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We present an efficient method for calculating strength functions using the finite-amplitude method (FAM) for
deformed superfluid heavy nuclei within the framework of the nuclear density functional theory. We demonstrate
that FAM reproduces strength functions obtained with the fully self-consistent quasiparticle random-phase
approximation (QRPA) at a fraction of the computational cost. As a demonstration, we compute the isoscalar
and isovector monopole strengths for strongly deformed configurations in 100Zr and 240Pu by considering
huge quasiparticle QRPA spaces. Our approach to FAM, based on Broyden’s iterative procedure, opens the
possibility for large-scale calculations of strength distributions in well-deformed superfluid nuclei across the
nuclear landscape.
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Introduction. One of the major challenges in the many-body
problem is the microscopic description of the collective motion
involving hundreds of strongly interacting particles. Here,
of particular interest is the response of the system to a
time-dependent external field. In the nuclear case, in the
small-amplitude limit of nearly harmonic oscillations about
equilibrium, the phenomena of interest include the variety
of vibrational modes, and the characteristic distribution of
electromagnetic, particle, and beta-decay strengths [1,2].

Most nuclei exhibit strong nucleonic pairing that pro-
foundly impacts their collective motion [3,4]. When moving
away from the stability line, another factor affecting nuclear
correlations and dynamics is the presence of a low-lying
particle continuum which provides a vast configuration space
for nucleonic excitations. Therefore, to understand the variety
of nuclear modes throughout the nuclear chart, a consistent
treatment of many-body correlations and continuum is re-
quired [5].

This Rapid Communication is devoted to the monopole
strength in superfluid deformed heavy nuclei. The theoretical
method is the quasiparticle random-phase approximation
(QRPA) applied to the self-consistent configuration obtained
by means of the nuclear density functional theory (DFT)
[6]. QRPA represents a small-amplitude limit to the time-
dependent superfluid DFT method. In the absence of pairing,
QRPA reduces to the usual random-phase approximation
(RPA) built atop the Hartree-Fock (HF) equilibrium.

In the electronic DFT, the RPA contribution to electron
correlation energies has emerged [7,8] as an important building
block of accurate density functional treatments of molecules
and solids as it combines a number of attractive features: It
includes the long-range dispersion [9] as opposed to semilocal
functionals; it is nonperturbative and can be applied to small
or zero gap problems, such as metals [10] or dissociating
H2 [11]; it is nearly exact in the high-density or low-coupling

limit, and it is parameter free; finally it is intimately related
to the microscopic coupled cluster doubles theory [12–14]. In
the nuclear DFT, the applicability of (Q)RPA to correlation
energies is more limited [15–17] as many nuclei have a
transitional character, i.e., they are close to the critical point
for the symmetry breaking where the second-order expansion
in density fluctuations breaks down [18]. In spite of its
drawbacks, because of its deep connection to DFT, QRPA
is still the tool of choice when it comes to either spherical or
well-deformed nuclei. In addition to numerous applications to
small-amplitude collective motion, QRPA for deformed nuclei
may be utilized in the calculation of the collective mass for the
large-amplitude dynamics [19].

The advantage of QRPA + DFT is that it properly takes
into account self-consistent couplings giving rise to the variety
of symmetry-breaking phenomena and, when done properly,
includes the effects due to the continuum coupling. Due to
the complexity of the problem, the QRPA framework being
capable of a fully self-consistent description of nonspherical
systems has eluded us until very recently [20–24].

A major obstacle preventing the widespread use of QRPA
has been its high computational cost. In chemistry, this factor
has considerably limited applications of this method [8]. In
nuclear physics, most fully self-consistent QRPA applications
have been limited to spherical nuclei (see, e.g., Ref. [25]
and references therein). In spite of the available advanced
computational resources, it is only very recently that deformed
QRPA calculations atop the Hartree-Fock-Bogoliubov (HFB)
equilibrium have been carried out [20–24].

The primary challenge in the conventional matrix formu-
lation of (Q)RPA is the computation and storage of huge
matrices of the residual interaction. The recent breakthrough
came from the realization that both bottlenecks can be avoided
by taking advantage of self-consistent DFT solutions and
directly employing the linear response theory to them (see
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literature quoted in Refs. [14,26,27]). Indeed, in both the finite-
amplitude method (FAM) [26] and the iterative non-Hermitian
Arnoldi diagonalization technique [27], the (Q)RPA matrix
equations are recast into the set of self-consistent equations
with respect to (Q)RPA amplitudes, which significantly re-
duces the computational effort. The FAM has been applied in
the RPA variant to Skyrme energy density functionals (EDFs)
to study giant dipole resonances and low-lying pygmy dipole
modes [28,29]. Recently, in its QRPA extension, FAM was
used to study monopole resonances in a spherical drip-line
nucleus 174Sn [30]. The iterative Arnoldi diagonalization was
first used in the RPA variant to electromagnetic strength
functions in 132Sn [27], and the spherical QRPA extension
has recently been reported [31].

While based on the same principle, the actual numerical
implementations of FAM and iterative Arnoldi diagonalization
differ. In the applications of FAM, the (Q)RPA amplitudes are
iterated at desired energies. The Arnoldi algorithm is a Krylov
subspace iterative method for extracting a partial eigenspec-
trum, i.e., it computes a discrete set of states that approximate
true eigenvectors. (For another nuclear application, an iterative
Lanczos-based power iteration algorithm for solving the RPA
equations, see Ref. [32].) The number of states found is equal
to the number of iterations, and these states (usually different
from QRPA modes) are used to construct the strength function.

The current implementation of FAM has so far been done
in the coordinate-space representation that requires a large
number of iterations (in some cases more than 500–1000
[26,28]) to obtain self-consistent amplitudes. Here, we propose
a fast and efficient method for solving the FAM-QRPA
equations in the harmonic oscillator (HO) basis using the
Broyden iterative scheme [33,34] previously adopted to HFB
equations of nuclear DFT [35]. We study the performance
of the method and compare it with the standard QRPA
diagonalization method. We demonstrate that FAM-QRPA
solutions can be obtained with typically 40 iterations at modest
memory requirements of approximately half a gigabyte for
large model spaces corresponding to extreme cases of fission
isomers in the actinides.

Finite-amplitude method. The basic formulation of the
FAM-RPA is presented in Ref. [26], and that for the FAM-
QRPA is given in Ref. [30]. The implementation of a traditional
matrix formulation QRPA method (MQRPA) used in this
Rapid Communication follows that of Ref. [21]. Here we
recapitulate the method and define all necessary quantities.

The variation of the total DFT energy defined through an
energy density E(ρ, κ, κ∗), with respect to the particle and
pairing density matrices ρ = V ∗V T and κ = V ∗UT , results in
the HFB equations

(
h − λ �

−�∗ −h∗ + λ

) (
Uμ

Vμ

)
= Eμ

(
Uμ

Vμ

)
, (1)

where

hkl[ρ, κ, κ∗] = ∂E[ρ, κ, κ∗]

∂ρlk

, �kl[ρ, κ] = ∂E[ρ, κ, κ∗]

∂κ∗
kl

,

(2)

Eμ are the quasiparticle energies, (Uμ, Vμ) are the two-
component HFB quasiparticle vectors, and the chemical
potential λ is introduced to conserve the average particle
number.

The QRPA equations for the mode amplitudes (Xμν, Yμν)
and excitation energies ω can be written in a matrix form as

(
A B

B∗ A∗

) (
X

Y

)
= ω

(
X

−Y

)
, (3)

with matrices A and B coming from second variational
derivatives of E[ρ, κ, κ∗] with respect to ρ and κ . In MQRPA,
Eq. (3) is solved by means of the explicit diagonalization, and
the strength function corresponding to the one-body operator
F̂ is subsequently computed. In our results, strength functions
calculated with MQRPA are smeared with a Lorentzian-
averaging function having a width 	 = 2γ . Such an averaging
can be associated with complex QRPA frequencies ω + iγ

that are introduced in the context of strength function tech-
nique with schematic interactions [1,36–38]. In fact, strength
functions obtained in such a way do not require knowledge
of individual RPA eigenvalues; the summation over the RPA
spectrum is replaced by integration over energy (see also
Refs. [15,16]).

Following the earlier applications of FAM [26,28–30], we
solve the QRPA problem in the presence of a one-body external
perturbation F̂ of a given frequency ω. In this case, Eq. (3)
can be rewritten in an alternative way [30]:

(Eμ + Eν − ω)Xμν + δH 20
μν(ω) = F 20

μν,
(4)

(Eμ + Eν + ω)Yμν + δH 02
μν(ω) = F 02

μν,

where the complex antisymmetric matrices

δH 20(ω) = U †δh(ω)V ∗ − V †δh(ω)T U ∗

−V †δ�
∗
(ω)V ∗ + U †δ�(ω)U ∗,

(5)
δH 02(ω) = UT δh(ω)T V − V T δh(ω)U

−V T δ�(ω)V + UT δ�(ω)∗U,

are defined in terms of the non-Hermitian variations

δh(ω) = (h[ρη, κη, κ̄η] − h[ρ, κ, κ∗])/η,

δ�(ω) = (�[ρη, κη] − �[ρ, κ])/η,
(6)

δ�(ω) = (�[ρ̄η, κ̄η] − �[ρ, κ])/η,

where η is a small parameter to numerically expand densities
up to the first order. The non-Hermitian density matrices in
Eq. (6) are

ρη = (V + ηU ∗X∗)∗(V + ηU ∗Y )T ,

κη = −(U + ηV ∗Y )(V + ηU ∗X∗)†,
(7)

ρ̄η = (V + ηU ∗Y )∗(V + ηU ∗X∗)T ,

κ̄η = −(U + ηV ∗X∗)(V + ηU ∗Y )†.

We note that the above density matrices depend on the external
field F̂ through the QRPA vectors (X, Y ).
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The FAM-QRPA equations (4) can be formally solved with
respect to Xμν ,Yμν :

Xμν = −δH 20
μν(ω) − F 20

μν

Eμ + Eν − ω
, Yμν = −δH 02

μν(ω) − F 02
μν

Eμ + Eν + ω
. (8)

Since the matrices δH 20(ω) and δH 02(ω) linearly depend
on Xμν and Yμν , a self-consistent iterative scheme needs to
be adopted to find the QRPA amplitudes. In essence, FAM
replaces the calculation and diagonalization of the large QRPA
matrices A,B with a much simpler procedure of calculating
δH 20(ω) and δH 02(ω), and solving Eqs. (4) at desired values
of ω. To guarantee that the FAM-QRPA solution carries a finite
strength function for every value of ω, we take ω → ω + iγ

with a small imaginary part γ . As we shall see later, such
a choice corresponds to a Lorentzian smearing of 	 = 2γ ,
except for the vicinity of ω = 0 [1]. It is worth noting that the
FAM implementation of QRPA is straightforward and EDF
independent, as the same HFB procedures that define the fields
h,� in terms of particle and pairing densities are also used in
FAM-QRPA calculations.

Ideally, a self-consistent iterative FAM-QRPA procedure
should converge rapidly and the result should not depend on
η if its value is small enough. In practice, a direct iteration
of (8) diverges in most cases, especially when γ is small
and/or when ω is close to the true QRPA root. Indeed, when
γ → 0, the left-hand side of Eqs. (4) becomes singular; hence,
instabilities are expected around QRPA roots. To guarantee
numerical stability, one has to resort to a procedure which
“mixes” the solutions from previous and next iterations. To
this end, the conjugate gradient method and its derivatives
were utilized in coordinate-space applications [26,28–30].
In this Rapid Communication, based on the HO expansion
technique, the modified Broyden’s procedure [34,35] has been
adopted and turned out to yield stable results while providing
excellent computational performance. For a system of linear
equations (4), Broyden iterations exhibit the Q-superlinear
convergence [39].

Results. To benchmark FAM-QRPA for deformed nuclei
and check its performance, we carried out FAM and MQRPA
[21] calculations using the SLy4 EDF [40] and a contact vol-
ume pairing with a 60-MeV cutoff with respect to the reference
single-particle energies [41]. To facilitate comparison with
the MQRPA implementation of Ref. [21], the center-of-mass
correction has been ignored in this test. The pairing strength
was chosen to reproduce the experimental neutron pairing gap
of 120Sn. All HFB calculations were performed with the DFT
code HFBTHO [41] that solves the Skyrme-HFB equations in
the HO (or transformed HO, THO) basis, assuming axial and
reflection symmetries.

As discussed in Ref. [21], MQRPA calculations are subject
to two truncations. The first truncation pertains to the max-
imum rank of the QRPA Hamiltonian matrix. To this end,
one neglects all canonical states with single-particle energies
greater than some cutoff value. The second truncation is
made by excluding those QRPA quasiparticle pairs that have
occupation probabilities less than some small critical value
v2

crit or larger than 1 − v2
crit.

crit=10-1

10-3

10-5

1 20 4 53
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FIG. 1. (Color online) The isoscalar (blue, dashed line) and
isovector (red, solid line) monopole strength function in oblate-
deformed and paired minimum of 24Mg obtained in MQRPA within
the full Nsh = 5 HO space (vcrit = 0) and FAM-QRPA (circles). The
inset shows the presence of 0+ spurious mode at low energy at three
different values of vcrit in MQRPA.

The benchmarking calculations have been carried out for
the monopole isoscalar (IS) and modified isovector (IV)
response operators:

f IS = eZ

A

A∑
i=1

r2
i , f IV = eZ

A

N∑
i=1

r2
i − eN

A

Z∑
i=1

r2
i . (9)

This choice makes coupling between IS and IV monopole
vibrations small [42]. At each value ω, the imaginary part has
been set to γ = 0.5 MeV, and the FAM strength function has
been calculated according to [30]

S(f, ω) = − 1

πα
Im Tr[f (UXV T + V ∗Y T U †)]. (10)

Here, the external field in Eq. (4) is given by F = αf , where
α is a parameter with dimension [α] = [F ][f ]−1. Since for
very small values of η the QRPA amplitudes X and Y are
proportional to α, S(f, ω) is independent of α. Using a complex
frequency ω + iγ , the resulting S(f, ω) possesses the crossing
symmetry S(f, ω) = −S(f,−ω) [1]; hence S(f, ω = 0) = 0
is guaranteed. The strength function obtained in MQRPA has
been computed by averaging QRPA diagonalization results
with 	 = 2γ = 1 MeV. In the fully self-consistent framework,
the MQRPA and FAM-QRPA results should be identical.

The MQRPA and FAM-QRPA Jπ = 0+ strength functions
are compared in Fig. 1 for an oblate minimum in 24Mg. (In
the prolate ground state of this nucleus, pairing correlations
vanish.) To include the whole available space of canonical
wave functions in MQRPA, the results shown in Fig. 1
were obtained using a relatively small single-particle basis
corresponding to Nsh = 5 HO shells. It is clearly seen that
both methods yield practically identical results. Increasing
the number of basis states rapidly increases the scale of
the MQRPA scheme. For example, with 20 HO shells and
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FIG. 2. (Color online) The performance of the FAM-QRPA
algorithm applied to the case of Fig. 1 for different values of η in
the frequency range of 24 < ω < 32 MeV. The relative accuracy is
defined as �S/S, where �S(η) = |S(10η) − S(η)|.

vcrit = 10−4, QRPA matrices reach dimension 32 039, re-
quiring 16.4-GB memory. Lowering the canonical cutoff to
vcrit = 10−20 results in the matrix rank 211 159, or 713.41 GB
of memory. In contrast, the memory required by FAM-QRPA,
using the full space of 20 HO shells and without any truncations
on a QRPA level, is a modest 0.572 GB.

The accuracy of any QRPA implementation can be assessed
by its ability to handle the spurious (zero-energy) modes. In
general, QRPA solutions should be properly orthogonalized
against spurious modes by means of a well-established
procedure [26,27]. For the monopole case presented in
Fig. 1, the configuration space of FAM-QRPA seems to be
sufficient to remove the 0+ spurious modes associated with
particle-number breaking almost exactly. This is indeed seen
in the inset of Fig. 1 which displays the low-energy IV
monopole strength in MQRPA for several values of vcrit.
The MQRPA response corresponding to vcrit = 0 (full HO
space) shows the single low-energy peak carrying the strength
of ∼2 × 10−6 e2 fm4/MeV, and the low-energy FAM-QRPA
strength is of similar magnitude.

Figure 2 demonstrates that the FAM results practically do
not depend on the choice of the parameter η entering the
numerical derivatives in Eq. (6) for quite a large range of
values of η from 10−6 to 10−8. For η < 10−8 numerical noise
starts to deteriorate the accuracy of the calculation. Usually, the
FAM solution is reached fairly quickly, within 10–50 iterations
assuming that the maximum difference between collective
amplitudes in two consecutive iterations is less that 10−6.

In order to demonstrate the ability of FAM-QRPA to treat
heavy, deformed, and superfluid nuclei, Fig. 3 shows the
monopole strength distributions for the ground state of 100Zr
(previously studied in Ref. [43]) and fission isomer in 240Pu.
For the neutron-rich nucleus 100Zr, calculations were carried
out in large configuration spaces of Nsh = 18 and 20 of the
stretched THO [41]. For the superdeformed state of 240Pu,
we took the stretched HO basis with Nsh = 18 and 20. As
demonstrated in Fig. 3, by taking Nsh = 20, the computed
monopole strength is practically stable in the whole range of

IS

IS

IV

IV

(a)

(b)

FIG. 3. (Color online) IS and IV monopole strength in the
deformed ground state of 100Zr (top) and the superdeformed fission
isomer 240Pu (bottom) in FAM-QRPA with Nsh = 18 (dashed line)
and 20 (solid line).

ω in the both cases considered. As it is well known [44], due
to its large deformation, the IS monopole strength distribution
splits into two components. Here, as well as in other cases
considered in this Rapid Communication, ∼99% of the energy
weighted sum rule (EWSR) is exhausted when integrating up
to ω = 50 MeV. For 100Zr, the calculated strength distribution
nicely agrees with that of Ref. [43]. Both examples nicely
illustrate the applicability of FAM-QRPA to the local QRPA
approach used in the context of the large-amplitude collective
motion [19].

Conclusions. In this Rapid Communication we applied
the FAM-QRPA method to describe the multipole strength
in deformed and superfluid nuclei. A new efficient method
for the iterative solution of FAM-QRPA equations, based on
the Broyden mixing procedure [35], has been proposed. The
algorithm is especially suited for multiprocessor tasks since
the QRPA strength distribution S(ω) converges with typically
40 iterations regardless of ω.

The calculations have been presented for IS and IV
monopole modes. We first benchmarked FAM-QRPA against
the MQRPA approach of Ref. [21] and obtained excellent
agreement. As compared to the standard diagonalization
method, FAM-QRPA offers excellent performance, both in
terms of memory and speed. Including all the fields (both
time even and time odd) required by the fully self-consistent
QRPA, the memory requirement for the FAM-QRPA module
built on the top of the DFT solver HFBTHO does not exceed
572 MB. This enables us to handle axially deformed heavy
nuclei without imposing any truncation on the QRPA level.
The self-consistency of FAM-QRPA, together with very large
pairing windows employed, results in a practical decoupling
of the 0+ spurious modes associated with the particle-number
symmetry breaking. The illustrative examples have been
presented for strongly deformed configurations in 100Zr and
240Pu. It has been demonstrated that the convergent result are
obtained by taking a large basis of 20 HO (or THO) shells.

The proposed FAM implementation allows fast calcula-
tions of monopole strength for all axially deformed nuclei
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throughout the nuclear chart. The implementation of the
method to higher multipolarity modes is straightforward, and
is in progress. Another future development is the extension of
the method to very weakly bound systems. Here, the precise
description of the low-energy nonresonant continuum will
require the departure from the currently employed HO (or
THO) basis by using the Gamow HFB approach [45].
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