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Role of the tensor exchange potential in nucleon-nucleus scattering
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We give a microscopic derivation of the spin-spin components of the optical potential for elastic scattering
of a nucleon from a target with nonzero spin. A realistic nucleon-nucleon interaction containing direct and
exchange terms is used to generate a folded nucleon-nucleus potential whose spin-spin components are treated
in distorted-wave Born approximation. We show how folding leads to spin-spin tensor interactions with higher
order couplings in the projectile and target spin that have not been explicitly considered before. We place
particular emphasis on the polarization transfer coefficient DNN for 200-MeV protons elastically scattered from
10B, which is rigorously unity in the absence of any spin-spin interactions and for which experimental data exist.
We find that deviations of DNN from unity are particularly sensitive to spin-spin exchange terms arising from
the nucleon-nucleon tensor interaction and the nuclear wave functions describing the target one-body density
matrix. Unpolarized differential cross sections and vector analyzing powers are found to be very insensitive to
these terms.
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In order to determine optical potentials for the exotic
nuclear species planned to be created in future radioactive
beam facilities, it is necessary to establish optical models
that better describe interactions for nucleon scattering from
nonzero spin targets. Optical potentials are vital for studying
the structure of atomic nuclei, but the full spin dependence
of the interaction between nuclei with nonzero nuclear spin
has not been fully explored. In many scattering experiments
spin-spin effects are averaged out because of random projectile
or target spin orientations. However, with the next generation
of radioactive beam facilities currently under construction
there is a vital need for nuclear reaction theory calculations
to make predictions of polarization observables relevant to
the proposed experiments. In order to do this, it is timely to
re-examine the microscopic foundation of the nucleon optical
model when the target nucleus has nonzero spin.

Experimental evidence for the dependence of elastic scat-
tering of protons from a nuclear target on the spin of the
target has been obtained through the measurement of the
polarization transfer coefficient, DNN, by Betker et al. [1].
DNN (or Dyy as it is sometimes called, where the direction of
the y axis is normal to the scattering plane) is related to the
nucleon-nucleus scattering amplitude F and the y component
σ0y , of the projectile nucleon spin operator σ 0, by the following
relation [2]:

DNN = Tr[Fσ0yF
†σ0y]

Tr[FF †]
, (1)

where the trace is taken over the projectile and target spin
projections. The theoretical value of this observable is equal
to unity unless a term dependent on the orientation of the target
spin is present in the potential. It therefore provides a unique
test of the spin dependence in the optical potential. Betker et al.
measured a significant deviation of DNN from unity at large
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angles for 200-MeV protons elastically scattering from 10B at
the Indiana University Cyclotron Facility (IUCF). However,
their coupled-channel distorted wave impulse approximation
(DWIA) calculation of DNN deviated from unity by only
about 5% at large angles, an order of magnitude smaller
than the observed data. Here we address this issue through
a microscopic folding model. Due to the 3+ ground state of
10B, spin-spin interactions that have higher order couplings of
the target and projectile spins are included.

It should be noted that we do not attempt here to give
a complete microscopic description of the proton optical
potential. Very extensive fully microscopic calculations of
proton scattering by 10B at 197 MeV including exchange
effects have been published in Ref. [3]. These calculations
give an excellent account of observables for scattering angles
less than 60 degrees, but they fail to give the large deviation of
DNN from unity at large angles observed experimentally [1].
Our approach specifically addresses those components of the
optical potential that are known to be responsible for the
deviation of DNN from unity. The remaining components of
the optical potential are treated nonmicroscopically.

The effects of tensor forces in nuclei is currently a topic
of great interest. In particular, the tensor interaction between
nucleons is believed to influence the spin-orbit splitting and
shell structure of exotic nuclei [4–7]. It has been found that the
two-body tensor force has an important role in shell evolution
and the single-particle energy spacing of nuclei far from
stability [8,9]. It is one of the goals of this work to determine
if inclusion of the tensor nucleon-nucleon (NN) interaction in
our folding model also has a significant effect on DNN.

Inclusion of terms in the optical potential that depend on
the spin operator, I , of the target nucleus was first proposed
by Feshbach [10,11] and a good review of early work has been
written by Sherif [12]. McAbee [13,14] derived generalized
spin-spin potentials of the form UkI k(R) = FkI k(R)SkI k , where
kI is the rank of the spin operator constructed from the
components of the target spin I , k is the rank of the spherical
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harmonic Ykq(R̂), of the unit vector of the projectile-target
separation, and FkI k(R) is the form factor. The generalized
spin-spin operator SkI k is given by

SkI k = [τ1(σ 0) × τkI
(I)]k · Yk(R̂), (2)

where the standard spin operators, τ1q0 (σ 0) and τkI qI
(I),

are described in Refs. [15,16]. Microscopic calculations
of McAbee’s spin-spin potentials were performed using a
valence-nucleon model for the target nucleus and an effective
NN interaction. The spin-spin amplitudes were calculated in
distorted-wave Born approximation (DWBA). McAbee found
that in many cases the spin-spin interactions should not be
neglected, especially for high-spin nuclei.

Here we use a two-valence particle model for the target
nucleus, thus reducing the A-body wave function to a three-
body (core + 2N ) one. We assume the total spins of the two
valence nucleons couple together to give the total spin I of the
nucleus, and the pair orbit an inert spin-zero core. The spins
of the two valence nucleons also couple together to give the
maximum allowed rank, kI , of the spin operator constructed
from the components of the target spin I . Therefore, the types
of spin-spin interactions allowed are determined not only by
the ground-state spin of the target nucleus but also by the
orbitals occupied by its valence particles.

In the simplest single-particle shell-model description, the
10B nucleus is a half-filled 1p shell. In our calculation it is
only the nonzero rank target spin tensor components of the
one-body density matrix (OBDM) that are relevant. In contrast
with other observables, deviations of DNN from unity are
associated only with these components of the OBDM and they
have no contributions from closed shells. We generate these
components assuming 10B to be a full 1s1/2 shell with a proton
and neutron hole in the 1p3/2 shell. These two valence particles
couple together to give the spin I = 3 for the ground-state spin
of the nucleus and maximum kI = 3. Using this simple nuclear
wave function is consistent with previous works, which derive
microscopically the spin-spin interactions from the two-body
interaction between an incident nucleon and a single valence
target nucleon [12,13]. However, our description of the nucleus
will be a limiting factor when comparing the final calculation
with the experimental data and improvements are desirable in
future work.

In this work the nucleon-nucleon (NN) interaction,
VNN(0, i), between projectile nucleon 0 and target nucleon
i, is folded over the ground-state wave function, �A

I,M of
the target nucleus to derive terms in the optical potential
dependent on target spin I with projection M . The folded
potential between the projectile and target nucleus, A, is split
into two components,

(
�A

I,Mf
|V |�A

I,Mi

) = 〈�core|
A∑

i=3

VNN(0, i)|�core〉δMi,Mf

+ 〈
�I,Mf

∣∣ ∑
i=1,2

VNN(0, i)
∣∣�I,Mi

〉
, (3)

with the core and valence particle wave functions denoted
as �core and �I,M respectively. The first matrix element
on the right-hand side denotes the interaction between the

projectile and spin-zero core. This interaction, and the non-
spin-spin components of the second term in Eq. (3) have
central and spin-orbit parts that are included through a target
spin-independent phenomenological optical potential, taken
from Ref. [1] for 200-MeV protons scattering from 10B. This
potential was fitted to differential cross section and analyzing
power measurements, which are insensitive to the effects
of spin-spin interactions. As the effect of all the spin-spin
interactions discussed in this work on the calculation of the
cross section and vector analyzing power is negligible they
will not be plotted here. The second term in Eq. (3) is the
interaction between the projectile and valence nucleons. It
is from this term that the target spin-dependent spin-spin
potentials are derived. While DWBA was used to calculate
the scattering amplitude from the spin-spin interactions, the
scattering amplitude from the nucleon-nucleus interactions
(not including spin-spin) was calculated exactly.

The two-body effective NN interaction VNN(a, b) between
nucleon a and nucleon b, with separation, r , can be written as

VNN(a, b) = vcen
NN(r) + vσσ

NN(r)σ a · σ b

+ vls
NN(r)�ab · (σ a + σ b) + vtr

NN(r)Sab, (4)

where the relative angular momentum is

�ab = (2h̄)−1r × ( pa − pb) (5)

and p is a nucleon momentum. The NN tensor operator is

Sab = 3(σ a · r̂)(σ b · r̂) − σ a · σ b, (6)

and vcen
NN, vσσ

NN, vls
NN, and vtr

NN are the radial form factors for
central spin-independent, central spin-spin, spin-orbit, and
tensor interactions. This work focuses on spin-spin interactions
from the folding of the central spin-spin and tensor terms in the
NN interaction. These give all the local spin-spin interactions
that can be formed from the coupling of σ 0, I , and R given
in Eq. (2) for the generalized spin-spin operator. However,
spin-spin potentials derived from the folding of the spin-orbit
term were also proposed by Feshbach [10]. Some studies
of the first-order I · � term have been performed, where �

is the relative orbital angular momentum of the projectile and
target [17]. This term by itself does not give a deviation of DNN

from unity. If the scattering amplitude is independent of the
incident proton spin Eq. (1) shows that DNN = 1. The folding
of the central spin-independent term in Eq. (4) does not result
in spin-spin interactions.

We use a realistic free-space NN interaction that is an
improved version of the Bonn-B potential. The parameters
of the original Bonn-B potential have been adjusted to
bring the predictions into better agreement with subsequent
high-precision measurements of NN scattering and phase-
shift analysis (see references in [18]). We use an effective
interaction that is a superposition of Yukawa terms fitted to a
free, complex t matrix and are calculated for an incident proton
laboratory energy of 200 MeV, as described in Ref. [18].

For the case of nucleon-nucleus scattering, the total nuclear
wave function must be antisymmetric under the interchange
of nucleons between the projectile and target. For nucleon-
nucleus scattering it is reasonable, when considering exchange
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contributions arising from antisymmetrization, to use a single-
nucleon knock-on exchange (SNKE) correction, where a target
nucleon is ejected and replaced by the projectile nucleon after
their interaction [19]. To formally include knock-on exchange
in a folding model, the effective NN interaction potential term,
vpt (r), between projectile nucleon p and target nucleon t , can
be replaced by

vpt (r) → (1 − Ppt )vpt (r), (7)

where Ppt is the operator that exchanges all the coordinates
of the two nucleons [20,21]. The exchange operator can be
written in terms of the spin and isospin operators P σ and P τ ,
which exchange the spin and isospin coordinates, respectively,

Ppt = P σ
ptP

τ
ptP

r
pt , (8)

where P r
pt exchanges the spatial coordinates of the two

nucleons. The NN potential, vpt (r) can now be written as

vpt (r) → (1 − Ppt )vpt (r), (9)

→ vpt (r) + v̂pt (r)P r
pt , (10)

where v̂pt (r) = −P σ
ptP

τ
ptvpt (r) and has a spin-isospin decom-

position that is the same as vpt (r), except that the sign for the
odd-state terms is changed.

The effect of exchange terms on spin-spin interactions
derived from folding models has yet to be fully investi-
gated. Early folding models for spin-spin interactions used
effective interactions, which were mainly phenomenological,
so exchange was included crudely [12]. However, explicit
exchange effects were not incorporated, although they were
discussed [22]. Petrovich [23] and McAbee [13] used SNKE
to approximate exchange for the vσσ

NN(r)σ a · σ b term in their
effective NN interaction. Petrovich also approximated the
spin-orbit exchange terms using the odd state spin-orbit
components alone, but both works neglected exchange effects
in the tensor terms in their final calculations. Our work
aims to include SNKE terms consistently for both the central
vσσ

NN(r)σ a · σ b and tensor vtr
NN(r)Sab terms in the effective NN

interaction and investigate their contributions to the spin-spin
interactions.

In order to avoid the evaluation of exact complicated
exchange amplitudes, the use of zero-range pseudopotentials
has been adopted for treating exchange terms in folding models
[24–26]. In the simplest of these approximate treatments the
exchange pseudopotentials are derived to yield the same Born
amplitudes as their equivalent exchange terms [19,27]. The
resulting zero-range effective exchange interaction can then
be used to evaluate the scattering amplitude more readily than
for the full exchange terms.

The zero-range pseudopotential used to approximate the
central spin-spin exchange term is given by

v̂σσ
NN(r)σ a · σ b P r

ab → Ĵσσ (Q)δ(r)σ a · σ b P r
ab, (11)

where the strength Ĵσσ (Q) is the Fourier transform of
v̂σσ

NN(r)P r
ab,

Ĵσσ (Q) = 4π

∫ ∞

0
j0(Qr)v̂σσ

NN(r)r2dr, (12)

in terms of the spherical Bessel function, j0(Qr), where Q
is the sum of initial, k, and final, k′, wave vectors of either
particle in the center of mass system,

Q = k′ + k. (13)

This pseudopotential for the central exchange contribution to
the NN interaction has been used by several authors and has
been shown to be reasonably accurate for nucleon scattering
at energies above 100 MeV (see references in [19–21]).

In previous work on spin-spin interactions, the contribution
of the tensor exchange term in the NN interaction has been
neglected due to the lack of a pseudopotential approach for
the noncentral tensor potential [14]. In this work the tensor
exchange is included using the pseudopotential approximation
in a process analogous to that of the central spin-spin exchange.
The pseudopotential used to approximate the tensor term in this
work is

v̂tr
NN(r)Sab P r

ab → Ĵtr(Q)[Ŝab(σ a, σ b,−ı∇r )δ(r)]P r
ab, (14)

where the strength Ĵtr(Q) is calculated using the Fourier
transform

Ĵtr(Q) = −4π

Q2

∫ ∞

0
j2(Qr)v̂tr

NN(r)r2dr. (15)

The operator Ŝab in Eq. (14) is

Ŝab(σ a, σ b,−ı∇r ) = 3(σ a · [−ı∇r ])(σ b · [−ı∇r ])

− [−ı∇r ]2σ a · σ b. (16)

The form of the tensor exchange term given in Eq. (14)
is nonlocal, which significantly complicates the calcula-
tion of the folded potential and observables. This is one
of the reasons these terms have been neglected in the
past [13].

The exchange terms change the dependence of the Born
amplitudes from the momentum transfer q = k′ − k, to Q =
k′ + k, through the action of the P r

ab exchange operator, which
interchanges the spatial coordinates of the two nucleons. In
order to evaluate the Born amplitudes for the exchange terms,
a value must be chosen for the magnitude of Q. The simplest
choice is to take this to be the center-of-mass wave number
for the incident particle: Q = kcm [18,19]. This choice is
reasonable for scattering in the forward direction. However,
the measured deviation of DNN from unity is most significant
at large scattering angles. Taking the value of Q associated
with a scattering angle of θ = 0◦ would therefore have limited
validity. In order to perform an improved calculation of these
exchange terms at large scattering angles the approximation
Q = k cos(θ/2) is used here [18].

Some of the folded spin-spin potentials derived from the
tensor exchange term in the NN interaction have the same
form as the generalized (local) spin-spin operator given in
Eq. (2). However, the folding of this exchange term also
results in spin-spin potentials with nonlocal operators of the
form∑

ε

[Yk(R̂) × τkI
(I)]Eε[τ1(σ 0) × Yk′(−ı∇R)]E−ε, (17)
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FIG. 1. Calculation of DNN including all spin-spin interactions
(solid line), and without tensor exchange contributions (dashed line),
for elastic proton scattering from 10B.

with k′ = 1 and 2, and

Yk′q ′ (A) = A2Yk′q ′ ( Â). (18)

We have modified the calculation of the DWBA scattering
amplitude to include nonlocal spin-spin operators to enable us
to examine the effect of tensor exchange on spin-spin terms in
the optical potential.

The result for the polarization transfer coefficient, DNN,
for all the spin-spin potentials derived here is shown in
Fig. 1 by the solid line. The dashed curve shows the
same calculation with no tensor exchange contributions. The
difference between these two curves is most significant at large
angles where the deviation of DNN from unity was measured
to be greatest [1]. Without tensor exchange the deviation of
DNN from unity is less than 5% and is comparable with
the coupled-channel DWIA calculation carried out in Betker
et al. [1].

The single-particle wave functions for the valence proton
and neutron in the 1p3/2 shell of the 10B nucleus are
calculated from a Woods-Saxon (WS) potential. The WS
parameters RWS = (0.88 ± 0.13)(A − 1)1/3 fm for the well
radius and a = 0.81 ± 0.08 fm for the diffuseness are taken
from Ref. [28], who obtain the 1p3/2 wave function from
the transform of the electron scattering form factor of the
1.740 MeV excited state in 10B. To examine the sensitivity of
DNN to the WS parameters, a range of values for RWS and
a, determined by the uncertainties quoted in Ref. [28] were
investigated. The corresponding angular distributions of DNN

are shows by the shaded area in Fig. 2. The solid line in
Fig. 2 shows the calculation of DNN using the WS parameters
RWS = 0.88(A − 1)1/3 fm and a = 0.81 fm to calculate the
single-particle wave function and is the same as the solid
line in Fig. 1. The circular points denote the experimentally
measured values of DNN [1]. The large difference between
the curves depends not only on the single-particle wave
function but also on its first and second derivatives through the
tensor exchange terms. Therefore, the inclusion of the tensor
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FIG. 2. Calculation of DNN, for elastic proton scattering from 10B
(solid line) compared to the measurement (symbols) of DNN from
Ref. [1]. The grey area shows the dependence of the calculation on
the uncertainties in the Woods-Saxon parameters from Ref. [28] used
to calculate the single-particle wave function.

exchange contributions to spin-spin interactions not only leads
to the significant deviation of DNN from unity shown in Fig. 1,
but also makes this polarization observable very sensitive to
changes in the shape of the wave function. This sensitivity may
make DNN a potentially useful probe of nuclear structure.

While this polarization transfer coefficient was identified
by Stamp to be the simplest way of verifying experimentally
the existence of spin-spin interactions [29], we have also
determined that the dependence of DNN on the strength of
the spin-spin interactions is second order [30,31]. A better
approach may be to study first-order effects of spin-spin
interactions using another observable. Since DNN is only
dependent on the polarization of the projectile nucleon, an
observable that is dependent on the polarization of the target
would lead to a first-order dependence on the strength of the
spin-spin interactions. Such an observable would be a more
sensitive probe of spin-spin interactions.

In summary, we have found that the spin-spin interactions
derived from this model cause a significant deviation of DNN

from unity and this deviation is very sensitive to nuclear
structure. We find that the role of the tensor exchange
contribution is particularly important at large angles where
the deviation of DNN from unity is measured to be greatest.
However, while our calculations do lead to a significant
deviation of DNN from unity, they still do not match the
experimental data from Ref. [1] at large angles. The calculation
of DNN has been shown to be particularly sensitive to the
occupation of different orbitals and their radial wave functions.
This sensitivity means polarization observables could be used
as a probe of nuclear structure.

The authors would like to thank Ed Stephenson for alerting
us to this problem in the first place and for many helpful
discussions.
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