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Dense stellar matter with strange quark matter driven by kaon condensation
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The core of neutron-star matter is supposed to be at a much higher density than the normal nuclear-matter
density, for which various possibilities have been suggested, such as, for example, meson or hyperon condensation
and/or deconfined quark or color-superconducting matter. In this work, we explore the implication on hadron
physics of a dense compact object that has three “phases”: nuclear matter at the outer layer, kaon condensed nuclear
matter in the middle, and strange quark matter at the core. Using a drastically simplified but not unreasonable
model, we develop the scenario where the different phases are smoothly connected with the kaon condensed
matter playing a role of a “doorway” to a quark core, the equation of state of which with parameters restricted
within the range allowed by nature could be made compatible with the mass vs radius constraint given by the
1.97-solar-mass object PSR J1614-2230 recently observed.
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I. INTRODUCTION

The recent observation of a 1.97-solar-mass (M�) neutron
star, PSR J1614-2230, using Shapiro delay with Green Bank
Telescope [1], raises a highly pertinent issue on whether the
non-nuclear degrees of freedom such as meson condensations
(pions, kaons, and/or hyperons), quark matter (normal or
color-superconducting), and the multitude of other phases
are relevant for the physics of stable compact stars. This
observation, if unequivocally confirmed, will have far-reaching
ramifications on sorting out the large variety of models
proposed in the literature for the maximum (minimum) mass
of neutron stars (black holes). A particularly poignant example
is the scenario of Bethe and Brown [2,3], where the onset of
kaon condensation inside the neutron star matter at a density
ρ ∼ 3ρ0—where ρ0 is the nuclear matter density—keeps the
maximum mass less than 2M�, which seems to be consistent
with the observations of well-measured neutron-star masses
∼1.5M� [4], beyond which, it is argued, the stars collapse to
black holes, giving rise to an enhanced number of light-mass
black holes in the universe. At a much more drastic level, there
is also the issue of possible non-Newtonian gravity intervening
with “soft” equations of state that may otherwise be ruled out
by the observation [5]. This circle of issues was recently raised
and analyzed, among others, by Lattimer and Prakash [6].

Unlike hadronic matter at high temperature for which
lattice QCD provides model-independent control of effective
theories, cold baryonic matter at high density has remained
a largely unchartered domain, more or less inaccessible by
model-independent approaches. Because of the sign problem,
lattice QCD cannot yet probe the relevant density and further-
more there are no known model-independent tools available
for treating baryonic matter at high density. The abundant
and accurate experimental data on finite nuclei allow one to
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determine the equation of state (EoS) for both symmetric
and asymmetric systems up to the normal nuclear-matter
density ρ0. However, there is neither a reliable theoretical
tool nor unambiguous experimental information to enable
one to extrapolate the EoS beyond ρ0 in a controlled way.
This conundrum accounts for the widely diverging model
predictions available in the literature.

In this paper, we would like to address the EoS of compact-
star matter, with the observation of the PSR J1614-2230
specifically in mind, along the line that has been developed
in anticipation of what is to come from the laboratories in
construction for the purpose of probing cold baryonic matter at
high density such as FAIR/GSI and J-PARC. The question we
are raising is as follows: Is it possible to reconcile the existence
of a 2M� neutron star with an EoS that encompasses normal
nuclear matter, strange hadronic matter, and quark matter in
a continuous phase diagram? In addressing this question, it
is, of course, not in our capability to make a fully consistent
treatment backed by rigorous arguments. As precisely set forth
in the next section, what is empirically known in hadron
dynamics up to the normal nuclear-matter density ρ0 that
enters into the EoS is interpreted in the simplest possible way
and extrapolated in the given scheme to the unknown higher
density regime relevant to compact stars, guided by whatever
terrestrial as well as astronomical observables are available.
What we do is, while sticking as much as is feasible to
extreme simplicity, develop a chain of arguments which are not
obviously wrong and could perhaps be quickly falsified in the
laboratories. In this way, we bypass most of the complications
invoking “reasonableness.” Certain caveats inherent in such
an approach are pointed out in the Appendix. Needless to say,
what is badly needed is a unified framework in which the
different phases involved in the process in the compact-star
structure are consistently connected.

We should mention that there have been a large number of
treatments in the literature that attempt to take into account a
variety of relevant degrees of freedom, some of which overlap
with what we consider here and their interactions, as reviewed
in Ref. [7]. What may differentiate our approach from others is
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in the—perhaps too extreme—simplification of the complexity
involved in the processes while preserving a certain level of
consistency and that most—if not all—of the assumptions we
make could be falsifiable.

Our starting point is the obvious fact that the neutron-star
matter possesses the n-p asymmetry in its composition, the
effect of which on EoS is manifested in the “symmetry energy,”
denoted hereafter Esym.1 It also determines the threshold for
new degrees of freedom that can emerge from weak inter-
actions. The larger the symmetry energy, the more energy the
asymmetry between neutron and proton composition costs. By
introducing new degrees of freedom into the system, one can
then lower the energy of the system and relax the asymmetry
between neutron and proton. For instance, the energy of
a pure neutron star matter can be lowered by introducing
electrons, allowing protons to appear to compensate the charge,
which, in turn, relaxes the cost of the asymmetry owing to
the symmetry energy. So unless there is any mechanism that
keeps the matter from relaxing the neutron-proton asymmetry
present, the system will evolve to a matter in a more stable
state by bringing in new degrees of freedom. The change of
neutron and proton fractions of the star matter would require
the isospin to be violated, which is, of course, not allowed
by the strong interactions. However, this can happen via the
weak interactions, where the flavor (isospin or strangeness)
can be changed. We assume that the evolution of the system
via weak interactions reaches an equilibrium configuration as
a ground state of the matter. Therefore, the EoS of the star
matter in weak equilibrium must be strongly dependent on the
symmetry energy, especially for the emergence of new degrees
of freedom accompanied by the change of the neutron-proton
fraction. One of the most interesting scenarios is that kaon
condensation can occur inside the neutron star as a specific
example of a new degree of freedom. We focus on this in this
paper although other strangeness degrees of freedom—when
treated differently as specified below—can also be important.

In this work, we investigate the role of kaon condensation
as the principal agent for strangeness in evolving to the core of
compact stars that exists in the form of strange quark matter.
Put more precisely, kaon condensation will play a role of
a “doorway” to quark matter in the sense precisely stated
in the next section. Focusing on the symmetry energy, we
consider compact stars that consist of nuclear matter (NM)
in the outer-layer region and (1) kaon condensed nuclear
matter (KNM) and/or (2) strange quark matter (SQM) in the
inner region. We explore how the structure with KNM and
SQM in the core region affects the microscopic observables
[e.g., density-dependent electron (or kaon) chemical potential]
and macroscopic observables (e.g., mass and radius) of the
compact stars.

The outline of this paper is as follows. First we state
as precisely as possible the strategy that we take for our

1For those who are not in the field, it should be more aptly called
“asymmetry energy” because it is the energy that the asymmetry
between the neutron and proton numbers costs. We follow the
convention of the community of this field by calling it symmetry
energy.

approach. This is the content of Sec. II. The global features
of kaon condensation and SQM that appear as the degrees
of freedom extraneous to nucleons is given in Sec. III. In
Sec. IV, the highly simplified model for kaon condensation
that we use is described. We also discuss the microscopic
properties of nucleonic matter with kaon condensation and the
EoS. The stellar structure of this system obtained by integrating
the Tolman-Oppenheimer-Volkov (TOV) equation is given in
Sec. V. In Sec. VI, with the given SQM EoS, we study the
stellar structure with SQM driven by kaon condensation. The
effects of QCD perturbative corrections are also discussed.
Throughout this work, we set h̄ = c = 1 and assume zero
temperature. Finally, the results are summarized and discussed
in Sec. VII.

II. THE STRATEGY

The system we are interested in involves three basic inter-
actions: gravity, weak interactions, and strong interactions. We
assume the first two are known, so our focus is on the third. We
are assuming that solving the TOV equation with a given EoS
takes care of the gravity interaction. Both weak interactions
and strong interactions figure in the EoS. In considering the
strong interactions, we are concerned—among others—with
three possible phases, namely, NM, strange hadronic matter,
or, more specifically, KNM and SQM. Neutron stars, of course,
have matters other than strong interactions, such as the crust
which must be considered on the same footing. We do not deal
with these matters in this work.

The compact star we are particularly interested in consists
of three layers: the outer layer of NM, the intermediary layer of
kaon condensation, and the inner core of SQM. Because we do
not know how to formulate the problem within the framework
of QCD, let us imagine having at our disposal a theory that has
a hadronic Lagrangian Lhadron applicable up to some density
ρc, say, the chiral transition density or deconfinement density,
and then above that density, an effective Lagrangian Lquark that
contains QCD variables, that is, quarks and gluons. Apart from
the asymptotic density most likely inaccessible by compact
stars, we know very little of what Lquark encodes. It could be
a color-flavor locked superconducting state, Overhauser state,
dyonic crystal, etc. We simply assume, as is done by other
workers, that it can be captured by the MIT bag model with or
without perturbtive QCD corrections.

That leaves our principal problem in this paper: Lhadron.
In the hadronic sector below ρc, several density scales must

intervene. The first is the NM density denoted ρ0 and the
second is the density at which strange degrees of freedom start
figuring, in our case, kaon condensation at a density denoted
ρt . There is also—in a specific model to be specified below—
a possible topological phase transition at a density denoted
ρ1/2 lying above ρ0 and below or above ρt . This phase is not
understood well at the moment, so it is not be taken into account
in the present work. Its possible ramifications in compact-star
physics are discussed in the Appendix.

Here is the strategy we take in addressing these differ-
ent scales. Up to the NM density, the effective hadronic
Lagrangian LNN that encodes nuclear physics is mostly
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phenomenological, with the physics involved relying on
available experimental data. In fact, most of the EoS used
in the literature have been determined to be consistent with the
available experimental data up to the normal nuclear density
ρ0, so all of them more or less agree with each other. However,
above ρ0, quite arbitrary extrapolations are involved. They
are somewhat constrained by certain experiments that can
probe densities slightly higher than ρ0. However, the error
band of the available experimental data is quite large, making
it difficult to pin down the structure. The presently available
density regime goes up to ∼4ρ0 with rather large error bands.2

We pick one particular phenomenological parametrization
that approximately covers the range of the experimental
error band up to the density “probed” ∼4ρ0. As to the
density regime beyond it, we have no guidance or control,
so we simply extrapolate it in the form we pick. Several
potentially important effects that are predicted by a given
field theoretic framework based on hidden local symmetry but
cannot be simply implemented in the strategy we are taking
are mentioned in the Appendix.

At least up to ρ0, the strange degrees of freedom play no
role,3 but they must figure at some density above ρ0 in the
guise of kaons and hyperons. In addressing this issue, we take
a simplified effective field theory approach. Instead of treating
both kaons and hyperons at the same time, which is quite
involved numerically, we may integrate out either the kaons
or the hyperons in the given effective Lagrangian. Now if we
integrate out the kaons (as well as vector mesons), then the
resulting effective Lagrangian will consist of a sum of three-
flavor [i.e., SU(3)f ] local four-Fermi (baryon) interactions.
Integrating out the kaons whose mass becomes small as
density increases is, in a sense, analogous to integrating out
the pions from chiral effective field theories for describing
nuclear processes whose energy scale is much smaller than the
pion mass.4 Doing mean field with this four-Fermi effective
Lagrangian is equivalent to doing mean field with the original
baryon SU(3)f chiral Lagrangian in a way similar to the
Walecka mean-field theory that is obtained from four-Fermi
chiral Lagrangian [10].

Alternatively, we can integrate out the hyperons from
the Lagrangian. This will give us an effective Lagrangian
consisting of kaons coupled to nucleons with the couplings
determined by the integrating-out procedure. When treated at
mean field (i.e., at tree order), this would correspond to the
mean-field treatment of chiral Lagrangian first put forward by
Kaplan and Nelson [11] with, however, the coefficients treated
accordingly. As is elaborated in Sec. IV A, there is a hint
from lattice QCD calculation that, owing to large cancellation
between higher-order terms, the tree-order treatment survives
more or less unscathed. Assuming this mechanism would

2For an extensive review on the matter on which we heavily rely in
our work, see Ref. [8].

3This is obviated by the lattice QCD indication that the strangeness
content of the nucleon is negligible.

4This eminently “nonstandard” approach to low-energy nuclear
physics is called “pionless effective field theory” [9].

render focusing on the kaon sector much simpler than looking
at the hyperon sector. In this paper, we adopt this option.

To be fair, we should point out that there has been
a long controversy, still unresolved, on the relevance of
kaon condensation vs hyperon condensation in compact-star
structure. We have no firm argument to support but we deem it
plausible that both approaches mentioned above capture
essentially the same physics—and not a clear-cut alternative—
vis-à-vis to the role of strangeness in the dense strange-matter
sector of the star. In a more complete formulation where both
degrees of freedom are treated explicitly and on the same
footing, there will be sharing of effects between the two and
most of the observables may not be able to disentangle one
from the other. Future observations of neutrino emission from
the core might give a hint to the roles of these degrees of
freedom.

In sum, our key question is as follows: Within the uncer-
tainties present both in the obesrvables and in the parameters
of the model, is it possible to develop a scenario of stellar
matter consisting of NM, kaon condensed matter, and quark
matter with smooth transitions from one to the other?

III. KAON CONDENSATION AND STRANGE
QUARK MATTER

In this section, we present a simple description of how kaon
condensed matter can be linked to SQM.

In stellar matter, the chemical equilibrium in weak interac-
tion leads to a condition for the chemical potentials of neutron,
proton, electron, and muon:

μn − μp = μe = μμ ≡ μ. (1)

The density dependence of neutron-proton chemical potential
difference is determined by the symmetry energy in the
following form:

μn − μp = 4

(
1 − 2

ρp

ρ

)
S(ρ). (2)

Here ρ is the sum of proton density and neutron density,
ρ = ρp + ρn, and S(ρ) is the symmetry-energy factor that
is specified later.

A. Kaon condensation

As is discussed below, the key ingredient in our treatment
is the decrease of the effective mass denoted as m∗

K
5 of the

negatively charged kaon K− as density increases. The m∗
K is

basically a function of mK, ρn, ρp owing to the kaon-nucleon
interactions:

m∗
K = ω(mK, ρn, ρp, . . .). (3)

The density at which a neutron can decay into a proton and
K− via the weak process, n → p + K−,

μn − μp = m∗
K, (4)

5In this paper, m∗
K is the kaon energy in medium because we are

dealing with the s-wave kaon.
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determines the threshold of kaon condensation ρt . Above the
kaon condensation, where m∗

K can be identified as the kaon
chemical potential μK , the chemical equilibrium is reached as

μn − μp = μe = μμ = μK ≡ μ, (5)

where

μn − μp = 4

(
1 − 2

ρp

ρ

)
S(ρ) + �(K)F (K,μ), (6)

where K stands for the kaon amplitude of kaon condensed
state, that is, 〈K〉, and F (K,μ) is a nontrivial function that
depends on the neutron-proton chemical potential difference
which, in turn, depends on kaon-nucleon interactions. It is
a highly model-dependent quantity. The charge neutrality
condition gives

ρp = ρe + ρμ + �(K)ρK. (7)

Equations (6), (7), and (3) are the basic equations to be solved
to calculate the EoS of KNM.

B. Strange quark matter

Strange quark matter can appear as a result of confinement-
deconfinement phase transition. This phase transition is ba-
sically a strong interaction process. Suppose NM with no
strangeness changes over to a deconfined quark phase. There is
no room for strange quarks in this case because it is the strong
interaction that is involved. However, in dense compact-star
matter, the system evolves in weak equilibrium with strange
quarks in the quark matter through weak interactions. The
nature of interaction for the phase change is, however, different
if it is from a phase in which kaons are present to start with
induced by the weak interaction. Now if kaon condensation has
taken place in the system, then there is already nonvanishing
strangeness in the NM up to the phase boundary. In this
case, we can imagine the confinement-deconfinement phase
transition taking place constrained by the weak equilibrium in
the kaon condensed matter, leading to SQM. In this section,
we develop the scenario in which kaon condensation joins
smoothly a SQM.

We first consider NM (without kaon) and deconfined quark
matter (QM). Suppose there is a phase boundary between
NM and QM at the density ρc (for NM) and ρQ

c (for QM),6

respectively, in the interior of a neutron star. The chemical
equilibrium reads

μn = 2μd + μu, μp = μd + 2μu. (8)

The symmetry energies in each phase are related to the
chemical potentials as

μn − μp = 4(1 − 2xN )SN (ρN ), (9)

μd − μu = 4(1 − 2xQ)SQ(ρQ), (10)

where xN = ρp/ρN , xQ = ρu/ρQ, and ρQ = ρu + ρd . From
the chemical equilibrium

μn − μp = μd − μu, (11)

6We are taking into consideration that there may be a density jump
between the NM and the QM at the boundary, such that ρQ

c 	= 3ρc.

using xQ = ρu/ρQ = (1 + xN )/3, we get

(1 − 2xN )SN (ρc) = 1
3 (1 − 2xN )SQ

(
ρQ

c

)
, (12)

from which we obtain a constraint on the symmetry energy at
ρc,

SN (ρc) = 1
3SQ

(
ρQ

c

)
, (13)

for xN 	= 1/2. Just for an illustration, suppose we take an ex-
pression for the symmetry energy factor of the noninteracting
quark gas,

SQ = 3
4 (3π2ρQ/2)1/3[21/3 − 1], (14)

and assume that the critical quark number density, ρQ
c /3, is

equal to the critical baryon number density, ρc; then we will
get

SN (ρc) = 24.6

(
ρc

ρ0

)1/3

MeV. (15)

We may obtain a different constraint on the possible form of
nuclear symmetry energy, if NM undergoes a phase transition
into a quark phase at ρc. However, that will yield a highly
nontrivial constraint, which seems not to be realized.7 In
Eq. (12), the simplest solution is xN = 1/2 irrespective of
the specific form of symmetry energy. We obtain this result
from a different consideration.

Now consider the case where SQM meets KNM. As was
done in the previous section, we can obtain the kaon threshold
density, ρt , by the profile of the kaon chemical potential. From
ρt up to the critical density for chiral restoration ρc, the weak
equilibrium condition reads

μ = 4(1 − 2ρp/ρ)SN (ρc) + F (K,μ, ρc). (16)

Now introduce the Weinberg-Tomozawa term for the kaon-
nucleon interactions which are be introduced in Sec. IV A.
Because F (K,μ, ρc) can be expressed as

F (K,μ, ρc) = μF̃ (K, ρc), (17)

we have

μ = 4(1 − 2ρp/ρ)SN (ρc) + μF̃ (K, ρc). (18)

As the kaon chemical potential—equivalently effective
mass—μ approaches 0 at the critical density, the solution x =
ρp

ρ
= 1/2 appears naturally at the phase boundary, provided

F̃ (K, ρc) 	= 1, which is assumed to be valid for the range of
density we are concerned with.

The chemical equilibrium (via confinement-
deconfinement) reads

μn − μp = μd − μu, (19)

μK− = μs − μu, (20)

at the phase boundary. Note that the strange quark is required
at the boundary, which implies that there should be a SQM for

7In a recent paper by G. Pagliara and J. Schaffner-Bielich [12], it
is argued that the SQ can be three times larger than that given by the
free quark model if the quark phase is in 2SC, which is, of course, a
highly correlated system, unlike free quarks.
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ρ > ρc. Because μ(= μK ) = 0, we have from Eqs. (19) and
(20)

μu = μd and μs = μu, (21)

which gives

μu = μd = μs. (22)

This is the chemical potential relation for the SQM in the
masselss limit. In this simple picture, the KNM leads naturally
to a SQM.

IV. EFFECTIVE THEORY FOR KAON CONDENSATION

A. The effective Lagrangian

Following the strategy spelled out in Sec. II, we consider
kaon condensation in the simplest form of an effective chiral
Lagrangian. Projecting onto the K− channel ignoring all other
(pseudo-) Goldstone bosons and the nucleons with hyperons
integrated out, we write the relevant effective Lagrangian in
the form [13]

L = LKN + LNN, (23)

where

LKN = ∂μK−∂μK+ − m2
KK+K−

+ 1

f 2
�KN (n†n + p†p)K+K−

+ i

4f 2
(n†n + 2p†p)(K+∂0K

− − K−∂0K
+), (24)

LNN = n†i∂0n + p†i∂0p − 1

2m
( 
∇n† · 
∇n + 
∇p† · 
∇p)

−VNN. (25)

Here the fourth term in Eq. (24) is the well-known Weinberg-
Tomozawa (WT) term which is constrained by a low-energy
theorem with f identified with the pion decay constant fπ in
the matter-free space and �KN is the KN σ term

�KN ≈ 1
2 (m̄ + ms)〈N |ūu + s̄s|N〉, (26)

where m̄ = (mu + md )/2 with the subscripts u, d, and s

standing, respectively, for up-quark, down-quark, and strange
quark. In chiral perturbation theory, the WT term corresponds
to the O(p) term and the σ term to O(p2). In principle, there
is no reason why one should stop at that order in the chiral
counting and also to quadratic order in the kaon field as is done
in Eq. (24). In fact there is a large literature that treats the chiral
Lagrangian to high orders in addressing kaon-nuclear physics,
but we shall getting into the complexity of such sophisticated
approaches.

Although we are unable to make rigorous arguments, we
can offer several reasons why we can take the simplest form
Eq. (24) as our basis of analysis. From the point of view of
renormalization group flow, what matters is the WT term with
the � term being irrelevant. This was shown in Ref. [14]. There
it was shown that it is the WT term coming with attraction in
kaon-nuclear interactions that drives kaon condensation. That
consideration does not determine the critical density. It simply
indicates that kaon condensation is bound to take place at

increasing density. It also indicates that the 	(1405) which
plays a crucial role for the threshold KN interactions has little
role in kaon condensation transition itself. The discussion on
these matters—still a highly controversial issue—is relegated
to the Appendix.

That the most important interaction for kaon-nuclear
physics in the chiral Lagrangian is the WT term is exploited in
the approach of Ref. [15], where all higher chiral order terms
are ignored and only the WT term is inserted as a driving
term in a coupled-channel—with π� channel—equation. In
a similar spirit, if one approaches kaon condensation from
the vector-manifestation fixed point [16] rather than from the
matter-free space, one can ignore the � term because the
quark condensate vanishes and retain only the light vector-
meson-exchange terms (i.e., the WT term) [17]. The question
would arise if the � term were as large as thought in chiral
perturbation approach. In the early days, it was thought that the
strangeness content of the nucleon related to ms〈N |s̄s|N〉 was
substantial, say, ms〈N |s̄s|N〉 > 300 MeV. Thus, in ChPT, the
� term played the dominant mechanism for the condensation.
Nuclear density played a role of eating into the kaon mass;
thus, the “large” � term figuring importantly in the nucleon
structure has an essential role. Viewed from the matter-free
space, it is the � term that is responsible for the relatively low
kaon condensation density ρK ∼ 3ρ0. This feature is being
drastically changed by the recent lattice results that find that
ms〈N |s̄s|N〉 � 59 MeV [18], which is about one-sixth of the
old value used in the literature [3]. This would give a σ term
�KN � 200 MeV. Furthermore, as suggested when viewed
from the vector manifestation fixed point of view, the σ term
may be strongly suppressed by density near the condensation
point because the in-nucleon condensate 〈N |q̄q|N〉 will be
suppressed, as argued in Ref. [17]. It seems that the importance
of the σ term in the old treatment of kaon condensation was
overstated or even unfounded. Our point of view is that the σ

term Eq. (26) is still quite uncertain at high density.
Next we address the issue of limiting kaon fields to

quadratic order in Eq. (24) for the EoS we are interested
in. Within the framework, one might attempt to calculate
a few next orders of chiral perturbation—and this has been
done in the literature—but there is no compelling reason why
a few next orders give reliable results. As it appears to be
generally the case in applying chiral perturbation theory to
nuclear and dense matter, it may be that going to a few
higher-order terms that are calculable starting from matter-free
vacuum does not capture the essential aspect of the process.
Indeed, a recent pioneering lattice QCD calculation [19]
indicates that this may be the case. In this reference, lattice
QCD simulation of kaon condensation on dense kaon systems
containing up to 12 K−’s showed that the properties of the
condensate are remarkably well reproduced by leading-order
chiral perturbation theory. While direct baryonic background,
difficult to implement in lattice calculations, is still needed,
what this surprising result indicates, rather persuasively, is
that there can be substantial cancelations in higher chiral-
order terms that cannot be captured by a few perturbatively
calculable terms. While awaiting for further more quantitative
guidance from model-independent theory and/or experiments,
we take the following philosophy in handling the Lagrangian
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Eq. (24). Adopting it for our approach, which is essentially a
mean-field one, we simply take the WT as is in medium. This
is because that term is constrained by low-energy theorems.
Given the wide uncertainty with the σ term, we consider �KN

as a free parameter constrained by the low value given by
the lattice results �200 MeV: It can be as low as ∼130 MeV
depending on the π -N σ term as it seems to be required for
certain nuclear EoS and as high as ∼400 MeV, as was taken
in the old days.

B. The effective Hamiltonian

Along the strategy described in Sec. II for the kaon-nucleon
interaction as well as for the nucleonic interaction, we write
the Hamiltonian in the form

H = HKN + HNN, (27)

where

HKN = ∂0K
−∂0K+ +

[
m2

K − n

f 2
�KN

]
K+K−, (28)

HNN = 3

5
E0

F

(
ρ

ρ0

)2/3

ρ + V (ρ) + ρ

(
1 − 2

ρp

ρ

)2

S(ρ).

(29)

Here V (ρ) is the potential energy of NM as a function of
density ρ and S(ρ) is the symmetry energy factor as a function
of nuclear density. Both S(ρ) and V (ρ) are model dependent.
There are numerous forms for them in the literature, all
fine-tuned to fit available experimental data [8]. What matters
for our purpose is that they be consistent with experiments
up to the density that has been probed. The data are not
precise enough above NM density and hence there is a range of
parameters that are consistent with the error bands given by the
data. What we will do is to pick one convenient parametrization
called MDI (“momentum-dependent interaction”) from the
review [8], which we refer to as “LCK”. It has the form8

S(ρ, η) = F (η)
ρ

ρ0
+ [18.6 − F (η)]

(
ρ

ρ0

)G(η)

+ (22/3 − 1)
3

5
E0

F

(
ρ

ρ0

)2/3

, (30)

V (ρ) =
[
mN + 3

5
E0

F

(
ρ

ρ0

)2/3
]

ρ + α

2

ρ

ρ0

+ β

1 + γ

(
ρ

ρ0

)γ

, (31)

where α = −298.25 MeV, β = 244.99 MeV, and γ = 1.21.
The remaining parameters, F (η) and G(η), for this model
are summarized in Table I. We take two values for η, that
is, η = 0,−1. These two values are compatible with the
band of empirical constraints up to density ∼4ρ0, with η =

8The notation for the variable x in Eqs. (5.1)–(5.5) of Ref. [8] is
changed to η in this paper, because x is used for the proton number
fraction in the text.

TABLE I. The parameters for η = −1 and η = 0.
F (η) is given in MeV unit and G(η) is dimensionless
quantity.

Model F (η) G(η)

η = −1 3.673 1.569
η = 0 129.981 1.059

−1 representing stiffer EoS with the classic AKR (Akmal-
Pandharipande-Ravenhal) EoS [20] sandwiched by the two η

values.9 We see that while consistent within the error band
with experimental constraints, they can give different results
at higher density in the EoS when the strangeness and quark
degrees of freedom are involved.

C. S-wave kaon condensation

Using the chemical potentials defined by

μi = ∂H
∂ρi

, (32)

the chemical potentials of proton and neutron are given by

μn = μ0
n −

[
μ

2f 2
+ �KN

f 2

]
K2, (33)

μp = μ0
p −

[
μ

f 2
+ �KN

f 2

]
K2, (34)

where

μ0
n − μ0

p = 4

(
1 − 2

ρp

ρ

)
S(ρ). (35)

The amplitude of kaon condensation, K , and kaon chemical
potential, μK , are defined by the ansatz

K± = Ke±iμt . (36)

The kaon condensation condition for K 	= 0 is obtained by
extremizing the classical action,

m2
K − μ2 = μ

ρn + 2ρp

2f 2
+ ρ

f 2
�KN, (37)

which can be solved to get μ or equivalently m∗
K in Eq. (3).

As stated above, there is only one parameter left undeter-
mined in the kaonic sector. We vary it in what we consider
to be a reasonable range, say, 200 MeV � �KN < 400 MeV
and see how the NM EoS is changed with kaon condensation.
The density dependence of μ is shown in Figs. 1 and 2 for
�KN = 200, 300, 400 MeV. In the NM-KNM system, the
chemical potentials follow these lines. The dash-dotted line
denotes that of the NM system.

It can be seen that the chemical potential μ begins to drop
at the kaon threshold density, ρt , where the kaon amplitude
K starts developing nonzero value as shown in Figs. 3 and 4.

9We do not consider η = 1, which gives what is called “supersoft”
symmetry energy, which by itself is not consistent with experimental
constraints (see Ref. [5]).
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FIG. 1. The density dependence of the chemical potential for
LCK with η = −1. The solid, dashed, and dotted lines correspond,
respectively, to �KN = 200, 300, 400 MeV.

We can also see that μ or equivalently the in-medium effective
kaon mass m∗

K vanishes at some high density, which we refer
to as critical density denoted ρc, which could be identified with
the chiral restoration density.

The contributions to the energy density and the pressure
from kaon condensation are given by

εK =
(

m2
K + μ2

K − ρ

f 2
�KN

)
K2, (38)

PK = − (
m2

K − μ2
)
K2. (39)

One can see that the kaon condensation gives a negative
contribution to the total pressure for μK < mK . The energy
density and the pressure of the system are given by

ε = Ṽ (ρ) + ρ

(
1 − 2

ρp

ρ

)2

S(ρ) + εlepton

+�(K)εK, (40)

P = ρ2 ∂V (ρ)/ρ

∂ρ
+ ρ2

(
1 − 2

ρp

ρ

)2
∂S(ρ)

∂ρ
+ Plepton

+�(K)PK, (41)

where x = ρp/ρ.

FIG. 2. The density dependence of the chemical potential for
LCK with η = 0. The solid, dashed, and dotted lines correspond,
respectively, to �KN = 200, 300, 400 MeV, as in Fig. 1.

FIG. 3. The kaon amplitude for the LCK model with η = −1.
See Fig. 1 for the different lines.

To have a qualitative idea of what is going on, we pick
�KN ∼ 200 MeV for η = 0 and �KN ∼ 130 MeV for η = −1.
We do this because it is the minimum value at which the slope
of the pressure vs energy density remains positive, so that
we can avoid resorting to Maxwell or Gibbs construction. We
see that the results so obtained are not physically reasonable; a
higher �KN seems to be required to be compatible with nature.
We list the kaon threshold density ρt , critical density ρc, and
chemical potential at the kaon threshold μ(ρt ) for given �KN ’s
in Table II.

In Figs. 5 and 6 are plotted the EoS for �KN ∼ 130 MeV
and ∼200 MeV. We see that the EoS is softened, as expected,
beyond the kaon threshold density, ρt .

D. Strange quark matter driven by kaon condensation

We now turn to the possibility that kaon condensation can
drive the dense system to a SQM at the critical density ρc

defined by the condition, μK = 0. For this, we assume, for
simplicity, massless u, d, and s quarks. Equation (22) implies

FIG. 4. The kaon amplitude for the LCK model with η = 0. See
Fig. 2 for the different lines.
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TABLE II. The kaon threshold and critical densities for η = −1
and η = 0 and the �KN ’s used for the TOV calculations (for details
see next section). ρt and ρc are given in ρ0 unit, and �KN and μ(ρt )
are given in MeV.

Model �KN ρt ρc μ(ρt )

η = −1 130 3.74 13.20 281.9
η = 0 200 4.27 8.59 220.8

that they have the same number densities,10

ρu = ρd = ρs = ρQ. (42)

Then the charge neutrality
2
3ρu − 1

3ρd − 1
3ρs = 0 (43)

is automatically satisfied and there is no need for additional
leptons. Kaon condensed nuclear matter will naturally go over
to the SQM in SU(3) symmetric phase in the massless limit.
The EoS of SQM is then given by

εSQM = a4
9

4π2
μ4

q + B = 4.83a4ρ
4/3 + B, (44)

PSQM = a4
3

4π2
μ4

q − B = 1.61a4ρ
4/3 − B, (45)

where B is the bag constant [21]. Here a4 denotes the
perturbative QCD correction [6,22], which takes the value
a4 � 1. The equality holds for SQM without QCD corrections.
In the example of the previous section with �KN = 200 MeV
(for η = 0), without perturbative QCD corrections (i.e., a4 =
1), the ρc comes out to be too high so that the bag constant
that satisfies the phase boundary matching condition

PKNM(ρc) = PSQM
(
ρQ

c

)
(46)

becomes negative. Thus, for smaller values of �KN , the kaon-
driven scenario may not work.

If we instead take �KN  259 MeV, the pressure matching
can be satisfied. We get the critical density ρc = 6.37ρ0 both

10In a more realistic calculation we have to take into account of
strange quark mass and electrons and/or muons: ρu = ρd 	= ρs .

FIG. 5. The EoS for the NM (dashed line) and KNM (solid line)
with η = −1 and �KN = 130 MeV.

FIG. 6. The EoS for the NM (dashed line) and KNM (solid line)
with η = 0 and �KN = 200 MeV.

for η = 0 and η = −1. Using chemical equilibrium conditions
we get the critical quark number densities, ρQ

c = 19.26ρ0 and
ρQ

c = 19.11ρ0, respectively. One can see that ρQ
c /3 are not

much different from ρc, as shown in Table III. Given the critical
densities, we can find a possible set of parameters, a4 and B1/4.
For example, with a4 = 0.62, we get B1/4 = 94.71 MeV and
97.25 MeV for η = 0 and η = −1, respectively.

The different choice of bag constant with different param-
eters for symmetry energy, η, and QCD corrections, a4, is
attributable to the different EoS depending on η and a4 which
results in the different pressures PKNM(ρc) for the boundary
matching condition, Eq. (46). In Figs. 7 and 8 , we plot the
pressure profiles and tabulate the densities, ρt , ρt ′ , and ρc in
Table III. Here ρ ′

t ( 	=ρt ) is defined by

PNM(ρt ) = PKNM(ρt ′). (47)

V. STELLAR STRUCTURE WITH KAON CONDENSATION

We now turn to a stellar object that has an EoS with
strangeness. Here we discuss the case where kaon is condensed
but without SQM and the case where kaon condensed and with
strange quark core.

A. Double-layered (NM + KNM) structure

First we consider a simpler case, where neither Maxwell nor
Gibbs construction is needed at the kaon condensation phase
transition as shown in a schematic P vs ρ curve (Fig. 9). In
the framework of our model with the LCK parametrization for

TABLE III. The characteristic densities of NM-KNM-SQM with
the LCK models for η = −1 and η = 0 with �KN  259 MeV. The
values in the last column are the quark critical densities which are
equivalent to the baryon number densities, respectively.

Model ρt ρt ′ ρc ρQ
c /3

η = −1 3.05 4.95 6.37 6.37
η = 0 3.76 5.03 6.37 6.42
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FIG. 7. The phase diagram of NM-KNM-SQM for LCK with
η = −1. The solid, dased, and dotted lines correspond to a4 = 1.0,
0.62, and 0.59, respectively.

EoS, the maximum values for �KN turn out to be ∼130 MeV
and ∼200 MeV for η = −1 and η = 0, respectively. For those
values of �KN , we cannot have pressure balance for SQM
unless we allow a negative bag constant. Hence, up to the
critical densities in these parameters, one finds NM and KNM
from the outer layer to the core part. We use Eqs. (40) and (41)
with Eqs. (38) and (39) to integrate the TOV equation

dM

dr
= 4πεr2,

dP

dr
= −GMε

r2

(
1 + P

ε

) (
1 + 4πr3P

M

)(
1 − 2GM

r

)−1

,

(48)

where M(r) is the mass enclosed inside the radius r .
The results are given in Figs. 10 and 11. They illustrate

how softening the EoS with kaon condensation affects the
mass and the size: It lowers the mass and increases the size
from the case of NM at the same central density. However,
because we use the relatively small values for �KN , the effect
of kaon condensation is not so significant (e.g., about ∼0.2M�
reduction in the maximum mass).

FIG. 8. The phase diagram of NM-KNM-SQM for LCK with
η = 0. The solid, dased, and dotted lines correspond to a4 = 1.0,
0.62, and 0.59, respectively.

FIG. 9. The schematic phase diagram for NM-KNM.

In Table IV are summarized the stellar structure parameters
of our results for both the NM and the NM-KNM systems.
It is interesting to note that the two parametrizations for
the symmetry energy, with η = 0 and η = −1, give rather
different features of M vs central density relations. For the
softer symmetry energy, η = 0, the mass M increases with
the central density beyond the kaon condensation threshold
density going up to the critical density. It implies that the star
is gravitationally stable up to the critical density. Beyond the
critical density, we have no models to calculate the EoS. So we
shall simply take the maximum mass in this case to be given by
the mass with the critical density, ρc, of Table III taken as the
central density of the star. However, with the stiffer symmetry
energy with η = −1, the maximum mass is obtained by the
gravitational instability condition at the central density much
smaller than the critical density but not far from the kaon
threshold density. This feature can be seen in Table IV.

B. Triple-layered (NM + KNM + SQM) structure

If we take a larger value for �KN , say, 260 MeV, it is possi-
ble to consider a triple-layered structure shown schematically
in Fig. 12 consisting of NM, KNM, and SQM from the outer
layer to the core part. In contrast to the case considered above,
there will be an unstable region between ρt and ρt ′ , for which

FIG. 10. M-R sequence for LCK with η = −1 and �KN =
130 MeV. The solid and dashed lines are for the cases with NM-KNM
and NM, respectively.
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FIG. 11. M-R sequence for LCK with η = 0 and �KN =
200 MeV. The solid and dashed lines are for the cases with NM-KNM
and NM, respectively.

we have to resort to Maxwell or Gibbs construction. In the
Maxwell construction, it turns out to be impossible to match
the chemical potential, which signals instability. In the Gibbs
construction, however, there appears a mixed phase of NM and
KNM. In this work, we take a rather simple approach, namely,
allow the discontinuity of density and chemical potential by
assuming that NM with the density ρt changes into KNM with
the density ρ ′

t at the phase boundary defined by

P (ρt ) = P (ρt ′ ). (49)

The resulting mass-radius relations that follow from the TOV
equation are plotted in Figs. 13 and 14. As expected, kaon
condensation with higher �KN ’s would lead to smaller masses.
However, when the central density becomes higher, an SQM
driven by kaons appears at the core. No sharp change due
the emergence of SQM is observed, which implies that the
kaon-driven SQM transition is a rather smooth transition in
this scenario.

The results given in Table V highlight the importance of
perturbative QCD corrections in viable three-layered structure.
We find that with the EoS of SQM without perturbative
corrections, that is, a4 = 1, the results (the solid line c in
Figs. 13 and 14) are similar to the previous case with the
soft symmetry energy (with η = 0) of the kaon condensed
matter, which is present up to the critical density. Here the
mass increases with the central density even beyond the
kaon threshold density to reach the maximum mass, which is
slightly greater than the mass at the kaon threshold. However,
its detailed structure is quite different from the latter with
�KN = 200 MeV, where there is no room for the SQM. If,

TABLE IV. The calculated structure parameters for various
systems (see text for details). The units are M�, km, and ρ0 for
mass, size, and central density, respectively.

Model Mmax R|
M=Mmax

ρ(c)|
M=Mmax

NM (η = −1) 2.23 11.41 6.1
NM + KNM (η = −1) 2.10 12.33 5.2
NM (η = 0) 1.90 9.81 8.1
NM + KNM(η = 0) 1.74 9.61 8.5

FIG. 12. The schematic phase diagram for NM-KNM-SQM.

however, we include the QCD corrections, the maximum
mass lies beyond the critical density, and the core is in
the form of SQM. With the stiffer symmetry energy with
η = −1, the maximum mass of ∼1.99M� can be obtained
by the gravitational instability condition at the central density
ρ = 12.3 ρ0. With the softer symmetry energy (with η = 0),
the maximum mass of ∼1.85M� can be obtained at the central
density ρ = 13.5 ρ0, as shown in solid lines b in Figs. 13
and 14 and in Table V with a4 = 0.62. For different set of
parameters with a4 = 0.59, we get slightly larger maximum
masses, 2.03M� and 1.90M�, respectively, for η = −1 and
η = 0, as shown with solid lines, as in Figs. 13 and 14. This
is a rather high density and a more sophisticated treatment
of SQM than the simple MIT bag model with perturbative
corrections (e.g., color superconductivity) may be called for
and change the maximum mass.

VI. SUMMARY AND DISCUSSION

We have proposed a scenario in which dense compact-star
matter is driven smoothly to a SQM by kaon condensation at
the density at which the kaon chemical potential μK = m∗

K

becomes negligibly small. It is based on the main assumption

FIG. 13. The M-R sequences for LCK with η = −1. The dotted
line denotes NM. The dash-dotted line between A and B denotes
the double-layered (NM-KNM) system. The solid lines, a, b, and c,
denote the triple-layered (NM-KNM-SQM) system with the QCD
corrections with a4 = 0.59, 0.62, and 1, respectively.
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FIG. 14. The M-R sequences for LCK with η = 0. The dotted
and dash-dotted lines are the same as in Fig. 13. The solid lines, a,
b, and c, denote the triple-layered (NM-KNM-SQM) system with the
QCD corrections with a4 = 0.59, 0.62, and 1, respectively.

of the paper that kaon condensation does occur at a finite
density and that the kaon effective mass should become very
small at a higher density, which, however, should not be larger
than that of compact star core. We show that the compact
star with an NM-KNM-SQM structure is possible with the
parameters that are not excluded by theory or phenomenology.
We admit that our calculation is highly model-dependent
without the benefit of constraints by QCD or by reliable
models, but it is simple and could be easily falsified by
experiments. All three states of matter, that is, NM, kaon
condensed matter, and QM, are treated on the same level of
accuracy. For kaon-nuclear interactions, we take the simplest
chiral effective Lagrangian at tree order, which seems to be
supported by the available in-medium lattice QCD with the
�KN term being taken as the only unknown quantity. As for
nuclear interactions, we take LCK’s empirically parameterized
form for the energy density and symmetry energy. There are
potentially serious effects that are missing in the treatments and
that could drastically change the scenario. They are discussed
in the Appendix.

We find that the maximum mass of compact stars without
kaon condensation with the LCK parameters can be twice the
solar mass, which is consistent with the recent observation.
With kaon condensation, the EOS becomes soft and the
maximum mass gets reduced, as expected. With �KN =
200 MeV (and η = 0), an SQM driven by kaon condensation
in our scenario is impossible because the pressure matching
at the SQM boundary gives a negative bag constant. However,
with the somewhat larger �KN = 260 MeV, an SQM driven
by kaon condensation can be formed with the bag constants

TABLE V. The maximum masses, Mmax, radii, R, and central den-
sities, ρ(c) for the three-layered structure with the QCD corrections,
a4 = 0.62 for both η = −1 and η = 0, respectively. The units of the
stellar structure parameters are the same as in Table IV.

Model a4 Mmax R|
M=Mmax

ρ(c)|
M=Mmax

η = −1 0.62 1.99 10.60 12.3
η = 0 0.62 1.85 9.86 13.5

B1/4  188 and 179 MeV, respectively, for η = −1 and
η = 0.11 The maximum mass can be as large as 2M� for
η = −1 at A in Fig. 13, where only NM is relevant. For η = 0,
a triple-layered structure is possible, but without perturbative
QCD corrections in SQM, the maximum mass is far below
2M�, as given by the solid line c in Fig. 14. When suitable
QCD corrections are included in the EoS of SQM, smaller bag
constants are required,12 97.25 and 94.71 MeV, respectively,
for η = −1 (a4 = 0.62) and η = 0 (a4 = 0.62). It is also found
that the transition is smooth as far as the mass change is
concerned. This indicates that the kaon condensation as we
described here can be considered a “doorway” to a quark-star
matter in the core.

What we learn from our analysis made in this paper
is that the nature (stiffness or softness) of the EoS in the
nucleon sector represented in the LCK model by the different
η values (even within the range allowed by experiments),
the σ term �KN , the bag constant, and QCD corrections is
highly correlated. Indeed, for the stiffer EoS with η = −1
and the smaller �KN ∼ 130 MeV, a two-layer structure of
NM and KNM can be made compatible with the mass vs
radius constraint given by the 1.97M� star. With the larger
�KN  260 MeV, even the three-layer structure of NM, KNM,
and SQM with an appropriate bag constant is possible beyond
the critical density, 6.37ρ0. Perhaps most significantly, the
maximum mass of a neutron star with the three-layer structure
can be made consistent with the recent observation. There is, of
course, nothing new or surprising in this sort of correlations in
nuclear processes. However, it points for a reliable treatment of
the M vs R ratio to the necessity of treating all of the variety of
different aspects of the phenomenon on the same footing. This
point can be illustrated by the following observation. With a
relatively stiff EoS with nucleons only such as that typified
by the one constructed in Ref. [20] (which is comparable
to the LCK’s with η = −1), the critical density for kaon
condensations can be pushed to too high a value to be of
relevance to the process, say, �7ρ0 [24]. However, as discussed
in the Appendix, an effective field theory consideration based
on hidden local symmetry suggests that at a certain high
density approaching the density regime where quark degrees
of freedom emerge, the repulsion that pushes up the critical
density for kaon condensation may get strongly suppressed as
one approaches the critical density. This means that the NM
and KNM sectors have to be treated in the same framework.
Similar remarks can be made for the SQM sector.

In our treatment, strangeness was brought in by kaons. It
could have been done by hyperons. As argued in Sec. II, the

11Note that for the case of the kaon-condensation-driven SQM,
�KN  259 MeV is fixed for η’s. However, the bag constants need
to be different to match the pressure condition.
12The bag constants needed for the case with perturbative corrections

may appear to be too low in comparison with the values needed
in vacuum phenomenology. This may not be a cause for worry,
however. Because the part of the gluon condensate locked to the
quark condensate is expected to “melt” across the chiral transition
point, the smaller bag constant effective in the SQM phase appears
to be more natural.
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FIG. 15. (Color online) Pressure vs density (ρ) for NM-KNM
(solid line) and NM-KNM-SQM (long-dashed line) with LCK (η =
−1) and considered parameters in previous sections compared with
the analysis by Özel et al. (shaded area) [23]. The dotted line denotes
NM, which is given for comparison with NM-KNM and NM-KNM-
SQM.

two ways at the mean-field level should capture approximately
the same physics. They may not be representing alternatives.
We expect that they will give qualitatively same effects on the
stellar structure.

The results we obtained are compared with the analysis by
Özel et al. [23] shown in Figs. 15 and 16 as shaded areas.
In view of the variety of intricate mechanisms left out in our
treatment, it is not obvious that one can do much better with
more detailed model calculations. As stressed, what is needed
is a consistent field theoretic approach that can account also
for the effects of the type discussed in the Appendix. We are
only at the beginning of such an endeavor.
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APPENDIX

In this Appendix, we address a variety of issues that are not
taken into account in our work: The role of 	(1405) in dense
kaonic nuclei and kaon condensation, topological effects on
the kaon propagation in dense matter and possible binding
of kaons in finite and infinite systems, the fate of ω-meson-
mediated repulsion at high density. These issues are potentially
relevant to the problem addressed in our paper. To make a
reliable treatment taking all these considerations into account
would require a fully consistent field theoretic treatment and
such a treatment is presently lacking in the literature. Most of
the treatments found in the literature are a piecemeal patching
of different ingredients with no obvious connection between
them. We are unable to do much better here either. What we
can do is just to point out how the various ingredients can
figure in kaon-nuclear and high-density physics. In so doing,
however, we have in mind a specific field theoretic framework
based on HLS [16] and its generalized form—which by itself
is consistent but incomplete—although we do not have the
formulation to allow us to do the calculation explicitly within
that framework.

1. The role of �(1405)

In considering the possible mechanisms for or against the
formation of dense kaonic (finite) nuclei, the 	(1405) has
figured prominently. There is a humongous controversy on
whether and how 	(1405) enters in generating strong or weak
	(1405)-nuclear potential. We gloss over this controversy here
because it does not seem to be essential to our approach. What
we would like to describe here is that, regardless of what
the 	(1405) does near the threshold K−-nucleon interactions
and how it generates the 	(1405)-nuclear potential, it is
irrelevant to our approach to kaon condensation. If one were
to try to arrive at the putative kaon condensation by starting
from elementary kaon-nucleon interactions, the structure of
the 	(1405) would seem to matter. In fact, it has been
suggested that even if there is a strongly attractive kaon-nuclear
interaction, kaons do not condense macroscopically [25].
There is a difference in perspectives on this issue.

In Sec. IV A, in addressing kaon condensation, we made no
account of the presence of 	(1405). This is because, as was
first pointed out in Ref. [26], the precise location of 	(1405)
is irrelevant to the phase transition involved. This point is
depicted schematically in Fig. 17.13

There D−1(ω) gives the dispersion formula for the kaon
frequency ω.14 Given that kaon condensation occurs far below
the threshold, that is, with M∗

K far below the 	(1405) pole,

13We are grateful to Chang-Hwan Lee for allowing us to use this
figure.
14We are, of course, assuming that we can treat 	(1405) as a

quasiparticle in medium. If this were not the case, the spectral function
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FIG. 17. (Color online) Irrelevance of 	(1405) in kaon conden-
sation. M∗

K is the effective kaon mass.

the 	(1405)-nuclear interaction is irrelevant in the RGE sense
of Ref. [14] so that it makes no difference whether 	(1405) is
there or not. What this tells us is that kaon-nuclear interactions
in dilute system have no influence on the presence of the phase
transition, though they could influence its location.

2. Effect of topology change in dense matter on EoS

a. Skyrmion–half-Skyrmion transition

When dense matter is simulated by putting Skyrmions
on a crystal lattice, which is potentially a powerful tool for
looking at strong-coupling dynamics of baryonic matter at
high density [27], one discovers that there is a sort of phase
transition at a certain density above NM density that we denote
as ρ1/2 > ρ0 from the Skyrmion matter—which corresponds
to the usual NM—to a half-Skyrmion matter populated by
half-soliton configurations. In that phase, chiral symmetry is
putatively restored but quarks are still confined. Although the
critical density ρ1/2 cannot be pinned down, it presumably lies
between 1.3 and 2 times the NM density. This transition is
quite novel and has never been predicted before and there are
no experimental data to confirm or refute this prediction. It
could perhaps be vindicated or falsified in future experiments
at such laboratories as FAIR/GSI, J-PARC, or RIB machines
in construction.

There is a strong indication that hidden local symmetric
Lagrangian, especially with an infinite tower as recently
discovered, will be more reliable and more predictive than the
Skyrme model with the pion field only for describing nuclear
and dense matter [27]. No such treatment that is reliable is
available to date. One reason why it can be taken seriously
in the absence of a credible justification is that it involves
a topology change. As such, its qualitative feature could be
robust, more or less free of model dependence. In fact, this
feature presents an advantage. Normal NM is most likely a
liquid with its stability assured by the Fermi-liquid fixed point,
and not a solid. However, it is possible that the matter is solid
at high density, as suggested by Nc arguments. Now what we

could be more complicated. Even so, the qualitative feature of our
argument will still hold as suggested by the RG argument of Ref. [14].

are observing on the crystal is a change of topology, so the
properties that are anchored on topological structure could
remain valid in what we are looking at although the density is
not high enough.

That the Skyrmion-to-half-Skrymion transition takes place
at some high density is more or less model-independent
within the adopted framework, although detail features will
depend on models. In Ref. [28], such a calculation was
performed with the Skyrme Lagrangian implemented with
the “soft” dilaton that enters in the trace anomaly of QCD
that is assumed to melt across chiral restoration [29]. From
this model, certain qualitatively robust features emerge. At
ρ1/2 where a Skyrmion fractionizes into two half-Skyrmions,
the quark condensate 〈q̄q〉 (in QCD variable) which is
given in the Skyrme model by TrU (where U is the chiral
field) vanishes on the average in one unit cell; thus, chiral
symmetry apparently “restored” but with a nonzero pion
decay constant f ∗

π 	= 0. In this phase, quarks are still confined
in hadrons. Such a putative chiral symmetry restored but
quark-confined phase has not been observed in continuum
models. If confirmed to be viable, however, it will have an
important impact on various phenomena, as described below.

b. Anomalous kaon binding

One intriguing consequence of the topology change is
“anomalous” binding of K− in dense Skyrmion matter. As
stressed above, a powerful treatment for dense baryonic matter
could be made with a three-flavor effective Lagrangian with
hidden local symmetry, but this is numerically involved and
has not been worked out yet. Though less reliable, one can
instead take the Skyrme Lagrangian as an effective one that
results when all vector mesons are integrated out. Given such
a Skyrmion Lagrangian, one can treat the property of a kaon
in dense medium in terms of the kaon propagating in the
background of Skyrmions put on a crystal lattice. This was
worked out in Ref. [28]. The main agent for binding the kaon
to the Skyrmion in this description is the Wess-Zumino term
in the SU(3)f Lagrangian. This attraction is the analog to the
Weinberg-Tomozawa term in the chiral Lagrangian Eq. (24).
However, there is an additional mechanism for kaon-nuclear
attraction not apparent in the Lagrangian that comes from
the Skyrmion–half-Skyrmion phase change. The result of
Ref. [28] is summarized in Fig. 18, where the effective kaon
mass m∗

K is plotted as a function of density ρ/ρ0 (denoted in
the figure as n/n0) for two different values of the (free-space)
dilaton mass.15 What we note is that the location of ρ1/2 is
remarkably insensitive to the dilaton mass, but m∗

K varies
strongly with density at ρ1/2 and beyond. Thus the following
warning: What is given in Fig. 18 should be taken with caution.

There are a several noteworthy observations to make on
this result. One is that there is a sudden—and sizable—

15The precise value of the dilaton mass—as well as the microscopic
(QCD) structure of the dilaton—is unknown. This is the part of the
puzzle on the nature of scalar mesons in low-energy hadron physics.
The values used here are what are considered to be reasonable values
for the mass of the scalar that enters into mean field theory of NM.
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FIG. 18. m∗
K± vs ρ/ρ0 in dense Skyrmion matter which consists

of three phases: (a) 〈q̄q〉 	= 0 and f ∗
π 	= 0, (b) 〈q̄q〉 = 0, and f ∗

π 	= 0
and (c) 〈q̄q〉 = 0 and f ∗

π = 0. The parameters are fixed at
√

2efπ =
mρ = 780 MeV and dilaton mass mχ = 600 MeV (top panel) and
mχ = 720 MeV (bottom panel).

decrease in m∗
K at ρ1/2. Such an “anomalous” drop cannot

take place without topology change. Thus, it cannot be present
in standard many-body or field theory treatments of nuclear
and dense matter in which topology does not figure. What
we learn from this observation is that if one were to produce
a compact kaonic-nuclear system that can reach the density
corresponding to ρ1/2, which should be above, but not too
high above, the normal matter density, there the system would
undergo a drop in kaon mass that is not present in the
standard treatment.16 It is perhaps significant that a similar
“discontinuity” in nuclear tensor forces takes place at the same
transition density ρ1/2 mentioned below.

The other interesting observation is that the kaon mass
drops down to a small value, with the kaon disappearing,
at the point where f ∗

π falls to zero, presumably signaling
the deconfined phase. In our scenario of kaon-condensation–
quark-matter continuity discussed in the text above, we
are imagining an analogous process without, however, the
apparent discontinuity of the magnitude that depends on the
dilaton mass that is seen in Fig. 18.

16A similar anomalous drop is proposed in the work of Akaishi
et al. [30]. They referred to it as “enhancement effect.”

3. Tensor forces, “new BR scaling” and Esym

Another potentially important consequence of the topology
change described above is on the nuclear tensor forces. It will
therefore affect the EoS of compact-star matter, particularly on
the symmetry energy Esym [31]. This aspect, highly relevant
to our main discussion, is, however, not explicitly taken into
account in the paper. It will be done in a future presentation.

In the effective field theory approach to nuclear forces, in
which the relevant degrees of freedom are nucleons, pions, and
vector mesons, the nuclear tensor forces are highly sensitive to
in-medium properties of the ρ meson, specifically its mass and
its coupling to nucleons. The ρ tensor force comes with the
sign opposite to that of the pion tensor, so their contributions to
the tensor force tend to cancel as density increases because the
strength of the ρ tensor force increases at increasing density.
This is because the parameters of the ρ meson scale according
to what is known as BR scaling [32], where the ρ mass drops
at increasing density following roughly the quark condensate
in medium. There are evidences for this scaling in a variety of
nuclear processes, among which the most striking one is the
quenching of the Gamow-Teller matrix element responsible
for the long lifetime of 14C, that is, the famous 14C dating [33].
There may be alternative explanations for the quenching of the
Gamow-Teller matrix element involving many-body potentials
or many-body correlations. However, within the given effective
field framework used in Ref. [33], it provides a strong support
that the BR scaling does hold up to NM density. However, there
is no evidence either for or against the BR scaling of Ref. [32]
above the NM density which is pertinent for neutron stars.

In Ref. [31], it is shown that the Skyrmion–half-Skyrmion
transition can drastically modify the BR scaling [32] at the
topology-change density ρ1/2. Skipping details, we simply
state what was found in that reference. A subtle scaling change
occurs at ρ1/2 owing to the topology change which makes the ρ

tensor force whose magnitude increases up to the density ρ1/2

turn over and start decreasing, ultimately get suppressed more
or less completely at a density near two to three times that of
NM. This topology change turns out to leave the pion tensor
unaffected. Therefore, at some high density above ρ1/2, only
the pion tensor remains. In the model calculation of Ref. [31],
the complete suppression of the ρ tensor takes place at about
3ρ0, in the vicinity of kaon condensation. In terms of the
symmetry energy, a cusp appears at ρ1/2. Whether this is real
or an artifact of the crystal structure is not clear. In any event,
this phenomenon can have a dramatic effect on processes in
baryonic matter at high density, in particular on the symmetry
energy in the density regime that has not been accessed by
the presently available experiments. Future experiments will
provide a check for this prediction.

4. Dilaton limit and suppression of the short-distance repulsion

Consider a baryon HLS Lagrangian implemented with a
dilaton scalar introduced via the trace anomaly of QCD. We
call it dHLS. Such a theory at mean field is known to be able to
describe NM fairly well provided the parameters of the HLS
Lagrangian are endowed with suitable BR scaling [34]. The
question raised is as follows: How can one use this Lagrangian
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to describe the chiral phase transition that is to take place at
high density, say, ρc? This question was answered in Ref. [35].

While it is not known how to approach systematically
as function of density the chiral restoration point with this
Lagrangian, it was suggested by Beane and van Kolck [36]
how to approach Weinberg’s mended symmetry limit [37]
by taking what is called the “dilaton limit.” In that limit,
the dilaton-implemented HLS Lagrangian goes over to Gell-
Mann-Lévy linear σ model which can then be used to describe
the chiral phase transition in the standard way. This limiting
process involves a transformation of a chiral singlet—which
the dilaton is—to the fourth component of chiral four-vector,
namely, σ of the σ model. Apart from the symmetries involved,
this may be caused by a sort of level crossing in terms of
quark configurations. In the quark-gluon language of QCD,
the dilaton could be a complicated combination of four-quark
q̄2q2 wave function and glueball wave function that is low
lying at low density while the σ is the q̄q component which lies
higher. The level crossing may occur such that at high density
near the chiral restoration, it is the latter that comes down low
in energy. The key point here is that as density approaches that
of chiral restoration, the dilaton limit transforms dHLS to the
linear σ model endowed with the mended symmetry. It was
found in Ref. [35] that the dilaton limit in dHLS corresponds
to taking, among others,

gA = gV → 1, (A1)

where gA is the axial coupling constant in the neutron β decay
and gV is related to the V -nucleon coupling as

gV NN = ghls(1 − gV ), (A2)

where V = (ρ, ω) are the lowest-lying vector mesons and ghls

is the hidden gauge coupling.
There are a variety of phenomena that could follow as

consequences of the approach to the dilaton limit and influence
strongly high-density physics. What is closely relevant for this
discussion is that as one approaches the dilaton limit (A1),
the V -nucleon coupling decreases and goes to zero at the
dilaton limit. Owing to the vector manifestation of HLS [16],
the hidden gauge coupling going proportionally to the quark
condensate 〈q̄q〉 near chiral restoration will also go to zero.
However, the vector meson mass also goes to zero as ∼ghls, so
the ratio g2

V NN/m2
V ∼ constant. This means that as density

increases into the regime where the dilaton limit is valid,
interactions that involve vector-meson exchanges will become
weak independently of the approach to the VM fixed point.
In particular, the NN repulsion at short distance attributed to
ω exchanges will be suppressed proportionally to (1 − gV )2.
This would make a drastic change to the conventional thinking
of the hard core repulsion that has been understood up to
date to be operative at high density. Furthermore, if one were
to associate short-distance repulsion involving three nucleons
with ω exchanges, the suppression factor would also go like
(1 − gV )2 and so be equally suppressed. From what density
this suppression becomes active is not known, but if this
mechanism is confirmed to be viable, it will certainly affect
the presently available EoS’ at densities beyond what has been
“measured.” Among various phenomena, as noted in the Dis-
cussion section, such a suppression mechanism could invali-
date the argument of Ref. [24]—based on short-range repulsion
in nuclear interactions—against low critical density for kaon
condensation.
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