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Trajectories of S-matrix poles in a new finite-range potential
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The trajectories of S-matrix poles are calculated in the finite-range phenomenological potential introduced
recently by Salamon and Vertse [Phys. Rev. C 77, 037302 (2008)] (SV). The potential is similar to a Woods-Saxon
(WS) interaction, but it is exactly zero beyond a radius, without any cutoff. The trajectories of the resonance
poles in this SV potential are compared to the corresponding trajectories in a cutoff WS potential for l > 0. The
dependence on the cutoff radius is demonstrated. The starting points of the trajectories turn out to be related to
the average ranges of the two terms in the SV potential.
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Solutions of the Schrödinger equations that belong to poles
of the scattering matrix are often used in reaction calculations
and also in the description of weakly bound states. Certain
pole solutions can be used as single-particle basis functions
in a so-called Berggren representation [1], and they are useful
in the theoretical description of slightly bound or unbound
states in the framework of the Gamow shell model [2] (GSM).
The GSM is a powerful tool for the description of the new
nuclei recently produced by the radioactive beam facilities.
For the numerical calculation of the S-matrix poles in the
Woods-Saxon (WS) potential, a new method was recently
suggested [3].

The WS potential form is often used in reaction calcula-
tions. Although the WS potential is considered a finite-range
potential, its value becomes zero only at infinite distances. The
radial Schrödinger equation with this potential has analytical
solutions [4] only for l = 0. Therefore, we have to calculate its
solutions (eigenvalues and eigenfunctions) by using numerical
methods for the integration. The typical solution method is to
integrate the radial equation numerically in an interval r ∈
[0, Rmatch] of the radial distance r where the nuclear potential
is large, and match the calculated solution at a distance r =
Rmatch as in Ref. [9], or at two different distances as in Ref. [3]
to the solution of the asymptotic differential equation, which is
the Coulomb or the Ricatti-Hankel differential equation. Thus,
in this solution we effectively use a modified version of the WS
potential in which the potential is cut to zero at a finite distance
Rmax artificially. The cutoff WS potential is the following:

V WS(r) = V0f
WS(r), (1)

where the radial shape is

f WS(r) = −
{

1

1+e
r−R

a
, if r < Rmax

0, if r � Rmax.
(2)

The solution and, consequently, the resulting pole position
does depend on the value of the cutoff radius Rmax. Therefore,
the cutoff radius Rmax is a parameter of the WS form in
Eq. (2), in addition to its depth V0, radius R, and diffuseness
a. In publications, however, the value of Rmax is very seldom
specified because most physicists think that the cut has a

negligible effect on the calculated quantities if Rmax is large
and thus the jump at the cutoff is quite small.

In a recent work by Salamon and Vertse [6] it was discussed
that the positions of the broad resonances might be very
sensitive to the Rmax value, and the authors proposed an
alternative to the cutoff WS potential. The advantage of the
proposed new potential (SV) is that its range is finite in the
strict sense since it is exactly zero at a value ρmax. From
mathematical point of view the SV potential is nicer than
the cutoff WS potential since its derivative exists everywhere
in contrast to the latter. Indeed the shape of the SV potential
becomes zero smoothly, and even its derivatives become zero
at and beyond r = ρmax.

The objective of this Brief Report is to show the implica-
tions of the tail of the WS potential for the positions of the
S-matrix poles as well as their remedy achieved by the SV
potential.

The sensitivity to Rmax can be seen if we follow the position
of the S-matrix poles in the complex wave-number plane (k
plane) as the strength of the potential V0 is changed. These
curves are the so-called pole trajectories. The shapes of the
pole trajectories do depend on the radial shape of the potential
concerned. The pole trajectories in a square well/barrier
potential had been studied by Nussenzweig [5] over 50 years
ago. In a square well the analytical form of the solution is
known inside the potential radius Rsq as well, and the pole
positions are obtained as roots of a simple transcendental
equation.

Certain features of the pole trajectories in the square well
remain valid for realistic (diffuse) potentials if their range is
finite. Other features, however, do depend on the radial shape.
The pole trajectories of the cutoff WS form have not been
studied as extensively as those of the square well. In a work
by Bang et al. [7], the trajectories of the resonant poles were
given for a WS potential cut off at a fixed Rmax value, but the
Rmax dependence of the trajectories was not explored.

We now calculate the pole trajectories in cutoff WS
potentials with different cutoff radii, and compare them to
the similar trajectories in the SV potentials. We present the
calculations for l > 0 only since in the l = 0 case we have no
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centrifugal barrier to produce narrow resonances, and therefore
this case is of reduced importance.

The radial shape of the potentials is fixed, and only the
strength is varied along a pole trajectory. For the sake of
comparison, we rewrite the original SV potential in Ref. [6] in
the form

V SV(r) = V0f
SV(r), (3)

where f SV(r) is taken a linear combination:

f SV(r, c1, ρ0, ρ1) = fρ0 (r) + c1f
′
ρ1

(r), (4)

where

fρ(r) =
{

−e
r2

r2−ρ2 , if r < ρ

0, if r � ρ,
(5)

and f ′
ρ(r) is its derivative:

f ′
ρ(r) =

{
− 2rρ2

(r2−ρ2)2 e
r2

r2−ρ2 , if r < ρ

0, if r � ρ.
(6)

Since both terms in Eq. (4) have finite ranges, the SV potential
of Eq. (3) has a finite range of ρmax = max{ρ0, ρ1}, i.e.,
f SV(r � ρmax) = 0. With the usual choices (ρ0 > ρ1), the
range is ρmax = ρ0.

In order to make the shape of the SV potential similar to
the f WS(r) shape, we adjust the range parameters ρ0, ρ1 and
the weight c1 so as to minimize the integral of the squared
differences:

�(ρ0, ρ1, c1) =
∫ ρmax

0
[f SV(r, c1, ρ0, ρ1) − f WS(r)]2dr. (7)

In general, the Rmax value is large (ρmax < Rmax). The
fitting fixes the geometrical parameters of the SV potential
(ρ0, ρ1, c1) so that f SV(r) depends only on R and a of the WS
shape f WS(r) and does not depend on Rmax. The quality of the
fit can be characterized by the minimum �min of �.

We consider potentials whose shapes are suitable for
describing 16O and 208Pb. We compare the radial shapes of the
best-fit SV potentials and the original WS potentials in Fig. 1.
One can see that the shapes of the WS forms are reproduced
reasonably well both inside and in the surface regions. There
are, however, considerable differences in the tail region, where
the SV shape goes to zero faster than the WS shape.

In Table I we summarize the geometrical parameters of the
WS and SV potentials used in this work. The parameters of
the WS potential for oxygen and for lead were taken from
Bang et al. [7] and from Curutchet et al. [8], respectively.
The spin-orbit terms were neglected for the sake of simplicity.
The SV potential parameters in Table I are the results of the
minimization of the deviation � in Eq. (7). The values of �min

are also given in the table.
We can notice that the shape of the SV potential in Eq. (3)

has three parameters (c1, ρ0, ρ1) just as the WS shape does (R,
a, Rmax), but the SV potential has a natural finite range: ρmax.
We can observe in Table I that the average values of the two
ranges ρ̄ show some similarity to the radius parameter R of
the WS potential, but ρ̄ is larger in both cases.

0 5 10 15
r     [fm]

-1

-0.8

-0.6

-0.4

-0.2

0

208
Pb with WS

208
Pb with SV

16
O with WS

16
O with SV

FIG. 1. Comparison of the radial shapes f WS(r) in Eq. (2) and
f SV(r) in Eq. (3) for the 16O and 208Pb nuclei with parameters listed
in Table I.

We shall only present trajectories for the decaying reso-
nances since the trajectory of a capturing resonance is simply
the mirror image of the trajectory of a decaying resonance.

The pole energies and radial wave functions have been
calculated by a modified version of the computer code GAMOW

[9]. The node number n starts with n = 1, by convention. This
n is the actual radial node number in the limit of large potential
depth when the pole becomes a bound-state pole.

For convenience, we start the trajectories with a small V0

at a small positive strength, V0 = 5 keV. We denote the wave
number of the pole belonging to V0 = 5 keV by k0

n,l . After
finding k0

n,l we increment the V0 value by small steps repeatedly
until the resonance pole reaches the imaginary k axis. For a
high l value or for a large node number the imaginary k axis
is reached at a very large V0 value, which is much deeper than
the realistic potential well.

Nussenzweig [5] found that for a square well l = 0 the pole
trajectories approach the Re(kn) = nπ

Rsq
lines with the depth

approaching to zero. For l = 1 the starting values of the pole
trajectories approach the Re(kn) = (2n−1)π

2Rsq
values.

Bang et al. [7] calculated pole trajectories in a cutoff WS
potential for 16O with a cutoff radius Rmax = 9.4 fm for l = 0
and l = 1. Figures 5 and 6 of that work suggest that the density
of the l = 0 and l = 1 poles are close to the densities of the
square well poles belonging to Rmax = Rsq, where Rsq denotes
the radius of the square well. But the shapes of the cutoff WS
trajectories were quite different from the shapes of the square
well trajectories.

TABLE I. Geometrical parameters of the SV and WS potentials
and the minimal deviation for nuclei 16O and 208Pb. All distances are
in fm units.

A c1 ρ0 ρ1 ρ̄ R a �min

16 0.066 5.082 2.707 3.892 3.125 0.63 5.6 × 10−3

208 0.997 10.963 8.328 9.644 7.525 0.7 2.3 × 10−3
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FIG. 2. Trajectories of the n = 2 resonant poles in the complex
k plane for l = 1 for WS potentials for 16O with different values of
the cutoff radius Rmax. The Re(k) = 3π

2Rmax
values are 0.59 fm, 0.5 fm,

0.43 fm, and 0.39 fm for increasing Rmax values, respectively.

In Fig. 2 we present the trajectories of the n = 2, l = 1
resonance pole for 16O for WS potentials cut off at different
distances Rmax. The curve with Rmax = 9.4 fm resembles the
shape of the n = 2 curve in Fig. 6 of Ref. [7]. It should not
be the same since we neglected the spin-orbit term of the
potential. We can see that for different Rmax values the real
parts of the starting points k0

2,1 are different. The larger the
Rmax value, the smaller Re(k0

2,1) that is obtained.
We define a sort of pole density at the starting points

belonging to V0 = 5 keV as the number of Re(k0
n,l) values

of the same l, falling into a Re(k) interval of unit length.
Thus, the smaller the distance between the starting values with
node number n and n + 1, the higher the pole density in a
given partial wave l. The density of the resonance poles in
WS potentials increases with increasing cutoff radii. This is
a typical feature of the trajectories calculated in cutoff WS
potentials for all l and n values.
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FIG. 3. Trajectories of the resonant poles in the complex k plane
for l = 1 for SV potentials for different n values for 16O.
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FIG. 4. Trajectories of the resonant poles in the complex k plane
for l = 2 for SV potentials for different n values for 16O.

Now we turn to studying trajectories in the SV potential. In
Fig. 3 one can see the trajectories of the l = 1 resonance pole
for the SV potential for different n values. The vertical lines
in the figure denote the k values for which Re(k) = (2n−1)π

2ρ̄
.

The starting points of the trajectories with different n values
are close to the corresponding vertical lines of the figure.
Therefore, we conclude that for the SV potential the average
value of the ranges of the two terms plays the same role as the
cutoff radius Rmax of the WS potential. This rule also applies to
the l = 2 case, which is shown in Fig. 4. However, in this case
l is even; therefore the vertical lines correspond to the k values
with Re(k) = nπ

ρ̄
. For l = 0 the real parts of the starting k0

0,n

values are similar to those of the l = 2 k trajectories [Re(k0
2,n)].

The shapes of the trajectories are different, however, because
for l = 0, the decaying and capturing resonance poles meet at
the imaginary k axis well below the origin.

For 208Pb the pole trajectories in the WS potential depend
on the Rmax value in the same way as observed for 16O. The
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FIG. 5. Trajectories of the resonant poles in the complex k plane
in SV potential for l = 2 for different n values for 208Pb.
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larger the Rmax value, the smaller the abscissa of the starting
point of the trajectory.

For the SV potential the pole trajectories are very similar to
the those for 16O; therefore we only show the l = 2 case with
different n values.

In Fig. 5 we show the resonance pole trajectories for l = 2
and for n = 1, 2, 3, 4 values. The curves are similar to the
ones in Fig. 4. The starting points of the trajectories k0

n,2 are
close to the values denoted by vertical lines at Re(k) = nπ

ρ̄

with ρ̄ = 9.644 fm.
To sum up, a common feature of the trajectories in the

three finite-range potentials (square well, cutoff WS, and SV
types) is that the density of the resonant poles is influenced by
the range of the potentials. The rule derived by Nussenzweig
[5] for square well is that for V0 → 0 the distance of the
consecutive resonance poles Re(kn+1,l − kn,l) tends to π

Rsq
for

any l value. Bang et al. [7] conjectured that this rule applies
for cutoff WS if we replace the Rsq by the cutoff radius
Rmax. They also conjectured that for V0 → 0 the l = 0 poles
approach the Re(kn,0) = nπ

Rmax
and the l = 1 poles approach the

Re(kn,1) = (2n−1)π
2Rmax

. Our results in Fig. 2 support this conjecture
qualitatively.

In the SV potential case the shapes of the trajectories
are different from that of the WS potential and the starting
k value depends on the average of the ranges of the two

terms, rather than the range, i.e., on the value of ρmax. Since
ρ̄ is close to the radius R of the WS form, the distance
between the starting Re(k) values for consecutive n values
is governed by the radius of the WS potential to which the
parameters of the SV potential were fitted, and not by the cutoff
radius Rmax.

When we calculate the pole energies numerically, we have
to take the matching radius Rmatch, or both values of the
matching distances used in Ref. [3], larger than the ranges
of the potentials (Rmax and ρmax).

The dependence of the trajectory on the Rmax value
points to the importance of specifying the value of the Rmax

used in the calculations in order to avoid uncertainties in
the pole positions. The uncertainty is appreciable for broad
resonances.

Contrary to common belief, this strong Rmax dependence
on the cutoff WS potential cannot be diminished by increasing
the value of the cutoff radius.
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TÁMOP 4.2.1./B-09/1/KONV-2010-0007/IK/IT project. The
project is implemented through the New Hungary
Development Plan cofinanced by the European So-
cial Fund and the European Regional Development
Fund.

[1] T. Berggren, Nucl. Phys. A 109, 265 (1968).
[2] N. Michel, W. Nazarewicz, M. Ploszajczak, and T. Vertse,

J. Phys. G: Nucl. Part. Phys. 36, 013101 (2009).
[3] A. M. Mukhamedzhanov, B. F. Irgaziev, V. Z. Goldberg, Yu. V.

Orlov, and I. Qazi, Phys. Rev. C 81, 054314 (2010).
[4] Gy. Bencze, Commentationes Physico-Mathematicae 31, 4

(1966).
[5] H. M. Nussenzveig, Nucl. Phys. 11, 499 (1959).

[6] P. Salamon and T. Vertse, Phys. Rev. C 77, 037302
(2008).

[7] J. Bang, S. N. Ershov, F. A. Gareev, and G. S. Kazacha, Nucl.
Phys. A 339, 89 (1980).

[8] P. Curutchet, T. Vertse, and R. J. Liotta, Phys. Rev. C 39, 1020
(1989).

[9] T. Vertse, K. F. Pál, and Z. Balogh, Comput. Phys. Commun. 27,
309 (1982).

037602-4

http://dx.doi.org/10.1016/0375-9474(68)90593-9
http://dx.doi.org/10.1088/0954-3899/36/1/013101
http://dx.doi.org/10.1103/PhysRevC.81.054314
http://dx.doi.org/10.1016/0029-5582(59)90293-7
http://dx.doi.org/10.1103/PhysRevC.77.037302
http://dx.doi.org/10.1103/PhysRevC.77.037302
http://dx.doi.org/10.1016/0375-9474(80)90244-4
http://dx.doi.org/10.1016/0375-9474(80)90244-4
http://dx.doi.org/10.1103/PhysRevC.39.1020
http://dx.doi.org/10.1103/PhysRevC.39.1020
http://dx.doi.org/10.1016/0010-4655(82)90178-3
http://dx.doi.org/10.1016/0010-4655(82)90178-3

