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We explain a form for the rainbow-ladder kernel whose momentum dependence is consonant with modern
DSE- and lattice-QCD results, and assess its capability as a tool in hadron physics. In every respect tested, this
form produces results for observables that are at least equal to the best otherwise obtained in a comparable
approach. Moreover, it enables the natural extraction of a monotonic running-coupling and gluon mass.
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Solving quantum chromodynamics (QCD) presents a fun-
damental problem: Never before have we been confronted by
a theory whose elementary excitations are not those degrees of
freedom readily accessible via experiment; i.e., are confined.
Moreover, there are reasons to believe that QCD generates
forces which are so strong that <2% of a nucleon’s mass can
be attributed to the current-quark masses that appear in QCD’s
Lagrangian; viz., forces capable of generating mass from
nothing, a phenomenon known as dynamical chiral symmetry
breaking (DCSB). Neither confinement nor DCSB is apparent
in QCD’s Lagrangian. Yet they are dominant in determining the
observable characteristics of real-world QCD. The physics of
hadrons is ruled by emergent phenomena, such as these, which
can only be explained through the methods of nonperturbative
quantum field theory.

Confinement and DCSB are long-distance phenomena so
their understanding requires elucidation of the infrared behav-
ior of the interactions in QCD. Much is misapprehended about
confinement. It is thus important to state that the static potential
measured in lattice QCD is not related in any known way to
the question of light-quark confinement. Light-quark creation
and annihilation effects are fundamentally nonperturbative
in QCD. Hence it is impossible in principle to compute
a potential between two light quarks. On the other hand,
arguments relating confinement to the analytic properties of
QCD’s Schwinger functions have been presented [1–3], from
which perspective the question of light-quark confinement
may be translated into the challenge of charting the infrared
behavior of QCD’s β-function.

The gap equation is a starting point for analyses of DCSB
and confinement [2], and it is the basis for formulating a
symmetry-preserving Poincaré-covariant treatment of bound
states through Bethe-Salpeter and Faddeev equations [4,5].
The gap equation can be written

S(p)−1 = Z2(iγ · p + mbm) + Z1

∫ �

q

g2Dμν(p − q)

× λa

2
γμS(q)

λa

2
�ν(q, p), (1)

where Dμν is the gluon propagator, �ν is the quark-gluon
vertex,

∫ �

q
is a symbol representing a Poincaré invariant

regularization of the four-dimensional integral, with � the
regularization mass scale, mbm(�) is the current-quark bare
mass, and Z1,2(ζ 2,�2) are, respectively, the vertex and
quark wave-function renormalization constants, with ζ the
renormalization point. The gap equation’s solution is the
dressed-quark propagator

S(p) = Z(p2, ζ 2)/[iγ · p + M(p2)], (2)

wherein the mass function M(p2) is independent of the
renormalization point. (We use a Euclidean metric [6].)

In realistic studies the model input is expressed in a
statement about the nature of the gap equation’s kernel at
infrared momenta, since the behavior at momenta k2 � 2 GeV2

is fixed by perturbation theory and the renormalization group
[7,8]. In rainbow-ladder (RL) truncation, which is leading
order in the most widely used scheme [9,10], this amounts
to writing (k = p − q)

Z1g
2Dμν(k)�ν(q, p)

= k2G(k2)Dfree
μν (k)γν

= [k2GIR(k2) + 4πα̃pQCD(k2)]Dfree
μν (k)γν, (3)

wherein Dfree
μν (k) is the Landau-gauge free-gauge-boson prop-

agator, α̃pQCD(k2) is a bounded, monotonically decreasing reg-
ular continuation of the perturbative-QCD running coupling
to all values of spacelike k2, and GIR(k2) is an Ansatz for the
interaction at infrared momenta: GIR(k2) � α̃pQCD(k2) ∀k2 �
2 GeV2. The form of GIR(k2) determines whether confinement
and/or DCSB are realised in solutions of the gap equation.
(The Landau gauge is used for many reasons [11], e.g., it is
a fixed point of the renormalization group; a gauge for which
sensitivity to model-dependent differences between Ansätze
for the fermion–gauge-boson vertex are least noticeable; and
a covariant gauge, which is readily implemented in numerical
simulations of lattice QCD [12].)

The capacity of the Dyson-Schwinger equations (DSEs) to
unify the explanation of a wide range of meson and baryon
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observables entails that the pointwise behavior of GIR(k2)
can be constrained through feedback between experiment and
theory. This is a practical means by which to develop insight
into the momentum dependence of the QCD’s β function
[3,6,13].

Following work on confinement [14,15], the interaction
at small k2 has often been expressed as either an integrable
infrared singularity, typicallyGIR(k2) ∝ δ4(k), or a finite-width
approximation to it [7,8,16–18]. The following approximation
was used in Ref. [7],

δ4(k)
ω∼0≈ 1

π2

1

ω4
e−k2/ω2

, (4)

whereas the δ4 function itself was used in Ref. [16]. Neither
study directly sampled the solutions of the DSEs at complex
values of their arguments. This changed with Ref. [8], which
therefore required better control of numerical procedures and
hence employed an equally weighted combination of the δ4

function and the following finite-width representation:

δ4(k)
ω∼0≈ 1

2π2

1

ω6
k2e−k2/ω2

. (5)

The material difference between this form and Eq. (4) is the
inclusion of a multiplicative factor of k2. It was introduced
solely in order to tame singularities encountered in the
numerical treatment of the transverse projection operator
k2Dfree

μν (k).
Desiring additional simplifications in the numerical anal-

ysis, the δ4-function component of GIR(k2) was completely
eliminated in Ref. [18], leaving the infrared behavior to be
described by Eq. (5) alone; viz., with s = k2,

G(s) = 4π2

ω6
Dse−s/ω2 + 8π2γmF(s)

ln
[
τ + (

1 + s/�2
QCD

)2] , (6)

where γm = 12/(33 − 2Nf ), Nf = 4, �QCD = 0.234 GeV;
τ = e2 − 1; and F(s) = {1 − exp(−s/[4m2

t ])}/s, mt =
0.5 GeV. This form of the interaction preserves the one-loop
renormalization-group behavior of QCD in the gap equation,
and has since been employed extensively in the success-
ful prediction and explanation of hadron observables; e.g.,
Refs. [4,19–28]. This is not to say that higher-order effects are
truly negligible, only that they may be represented implicitly
through the parameters in Eq. (6).

There is an aspect of the interaction in Eq. (6) that is usually
ignored; namely, it produces a kernel for the gap equation
which possesses a zero at a small timelike value of k2, and
rapidly becomes very large and negative as the magnitude
of the timelike momentum is increased. For example, with
typical values of the model parameters [Dω = (0.72 GeV)3,
ω = 0.4 GeV]:1

G(s)
Eq.(6)= 0 for s = −(0.046GeV)2; (7)

1Predictions for numerous pseudoscalar- and vector-meson ob-
servables are approximately independent of ω on the domain ω ∈
[0.3, 0.5] as long as one maintains Dω = const [29].

the magnitude of G(s < 0) exceeds its largest spacelike value
at s = −(0.22 GeV)2, and |G(s < 0) < 0| grows faster than
exponentially with decreasing s.

These facets of the behavior produced by Eq. (6) are in stark
conflict with the results of modern DSE and lattice studies;
viz., the gluon propagator is a bounded, regular function of
spacelike momenta, which achieves its maximum value on
this domain at k2 = 0 [30–34], and the dressed-quark-gluon
vertex does not possess any structure which can qualitatively
alter this behavior [35,36]. It is thus long overdue to reconsider
a functional form whose sole raison d’être was numerical
expediency.

We therefore choose to explore the capacity of

G(s) = 8π2

ω4
De−s/ω2 + 8π2γmF(s)

ln
[
τ + (

1 + s/�2
QCD

)2] (8)

as a tool to compute and connect hadron observables. This
is readily done now owing to improved numerical methods
for coping with DSE solutions at complex values of their
arguments [37]. Note: Equation (8) cannot be expressed via a
non-negative spectral density [3].

Regarding renormalization of the gap equation, we follow
precisely the procedures of Refs. [8,18] and use the same
renormalization point, i.e., ζ = 19 GeV. With gap equation
solutions in hand for various quark flavors, one can solve
homogeneous Bethe-Salpeter equations (BSEs) for meson
amplitudes and therefrom compute observable properties.
For example, in the isospin-symmetric limit the pion Bethe-
Salpeter amplitude is obtained via2

�π (k; P ) = −
∫ �

q

G((k − q)2)(k − q)2Dfree
μν (k − q)

× λa

2
γμS(q+)�π (q; P )S(q−)

λa

2
γν, (9)

where S(�) is the u = d-quark propagator, P 2 = −m2
π , k

is the relative momentum between the constituents, and
one can choose q± = q ± P/2 without loss of generality
in a Poincaré covariant approach. This form of the BSE is
symmetry consistent with the gap equation obtained through
Eq. (3) [10,39]. All Bethe-Salpeter amplitudes are normalized
canonically (see, e.g., Eq. (27) in Ref. [8]).

In Table I we list computed results for ground-state
pseudoscalar and vector mesons. The meson masses are
obtained in solving the BSEs. Valid formulas for the other
quantities, all of which depend linearly on the meson Bethe-
Salpeter amplitudes, are presented in Refs. [8,42,43]. (Note:
The products fπρπ and fKρK describe in-pion and in-kaon
condensates [8,44,45].) The results show that observable
properties of vector- and flavored pseudoscalar mesons com-
puted with Eq. (8) are practically insensitive to variations of

2We actually include a factor of 1/Z2
2 on the left-hand side of both

Eqs. (6) and (8), which additional improvement ensures multiplicative
renormalizability in solutions of the gap and Bethe-Salpeter equations
[38].
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TABLE I. Results obtained using Eq. (8), compared with one rep-
resentative set computed using Eq. (6). The current-quark masses at
the renormalization point ζ = 19 GeV were fixed by requiring a good
description of mπ,K . Dimensioned quantities are reported in GeV. For
comparison, some experimental values are as follows [40]: fπ =
0.092 GeV, mπ = 0.138 GeV; fK = 0.113 GeV, mK = 0.496 GeV;
fρ = 0.153 GeV, mρ = 0.777 GeV; and fφ = 0.168 GeV, mφ = 1.02
GeV. Note: The “σ” listed here is not directly comparable with the
lightest scalar in the hadron spectrum because the rainbow-ladder
truncation is a priori known to be a poor approximation in this
channel [39,41].

Interaction Eq. (6) Eq. (8) Eq. (8) Eq. (8) Eq. (8)

(Dω)1/3 0.72 0.8 0.8 0.8 0.8
ω 0.4 0.4 0.5 0.6 0.7
m

ζ

u,d 0.0037 0.0034 0.0034 0.0034 0.0034
mζ

s 0.084 0.082 0.082 0.082 0.082
A(0) 1.58 2.07 1.70 1.38 1.16
M(0) 0.50 0.62 0.52 0.42 0.29
mπ 0.138 0.139 0.134 0.136 0.139
fπ 0.093 0.094 0.093 0.090 0.081
ρ1/2

π 0.48 0.49 0.49 0.49 0.48
mK 0.496 0.496 0.495 0.497 0.503
fK 0.11 0.11 0.11 0.11 0.10
ρ

1/2
K 0.54 0.55 0.55 0.55 0.55

mρ 0.74 0.76 0.74 0.72 0.67
fρ 0.15 0.14 0.15 0.14 0.12
mφ 1.07 1.09 1.08 1.07 1.05
fφ 0.18 0.19 0.19 0.19 0.18
mσ 0.67 0.67 0.65 0.59 0.46
ρ1/2

σ 0.52 0.53 0.53 0.51 0.48

ω ∈ [0.4, 0.6] GeV as long as Dω = const. Furthermore, there
is no reason to prefer Eq. (6) over Eq. (8).

However, there is reason to prefer Eq. (8) over Eq. (6).
Namely, its pointwise behavior accords qualitatively with
results of modern DSE and lattice studies, and it can readily
be parametrized as follows [31,33]:

G(k2) ≈ 4παRL(k2)

k2 + m2
g(k2)

, m2
g(k2) = M4

g

M2
g + k2

, (10)

with the functions obtained in this way illustrated in Fig. 1. As
one would expect, the infrared scale for the running gluon mass
increases with increasing ω: Mg = 0.67 GeV for ω = 0.5 GeV;
Mg = 0.81 GeV for ω = 0.6 GeV. The values of Mg are typical
[30–32].

Equally naturally, the infrared value of the coupling is a
decreasing function of ω: αRL(0)/π = 15, αRL(M2

g )/π = 3.8
for ω = 0.5 GeV; and αRL(0)/π = 9, αRL(M2

g )/π = 2.2 for
ω = 0.6 GeV.

A context for the infrared value of the running coupling
required to describe meson observables in rainbow-ladder
truncation is readily provided. With nonperturbatively mass-
less gauge bosons, the coupling below which DCSB breaking
is impossible via the gap equations in QED and QCD is αc/π ≈
1/3 [38,46,47]. In a symmetry-preserving regularization of
a vector-vector contact interaction used in rainbow-ladder
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FIG. 1. (Color online) Upper panel: Rainbow-ladder gluon
running-mass inferred from Eq. (8) via Eq. (10). Lower panel:
Rainbow-ladder effective running coupling inferred from Eq. (8).
In both panels ω = 0.5 GeV (solid curve) and ω = 0.6 GeV (dashed
curve).

truncation, αc/π ≈ 0.4, and a description of hadron phenom-
ena requires α/π ≈ 1 [48]. With nonperturbatively massive
gluons and quarks, whose masses and couplings run, the
infrared strength required to describe hadron phenomena in
rainbow-ladder truncation is unsurprisingly a little larger.
Moreover, while a direct comparison between αRL and a cou-
pling αQLat inferred from quenched-lattice results is not sen-
sible, it is nonetheless interesting that αQLat(M2

g ) � αRL(M2
g )

[33,34]. It is thus noteworthy that if one employs a more so-
phisticated, nonperturbative DSE truncation [39,41], some of
the infrared strength in the gap equation’s kernel is shifted from
G into the dressed-quark-gluon vertex. This cannot materially
affect the net infrared strength required to explain observ-
ables but does reduce the amount attributed to the effective
coupling.

We also used Eq. (8) to compute the masses of selected J =
0, 1 radial excitations and exotics, with the results presented
in Table II. The last column in the table was prepared as
follows. We fit the entries in each row to both m(ω) = const
and

m(ω) = ω(c0 + c1ω), (11)

then compute the standard deviation of the relative error
in each fit, σ0 for the constant and σ2 for Eq. (11), and
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TABLE II. Masses obtained with Eq. (8) and Dω = (1.1 GeV)3.
(Dimensioned quantities are reported in GeV.) The subscript “1”
indicates first radial excitation, and known experimental values are
as follows [40]: mπ1 = 1.3 ± 0.1 GeV; mσ1 = 1.2–1.5 GeV; and
mρ1 = 1.47 ± 0.03 GeV. The last column measures sensitivity to
variations in rω := 1/ω: σ20 � 1 indicates strong sensitivity and
σ20 ≈ 1 indicates immaterial sensitivity.

ω 0.4 0.5 0.6 σ20

mπ 0.214 0.155 0.147 0.83
m0−− 0.814 0.940 1.053 0.03
mπ1 1.119 1.283 1.411 0.02
mσ 0.970 0.923 0.913 1.25
m0+− 1.186 1.252 1.323 0.34
mσ1 1.358 1.489 1.575 0.14
mρ 1.088 1.046 1.029 1.22
m1−+ 1.234 1.277 1.318 0.60
mρ1 1.253 1.260 1.303 0.03

finally form the ratio σ20 = σ2/σ0. In preparing the table we
used Dω = (1.1 GeV)3. This has the effect of inflating the
π - and ρ-meson ground-state masses to a point wherefrom
corrections to rainbow-ladder truncation can plausibly return
them to the observed values [22]. In this connection it is
notable that the value reported for mσ in Table II matches
estimates for the mass of the dressed-quark-core component
of the σ meson obtained using unitarized chiral perturbation
theory [49].

We have seen that with Eq. (8) ground-state masses of light-
quark pseudoscalar and vector mesons are quite insensitive to
ω ∈ [0.4, 0.6] GeV. Any minor variation is described by a
decreasing function. We emphasize that, for reasons which are
understood [39,41], the behavior of scalar- and axial-vector
mesons is not well described in the rainbow-ladder truncation
and hence the results reported herein do not allow reliable
conclusions to be drawn about the ω dependence of their
masses.

In the case of exotics and radial excitations, the variation
with ω is described by an increasing function and the variation
is usually significant. (That is also the case with Eq. (6)
[37,50,51].) This is readily understood. The quantity rω :=
1/ω is a length scale that measures the range over which
GIR acts. For ω = 0, i.e., the δ4-function case, this range is
infinite, but it decreases with increasing ω. One expects exotic
and excited states to be more sensitive to long-range features
of the interaction than ground states and, additionally, that
their masses should increase if the magnitude and range of
the strong piece of the interaction is reduced because there is
less binding energy. (Recall αRL(0) is a decreasing function
of ω.)

Table II confirms a known flaw with the rainbow-ladder
truncation; viz., while it binds in exotic channels, it produces
masses that are too light, just as it does for axial-vector mesons.
Plainly, no predictions for exotics can be considered reliable
unless the same formulation produces realistic predictions for
axial-vector masses. It is similarly noticeable that mπ1 is far
more sensitive to variations in ω than is mρ1 , and although
mπ1 < mρ1 for ω = 0.4 GeV, the ordering is rapidly reversed.

Thus, in conflict with experiment, one usually finds mπ1 > mρ1

in rainbow-ladder truncation. This, too, is a property of the
truncation, which is insensitive to the details of G(k2), e.g.,
the same ordering is obtained with a momentum-independent
interaction [52].

It is probable these failings can be explained by the
action of material, essentially nonperturbative corrections
to the rainbow-ladder truncation which amplify effects that
in quantum mechanics would be described as spin-orbit
interactions [39]. For example, the ρn mesons possess nonzero
magnetic and quadrupole moments. This suggests that there
is appreciably more dressed-quark orbital angular momen-
tum within these states than within πn mesons. Spin-orbit
repulsion could significantly boost mρ1 and thereby produce
the correct level ordering. In addition, the quark model
describes axial-vector mesons as P -wave states and it has
already been established that the nonperturbative kernel
corrections greatly boost their masses [41]. Finally, exotic
states appear as poles in vertices generated by interpolating
fields with odd “time parity” [53], a feature which magnifies
the importance of orbital angular momentum within these
states.

We explored the efficacy of a form for the rainbow-ladder
kernel at spacelike momenta which is a bounded, regular
function that achieves its maximum value at k2 = 0, viz.,
Eqs. (3) and (8). In every respect tested, this form produces
results for hadron observables that are at least equal to the best
otherwise obtained in a comparable approach. Given that the
form we proposed is consonant with contemporary DSE and
lattice-QCD results on the nature of the gap equation’s kernel,
in future studies it should replace other Ansätze that fail in this
respect. Justified, too, is repetition of numerous extant calcu-
lations, in particular, those relating to features of the phase
transition at nonzero temperature and chemical potential, such
as the novel effects discussed in Refs. [54,55], and properties of
excited states other than their masses. In the latter connection,
there is certainly much to add. Herein, however, we will only
report that, with Dω = (1.1 GeV)3 and our favored value of
ω = 0.6 GeV,

fρ1 = −0.45fρ. (12)

More important than repeating calculations, however, is
movement beyond the rainbow-ladder truncation and its
incremental improvement. Our results emphasize again that
within this circumscribed horizon, the outstanding questions
in hadron spectroscopy, for example, do not have an answer. In
order to use extant and forthcoming data as a tool with which
to constrain the nature of QCD’s β function, it is necessary to
employ kernels that can more realistically handle systems other
than ground-state vector and flavored pseudoscalar mesons.
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by National Natural Science Foundation of China, under
Contracts No. 10705002 and No. 10935001, US Department
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