )

kT
4πb2

free-nucl
(M+1)2

M

]
Kr[

W low
at (nA)/nAV̄A

(εt−εf )
kT

4πb2
free-nucl

(M+1)2

M

]
He

− 1.

(26)

In Figs. 5(a) and 5(b) the values of the possible effect of
�

low-energ-nucl
3 are presented in the form of a surface for cases

of positive and negative potentials ϕ.
Now we would like to make an analysis using the coherence

neutron-scattering length bfree-int derived from interferometer
measurements. In this case we can obtain the following
formula:

[
W low

at (nA)/nAV̄A
(εt−εf )

kT
4πb2

free-int
(M+1)2

M

]
Kr[

W low
at (nA)/nAV̄A

(εt−εf )
kT

4πb2
free-int

(M+1)2

M

]
He

≈
{

1 ∓
[

M2
Kr

(M + 1)Krb
Kr
free-int

− M2
He

(M + 1)Heb
He
free-int

]

× g2
±λ2

2πλ̄C

(
λ2

λ̄̄2
UCN

)
1

λ2/λ̄̄2
UCN + 1

}2

. (27)

Again, we can introduce �
low energ−int
4 :

�
low−energ−int
4

=
[
W low

at (nA)
/
nAV̄A

(εt−εf )
kT

4πb2
free-int

(M+1)2

M

]
Kr[

W low
at (nA)

/
nAV̄A

(εt−εf )
kT

4πb2
free-int

(M+1)2

M

]
He

− 1.

(28)

In this case the method becomes sensitive for λ > λ̄̄UCN.
Now let us compare the Pτ method and that of above-

barrier neutrons for two cases of analysis: with b = bfree-nucl
and with b = bfree-int. These results are shown in Figs. 6(a)–
6(d). We have to keep in mind that (i) �Pτ nucl

1 is the Pτ

measurement of the scattering cross section in comparison
with the nuclear scattering cross section measured at a neutron
energy about 1 eV, (ii) �Pτ int

2 is the Pτ measurement of the
scattering cross section in comparison with 4πb2

free-int mea-
sured by means of a neutron interferometer, (iii) �

low-energ-nucl
3 is

the method of above-barrier neutrons in comparison with
the nuclear scattering cross section measured at a neutron
energy of about 1 eV, and (iv) �

low-energ-int
4 is the method of

above-barrier neutrons in comparison with bfree-int measured
by means of a neutron interferometer.

If one assume that � is determined at an accuracy of about
1% (for a confidence level of 95%, the upper limit of � is
about +0.03 or −0.03). The dependence of g2 on λ will look
like, for example, for krypton-86, as shown in Figs. 6(a)–6(d).
The analysis is made for the case of ϕ > 0 [Figs. 6(a) and 6(c)]
and for the case of ϕ < 0 [Figs. 6(b) and 6(d)]. One can see
that the independence of g2 from λ is already observed within
the area 10−8–10−4 cm for �Pτ nucl

1 , but for �
low-energ-nucl
3 the

independence of g2 from λ is within the area 10−6–10−4 cm.
For �Pτ int

2 and �
low-energ-int
4 the independence of g2 from λ will

take place within the area of λ exceeding the length of neutron
beam coherence in measurements with interferometers by a
few centimeters.

Now we would like to discuss some details of the exper-
iment on above-barrier neutrons. It is necessary to take into
account that values Nlow and N0 in Eqs. (19)–(21) are different
from the detector counting rate N∗

low and N∗
0 . The probability of

detection of a neutron is determined by the ratio of probability
of neutron leakage to the detector τ−1

emp to the total probability

of UCN losses τ−1
emp + τ−1

stor, i.e., by the ratio
τ−1

emp

τ−1
emp+τ−1

stor
, where

τempis the time of UCNs leaving the trap and τstor is the
UCN storage time in the trap. In addition, it is necessary
to take into account the efficiency of the detector Dup for
the corresponding energy range and also the transmission foil
factor Tfoil.

Thus, the number of neutrons Nlow at an energy above
Efoil

UCN but below E
trap
UCN is connected to the counting rate of the
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FIG. 6. (Color online) The comparison of the constrains (95% C.L.) from the (Pτ ) method and the method of above-barrier neutrons for
two cases of analysis: with b = bfree-nucl and with b = bfree-int for the case of 86Kr. (a) ϕ > 0, �Pτ nucl

1 = 0.03, �
low-energ-nucl
3 = 0.03; (b) ϕ < 0,

�Pτ nucl
1 = 0.03 or −0.03, �

low-energ-nucl
3 = 0.03 or −0.03; (c) ϕ > 0, �Pτ int

2 = 0.03 or −0.03, �
low-energ-int
4 = 0.03 or −0.03; (d) ϕ < 0, �Pτ int

2 =
0.03, �

low-energ-int
4 = 0.03. The shaded area shows excluded values of g2and λ from Refs. [9,10].

detector N∗
low by the following relation:

Nlow(nA) = N∗
low(nA)

dup(nA)
, (29)

where dup(nA) = TfoilDupτ
up
stor(nA)/[τ up

stor(nA) + τ
up
emp(nA)].

The number of neutrons N0(nA) whose energy is in the
range from 0 toEfoil

UCN is connected to the counting rate of
detector by the following relation:

N0(nA) = N∗
0 (nA)

dbelow(nA)
, (30)

where

dbelow(nA) = Dbelowτ below
stor (nA)

/[
τ below

stor (nA) + τ below
emp (nA)

]
.

The values τ below
stor (nA) and τ below

emp (nA) are measured at the
absorber position h = Efoil

UCN/mg and with removed exit foil
(6 in Fig. 1). The values τ

up
stor(nA) and τ

up
emp(nA) are measured at

the top position of the absorber when h = E
trap
UCN/mg and with

the entrance foil (1 in Fig. 1) at the neutron guide entrance.

The factor of the foil transmission Tfoil is measured in the same
case, comparing the measurements with and without the exit
foil (6 in Fig. 1). As already mentioned, Dup and Dbelow for
measurements with He and with 86Kr are cancelled in relation
(25). Thus, it is obviously possible to reach an accuracy of
about 1% in the determination of the left part of Eq. (25).

VI. CONCLUSION

According to Fig. 6 we can conclude that the method of
above-barrier neutrons is more sensitive with respect to the
Pτ method within the range of large λ values. It is concerned
with the possibility of direct detection of neutrons scattered due
to long-range forces. At the same time the analysis with b =
bfree-int allows us to extend considerably the range of studied λ

values.
Detailed measurements of the dependence of PAτ

gas
stor on gas

pressure are necessary in order to study some possible effects
of the collective interaction of UCNs with gas atoms.
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To summarize it is worth noticing that the sensitivity of the
proposed methods is comparable to that of methods discussed
in the Introduction [9], but in this case neutrons with extremely
low energy are used. The effect of long-range interaction (if it
exists) can be isolated directly by means of the registration of
lower-energy up-scattered neutrons. In the proposed methods
we consider the interaction of neutrons with free atoms. It
is important to study the long-range forces with a range
exceeding the distance between atoms in materials.
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