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Neutron star crustal matter, whose properties are relevant in many models aimed at explaining observed
astrophysical phenomena, has so far always been studied using a mean-field approach. To check the results
obtained in this way, a sensible next step is to make use of a realistic nuclear potential. The present paper
extends the periodic box Fermi hypernetted chain method to include longitudinal-isospin dependence of the
correlations, making feasible a study of asymmetric crustal matter. Results are presented for the symmetry
energy, the low-density neutron star equation of state, and the single-particle neutron and proton energies.
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I. INTRODUCTION

Various observed phenomena connected with neutron stars
(NS)—such as glitches—are thought to be largely determined
by their crustal properties. Glitches are abrupt changes
in pulsar periods,1 widely thought to be related either to
starquakes or to vortex pinning, although there are also other
possibilities [2]. A key role in these interruptions in the usually
regular behavior of the pulsar spin period is thought to be
played by the interaction between superfluid neutrons and
normal matter in the crust.

Although a number of recent papers have focused on
studying NS crustal properties (e.g., [3,4]), none of them
have gone beyond a mean-field approach for describing the
nuclear interaction. That sort of approach allows one to give
a self-consistent description of all of the nucleons forming
the crustal matter, either as part of the large neutronized
neutron-drip nuclei which form the lattice or as part of the
neutron superfluid which flows through it. (For a recent
review of NS crustal matter, see Ref. [2]). However, major
advances have been made in recent years in developing nuclear
many-body methods for dealing with strongly interacting
fermions, which have enabled very accurate calculations to
be made of several properties of nucleonic matter at low
temperature, in both normal and superfluid phases, which
have clearly shown that NN correlations play a fundamental
role and cannot be disregarded. The short-range behavior of
these arises from the strong repulsion of the nuclear potential
at short internucleon distances, and the long-range behavior
results from the tensor interaction coming from pion exchange.
These types of behavior have proved to be a distinctive feature
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1For a statistical study of glitches, see Ref. [1].

of NN correlations and hence of the nuclear medium, and they
lead to potentially measurable effects related to NS structure
and the neutrino mean free path [5].

These technical advances make it possible to perform ab
initio calculations of the structural properties of the NS nuclear
medium, all the way from the crust to the inner core, fully based
on a realistic bare NN interaction. This paper is concerned with
addressing this challenging problem.

Obviously, ab initio calculations have a much more limited
range of applications than calculations with mean-field theo-
ries which, however, are based on ad hoc effective interactions,
which are supposed to include the main features of the
NN correlations in some average way. Therefore, a second
important goal of these studies is to derive mean-field effective
interactions from first principles, starting from a unique bare
nuclear interaction.

We base our investigation here on orthogonal correlated
basis theory (OCB) [6–9] and nuclear quantum Monte Carlo
(QMC) methods, particularly variational Monte Carlo (VMC)
and auxiliary field diffusion Monte Carlo (AFDMC) [10]. All
of these methods enable one to make very accurate calculations
of nuclear matter interacting with modern NN potentials, but
they have all only been used so far for homogeneous matter,
for nuclei, or for neutron droplets. The NS crustal matter
is composed of a lattice of neutron-rich nuclei surrounded
by superfluid neutrons. Typical mixtures are characterized
by a lattice length of ∼20–60 fm and density values of the
neutron soup ranging from ∼0.001 fm−3 to ∼0.1 fm−3. In
spite of having such relatively low densities, the neutrons are
still in a regime of strongly correlated fermions, because the
neutron-neutron scattering length is large, ann ∼ −20 fm and
the resulting values of kF ann range from ∼−6 to ∼−30.

As far as QMC is concerned, one has to deal with periodic
boxes of dimension ∼20–60 fm, with a heavy nucleus at
the center and a few thousand neutrons surrounding it. This
requires very resource-intensive simulations, which cannot
be massively parallel. Because of this, OCB theory will
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be used first to get optimal variational wave functions, and
variational estimates of the binding energy per particle (as a
function of the neutron density and of the symmetry parameter
α = (N − Z)/A, as well as for computing quantities like
energy spectra, response functions, spectral functions, etc.,
which are at present beyond the reach of QMC simulations.

In pursuing these goals, we are faced with two kinds
of problems: (i) the lattice structure of the NS matter does
not allow for calculations in the thermodynamic limit—
systems with 2000–3000 neutrons are still far away from that;
(ii) we are dealing with asymmetric matter having N > Z and
we cannot just rely on using the two extreme cases α = 0
and α = 1 and then making a quadratic interpolation between
them for all of the other cases, because of the presence of the
nucleus in the box.

The first of these problems requires relying on the existing
periodic box version of the Fermi hyperNetted chain theory
(PB-FHNC). The second one requires us to rewrite the
PB-FHNC to allow an isospin dependence.

The present paper is devoted to clarifying these two
points, which represent fundamental methodological steps
toward making a truly microscopic and unified treatment
of NS crustal matter. For doing this, we have extended the
PB-FHNC method to deal with homogeneous asymmetric
nuclear matter described by correlated basis functions, in
which the correlation operators have a longitudinal isospin
dependence. Further considerations limit the variational choice
of the isospin dependence of the correlation operator F̃ to its
longitudinal component τz(i)τz(j ) only. It is then important
to ascertain how good such a variational choice is compared
with the full one given by τ (i) · τ (j ). As a first application,
we have considered simple two-body nuclear potentials of the
v4 type, which do not include tensor components but have full
spin-isospin dependence. Calculations have been made of the
equation of state (EOS) and of the single-particle spectra at
various values of symmetry parameter.

The results obtained are very encouraging. The iterative
process developed for solving the new PB-FHNC equations
converges rapidly and gives stable solutions. Moreover, the
longitudinal isospin dependence is able to account for more
than 80% of the full isospin dependence for the interaction
models which we have considered, irrespective of the values
of the density ρ and the symmetry parameter α. Interest-
ing results are obtained for the symmetry energy, particu-
larly in the low-density region. We compare these results
with the Bethe-Brueckner-Goldstone (BBG) calculations of
Ref. [11].

Since we want to address this paper and subsequent
related ones to the astrophysical community, we repeat here
some material that was already published in the nuclear
physics literature to make the presentation comprehensible.
We recognize that readers who are not specialists in nuclear
physics will need to be strongly motivated to work through all
of this, but we are aiming here to provide a “bridge” for those
strongly motivated readers.

The paper is organized as follows. In the next sections
we will discuss the nuclear interaction, focusing on the two
particular interactions that have been used in our calculations.
Then, in Sec. III, we describe the state-dependent particle box

FHNC scheme used in this work, and finally we present our
results and give conclusions.

II. NUCLEAR POTENTIAL

A realistic nuclear potential is usually written as a two-body
potential (e.g., Argonne V18 [12]) plus a three-body con-
tribution (e.g., Urbana IX [13]) which becomes increasingly
important beyond half of the nuclear saturation density (ρ0 =
0.16 fm−3 = 2.7 × 1014 g cm−3) (see Ref. [14] and references
therein). It was shown that n-body potentials in medium with
n > 2, can be successfully simulated by two-body density-
dependent terms [14,15].

In this paper, we consider the Illinois class of two-body
potentials, which are characterized by having a strong local
contribution, given by their first six spin-isospin-dependent
components:

υ̂6(i, j ) =
6∑

p=1

υ(p)(rij )Ô(p)
ij (i, j ), (1)

with

Ô
p=1−6
ij = (1, σij , Sij ) ⊗ (1, τij ), (2)

where τij = τi · τj and σij = σi · σj , with τ and σ being the
Pauli matrices acting, respectively, on the isospin and the
spin of a nucleon, and Sij = (3r̂α

ij r̂
β

ij − δαβ)σα
i σ

β

j is the tensor
operator.

The most important nonlocal components of the Illinois
potentials are the spin-orbit terms, Lij · Sij and Lij · Sij τij ,
where Lij and Sij are the relative angular momentum and the
total spin of the nucleon pair. Model potentials that include the
spin-orbit components are denoted as υ8. Other components
include L2, (Lij · Sij )2 and symmetry breaking operators,
giving the total of 18 components of Argonne υ18 (AV18).

In its full form, AV18 gives an almost perfect fit to the NN
data up to the meson production threshold. Other realistic NN
potentials, such as the Bonn and Nijmegen potentials, fit the
NN data equally well. All of these realistic interactions are
more or less equivalent in describing the properties of light
nuclei but the latter ones are basically nonlocal, and so they
are much more difficult to handle with many-body theories
such as OCB and AFDMC. Moreover, NN correlations are
much better described in r space, in which they are clearly
distinguished from relativistic effects.

There is strong evidence that the first eight components of
the Illinois-type potentials are sufficient for giving a realistic
description of the nuclear medium. Such model potentials
can be obtained by simply truncating AV18 after the first
eight components. A better choice, however, is to keep the
υ8 form and refit the NN data. That was done [16], and the
corresponding model interaction is known in the literature as
Argonne υ8′ or AV8′. The differences between AV18 and AV8′
are quite small and can safely be treated perturbatively.

Other widely used interaction models from the same class
of potentials are υ6′ , which have the form of Eq. (1), and υ4′ , in
which the tensor components are also omitted. The AV6′ and
AV4′ potentials can be found in Ref. [17]. They should really be
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considered only as toy potentials, although they can reproduce
a certain amount of nuclear physics data. They are certainly
very useful, though, for checking many-body techniques and
for finding the relative importance of the tensor and spin-orbit
correlations.

One of the potentials which we have used in our calculations
is the S3 potential derived by Afnan and Tang by fitting
low-energy nucleon-nucleon s-wave scattering data (up to
60 MeV) [18]. This is a υ4 potential of the Serber type,
and is therefore defined for only the even states. It provides
a reasonable description of some basic properties of H3

and He4 such as, for instance, the binding energy and the
root-mean-square radii. As in the PB-FHNC calculations of
Ref. [19], we have added to the original S3, an interaction
for the odd channels given by the repulsive part of the even
channels. The four components of the resulting potential,
which we denote as the AT4′ potential, are given by

υ(1) ≡ υc = υR + 3
16 (υAt (rij ) + υAs(rij )),

υ(2) ≡ υτ = − 1
16 (3υAt (rij ) − υAs(rij )),

(3)
υ(3) ≡ υσ = 1

16 (υAt (rij ) − 3υAs(rij )),

υ(4) ≡ υστ = − 1
16 (υAt (rij ) + υAs(rij )),

with the repulsive and attractive components given by

υR = υs1 exp (−βs1r
2),

υAs =
3∑

i=2

υsi exp (−βsir
2), (4)

υAt =
3∑

i=2

υti exp (−βtir
2),

where the strengths υsi and υti and the Gaussian coefficients
βsi and βti are given in Ref. [18]. The four components of the
AT4′ potentials are compared in Fig. 1.

The PB-FHNC calculations of Ref. [19] were performed for
the case of Jastrow correlated theory. The resulting variational
energy for a system of 2060 nucleons at the experimental
equilibrium density ρ0 is −15.150 MeV, which is not too far
away from the FHNC/SOC result, E = −16.184 MeV.
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FIG. 1. (Color online) AT4′ potential components.

To compare with the Jastrow results of Ref. [19], we have
also performed variational calculations with the potential υ4,
obtained by truncating AV 8′ after its first four components,
and denoted here as (AV 8′)4.

III. CORRELATED BASIS FUNCTIONS

The correlated basis functions for a strongly correlated
Fermi fluid are given by

|n) = F̂ |n]

[n | F̂ †F̂ |n]
1
2

, (5)

where |n] is a generic eigenfunction of the Fermi gas Hamil-
tonian and F̂ is a correlation operator. The label n indicates
the number of particle-hole excitations and |0] denotes the
Fermi gas ground state. The set of Fermi gas states |n] is
orthonormal, whereas that of the correlated states |n) is not,
because the correlation operator F̂ breaks the orthogonality.
We need to restore orthogonality by following the two-step
procedure outlined in Ref. [9]: Orthonormal correlated states
are denoted as |n〉.

A. Properties of the orthonormalization process

It can be shown that the orthonormalization procedure has a
number of important properties. Formally in OCB theory, the
Hamiltonian H is written as the sum of an unperturbed term
H0 and an interaction term HI :

〈n |H0 |m〉 = 〈n |H |m〉δnm = Hnnδnm,
(6)

〈n |HI |m〉 = 〈n |H |m〉(1 − δnm) = H̃nm.

The interaction Hamiltonian HI is simply the nondiagonal
part of H . The main property of the orthogonalization process
of OCB theory is that the diagonal matrix elements are not
modified by it, that is,

Hnn = 〈n |H |n〉 = (n |H |n) + terms of order 1/	. (7)

This guarantees that the variational estimates (In |H |In)
are maintained after orthogonalization. A second important
property is expressed by the following equation:

(n|H |n) = (0|H |0) +
∑

pi

ev(pi) −
∑

hi

ev(hi)

+ terms of order 1/	. (8)

In this paper we restrict attention to the diagonal matrix
elements of the Hamiltonian on the ground state|0) and on the
one particle - one hole states|ph), given by

(ph|H |ph) =
∫

dRA[φ1 · · · φA]F̂ †
JLHF̂JLA[φA · · · φ1]∫

dRA[φ1 · · ·φA]F̂ †
JLF̂JLA[φA · · · φ1]

,

(9)

where φn = exp(ikn · ri)χn(si)In(τi) and the orbitals φ1 · · · φA

correspond to the Fermi sea states in the case of the ground-
state energy (p = h = kF ) and include the excited state orbital
p in place of the Fermi sea state orbital h in the case of the
particle-hole excitation. A is the antisymmetrization operator.
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Therefore A[φ1 . . . φA] is a Slater determinant of plane waves.
Note that in a periodic box treatment, one has a finite number
of nucleons and a fixed value for the length L = 	1/3 of the
box, given by ρp + ρn = ρ = A/	.

Integration over dR extends to all of the a coordinates
(R ≡ r1, r2, . . . , rA) and includes summation over all of the
spin and isospin variables.

B. The correlation operator

Since we are considering a υ4 model interaction, we do
not need to include tensor correlations in F̂ . In this case, the
standard choice is given by

F̂4 = S

⎧⎨
⎩

A∏
i<j=1

f̂4(i, j )

⎫⎬
⎭

= S

⎧⎨
⎩

A∏
i<j=1

⎡
⎣ 4∑

p=1

f (p)(rij )Ô(p)
ij (i, j )

⎤
⎦
⎫⎬
⎭ , (10)

where the symmetrization is needed because, in general,
the operators Ô

(p)
ij do not commute with each other. In the

calculation of the matrix elements of any given operator,
it is not known how all of the orderings of the right-hand
side of Eq. (10) can be taken into account. The best known
approximation is the so-called FHNC/SOC [20], which was
shown to give reliable results in a number of nuclear matter
calculations. However, this approximation cannot be used for
asymmetric nuclear matter because of the presence of the
operator τ (i) · τ (j ) in F̂4. Because of this, it is important to
check the variational relevance of the longitudinal isospin-
dependent operator Ôτz

(i, j ) = τz(i)τz(j ) as compared with
τ (i) · τ (j ). The operators Ôτz

(i, j ) commute with each other,
and so can easily be used in asymmetric nuclear matter
calculations. To achieve this goal, we consider the following
correlation operator:

F̂JL =
∏

i<j=1

[fNN (rij )PNN (i, j ) + fPP (rij )PPP (i, j )

+ fNP (rij )PNP (i, j ) + fPN (rij )PPN (i, j )], (11)

where the projection operators Pab are given by

PNN (i, j ) = 1 + τz(i)

2

1 + τz(j )

2
,

PPP (i, j ) = 1 − τz(i)

2

1 − τz(j )

2
,

(12)

PNP (i, j ) = 1 + τz(i)

2

1 − τz(j )

2
,

PPN (i, j ) = 1 − τz(i)

2

1 + τz(j )

2
.

The four scalar functions fNN , fPP , fNP , and fPN have
to heal smoothly to 1, thus giving an uncorrelated system, for
rij greater than a certain healing distance d chosen so as to

minimize the ground-state energy per particle of the system
(0|H |0)/A. The results discussed in this paper are obtained
under the following assumption:

fNN (rij ) = fPP (rij ) = f‖(rij ),
(13)

fNP (rij ) = fPN (rij ) = f⊥(rij ).

The correlation functions f‖(rij ) and f⊥(rij ) are obtained
by solving a set of second-order differential equations [20]
whose detailed application to the system at hand is described
in Appendix A. They distinguish isospin parallel from isospin
antiparallel correlations. Such isospin dependence does not
completely resolve the difference between T = 1 and T = 0
channels as in the case of F̂4 of Eq. (10). Nevertheless, as will
be shown in this paper, it still provides a very good description
of the isospin dependence of nuclear correlations induced by
a nuclear two-body potential of the v4 type.

IV. POWER SERIES EXPANSION AND DIAGRAMMATIC
RULES

The CBF matrix elements given in Eq. (9) are calculated by
first applying standard Fantoni–Rosati (FR) cluster expansion
techniques [21,22] to (ph|H |ph) and by summing up the
resulting series of cluster terms using the FHNC integral
equation methods. The FR expansion is based on expanding
both the numerator and the denominator of Eq. (9) in powers
of the functions hα(r) given by

hα(r) = f 2
α (r) − 1 , (α = NN, PP, NP, PN). (14)

The quantity F̂
†
JLF̂JL appearing in the denominator of

Eq. (9) is then decomposed into a series of cluster operators
as follows:

F̂
†
JLF̂JL = A(A − 1)

2
f̂ 2(1, 2)

⎡
⎣1 +

A∑
i 
=1,2

X (3)(1, 2; i) + · · ·
⎤
⎦ ,

(15)
f̂ 2(1, 2) =

∑
f 2

α (r12)Pα(1, 2),

where each cluster operator f̂ 2(1, 2)X (n)(1, 2; i) is expressed
in terms of products of hα functions and τα projection
operators and correlates the two interacting particles 1 and
2 with the other n − 2 particles in the medium. A similar
expression is obtained for the quantity F̂

†
JLĤ F̂JL appearing

in the numerator of Eq. (9), where f̂ 2(1, 2) is substituted by
f̂ (1, 2)Ĥ (1, 2)f̂ (1, 2), with Ĥ (1, 2) including the potential
energy operator υ4(1, 2), and the kinetic energy operators:
∇2

1 f̂ (1, 2), ∇1f̂ (1, 2) · ∇1f̂ (1, i), ∇1f̂ (1, 2) · ∇1|n], etc.
Inserting the cluster decomposition of Eq. (15) into Eq. (9),

each cluster operator f̂ 2(1, 2)X (n)(1, 2; i) gets multiplied by
the n-body Fermi gas distribution gn(1, . . . , n). In Appendix B,
the distribution gn(1, . . . , n) is expressed in terms of the un-
correlated one-body density matrix (also called the exchange
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function) �N (i, j ) and �P (i, j ) which are given by

�N (i, j ) = 1

ρ

N∑
n=1

φ∗
n(i)φn(j ) = �N (rij )

∑
m=up,down

χ∗
m(i)χm(j ),

�P (i, j ) = 1

ρ

Z∑
n=1

φ∗
n(i)φn(j ) = �P (rij )

∑
m=up,down

χ∗
m(i)χm(j ),

(16)

where the sum is extended over the occupied states. They are
normalized to ρN and ρP , respectively. It is useful to define a
four-component vector function l(rij ) given by

�NN (rij ) = �N (rij ), �PP (rij ) = �P (rij ),
(17)

�NP (rij ) = �PN (rij ) = 0.

The net result is that f̂ 2(1, 2)X (n)(1, 2; i) gives rise to a sum
of n-body cluster integrals, whose integrands are products
of dynamical correlation functions hα(rij ) and exchange
correlations �α(rij ).

A very important property of the FR cluster expansion,
when applied to finite systems, is that in both the numerator
and denominator of the diagonal matrix element of Eq. (9),
the summation over the cluster integrals can be extended
beyond the order A, which is the maximum for a system of A
nucleons. In fact it can be extended up to infinity because any
gn(1, . . . , n) built with the exchange functions �α(rij ) given in
Eq. (16), with n > A vanishes. This property enables us to use
all of the FR cluster expansion properties which are valid for
a system with an unlimited number of nucleons, such as for
instance nuclear matter.

More details about the FR decomposition can be found in
Ref. [23]. We report here only its main properties so as to help
the reader get a quick understanding of the original papers.

Each cluster integral is most conveniently represented by a
cluster diagram. These diagrams are built by following a few
convenient rules [22]:

(i) Each point represents a particle. Filled points—or
internal points—represent in-medium particles while
unfilled points represent external interacting particles.

(ii) Two points are linked either by a dashed line, repre-
senting hα(r) or by a solid oriented line, representing
�(r) or by both.

(iii) Any internal point is reached by one or more dashed
lines; two dashed lines cannot be superimposed.

(iv) Solid lines form closed loops and different loops cannot
have any common point.

(v) Each internal point carries a proton or neutron density
factor, depending on which type of particle it represents.

(vi) All of the particles belonging to an exchange loop
are in the same spin-isospin state. Each loop (except
for those comprising two particles) is counted twice,
because there is one oriented clockwise and one
anticlockwise. The two-particle loops are counted only
once. In addition, one has to sum over loops of different
spin-isospin states. The loop sign is given by (−)n+1,
where n is the number of points on the loop. The global
factor Cn of an n-particle loop in spin-symmetric matter

unlinked linked and simple linked and composite

i j k
i j

k
i

j

i

j

(a) (b) (c) (d)

FIG. 2. Examples of cluster diagrams: (a) unlinked, (b) nodal,
(c) elementary, and (d) composite. All the points correspond to
neutrons.

is given by

Cn = (−)n+1 × 2 × 2 × (ρn
P + ρn

N

) (1

2

)n

, (18)

where ρP and ρN are the proton and neutron matter den-
sities, respectively. For symmetric nuclear matter (ρP =
ρN = ρ/2), the factor Cn becomes (−)n+18(ρ/4)n.

There are some exceptions to these rules, which occur in
the calculation of the expectation values of the τ1 · τ2 and
(σ1 · σ2)(τ1 · τ2) potential terms. These will be discussed later,
in connection with the calculation of the energy per particle.

The linked cluster theorem [22] holds also in the case of
the JL-correlated basis. This theorem states that nonlinked
cluster diagrams (i.e., diagrams which are built from two or
more completely unconnected parts and which diverge in the
thermodynamic limit) cancel exactly between the numerator
and denominator of Eq. (9) so that one is then left with a series
of linked cluster diagrams.

Examples of cluster diagrams are shown in Fig. 2.
Diagram (a) of Fig. 2 is unlinked and is therefore forbidden.
The remaining diagrams are all allowed. In the calculation of
the expectation value of the scalar component of the two-body
potential diagram, [Fig. 2(b)] corresponds to the following
contribution:

Diagram (1b) → 1

2ρN

ρ5
N

∫
dr12dridrj drkf

2
‖ (r12)υc(r12)

×h‖(r1i)h‖(r2j )h‖(rjk)

(−�2
N (rij )

2

)
. (19)

Linked cluster diagrams are subdivided into two classes:
simple and composite (or hyper-chain). Simple diagrams are
further classified as nodal (or chain) or elementary.

Nodal diagrams (N diagrams) are defined as diagrams
having one or more nodes: internal (filled) points that are
necessarily crossed by any path going from one interacting
point to the other. For instance, diagram (b) of Fig. 2 is
nodal and the points labeled with i and j are both nodes.
Not-nodal diagrams (X diagrams) include both the elementary
(E diagrams) and the composite ones. Composite diagrams
are obtained by combining two or more nodal diagrams.
Diagram (d) of Fig. 2 is composite and is composed of two
nodal subdiagrams. Elementary diagrams (E diagrams) are the
remaining ones. They are neither composite nor nodal. They
can be constructed by first identifying the basic topological
structures we want to include. Such basic structures have the
property that each of their internal points is reached by at
least three links and the two external points by at least two.
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The links are building blocks given by N + X diagrams. The
basic structures are characterized by their number of points,
the minimum being four (E4). Diagram (c) of Fig. 2 is an
example of four-point elementary diagrams.

V. PB-FHNC SCHEME

The PB-FHNC integral-equation method [23] gives an easy
way of summing the series of cluster terms by specifying rules
for building diagrams, using other diagrams as building blocks
in an iterative way. The method extends hypernetted chain
(HNC) theory to the case of correlated quantum Fermi systems;
HNC theory was widely used in statistical thermodynamics
[24] and, more recently, was applied to CBF calculations for
low-temperature Bose systems such as liquid 4He and 3He
impurity in 4He [25]. It is based on two basic algorithms: the
chain and hyperchain.

a. Chain algorithm. This consists of summing up the whole
series of N diagrams made from a given building block. One
simply takes the sum of the geometric series of the Fourier
transforms of the building block function, which is given by a
subset of X functions,

Ñ (k) = ρX̃2(k) + ρ2X̃3(k) + · · · = ρX̃(k)

1 − ρX̃(k)
, (20)

which can be expressed in terms of the following integral
equation:

N (rij ) = ρ

∫
drkjX(rik)(N (rkj ) + X(rkj )). (21)

This formula can be interpreted in terms of probabilities.
Each integral can be thought of, given two external particles
i, j , as the probability to find a third in-medium particle k—
expressed by ρ—times the probability of i interacting with k

times the probability of k interacting with j .
b. Hyperchain algorithm. This consists of summing up the

whole class of X diagrams made from a given subset of N

diagrams:

X(rij ) = f 2(rij ) exp [N (rij ) + E(rij )] − N (rij ) − 1, (22)

where f 2(rij ) is given by exp(−V (rij )/KT ) in statistical
thermodynamics and by the correlation function of the scalar
Jastrow ansatz

∏
(f (rij )) in the variational calculations of

zero-temperature Bose systems. The function E(rij ) corre-
sponds to the E diagrams, which cannot be calculated in a
closed form, like the N and X diagrams. The meaning of
X becomes clear if we imagine expanding the exponential
in series: We are summing an increasing number of N

and E diagrams. The result of this procedure will give of
course composite and elementary diagrams. In addition to
those the exponential term includes the nodal diagrams and
the identity which we must subtract to get the sum of the
not-nodal diagrams. The function E(rij ) is a functional of
N (rij ) and X(rij ) and in general it is approximated by the first
few-body basic diagrams (the lowest of which is the four-body
basic diagram, like the diagrammatic structure underlying
diagram 2(c).

d e c
FIG. 3. Labeling of external points. See text for further details.

c. FHNC algorithm. Equations (21) and (22) are formally
identical to the HNC equations of statistical thermodynamics
and can be solved in an iterative way by means of the following
steps:

(i) Take N (rij ) = 0.
(ii) Compute X(rij ) using Eq. (22) and taking the function

N (rij ) from the previous step.
(iii) Compute N (rij ) using Eq. (21) and taking the functions

X(rij ) and N (rij ) on the right-hand side from steps 2
and 3, respectively.

(iv) Return to step 2, and continue until convergence is
obtained.2

The pair correlation function,

g(r12) = A(A − 1)

ρ2

∫
dr3dr4 · · · ||2∫
dr1dr2 · · · ||2 , (23)

where

g(r12) = 1 + N (r12) + X(r12)

= f 2(r12) exp(N (r12) + E(r12)). (24)

In the case of Fermi systems, in addition to the dynamical
correlation bonds, there are also the exchange bonds, with
the diagrammatic rules given in Sec. IV. Because of this, the
FHNC method requires further subdivision of diagrams by
labeling the exchange character of the two external points (e.g.,
Fig. 3). Each point in a diagram is labeled with a d unless it is
reached by an exchange line part of a closed loop (labeled with
e). Therefore, one has four different nodal functions Ndd (rij ),
Nde(rij ), Ned (rij ), and Nee(rij ), with Nde(rij ) = Ned (rji).
Similarly one has four X and E functions. In addition, one needs
to introduce another class of functions, those in which the two
external points are joined by an open loop of exchange lines,
which are denoted with the label cc. This last class of points
should not be present in allowed diagrams: Diagrams with c
points are nonphysical (i.e., they have no physical meaning if
taken alone) but we include them as useful building blocks to
construct a diagram having a closed loop passing through the
two external points 1 and 2.

It should be noticed that, as in HNC theory, the external
points i and j of N , X, and E diagrams summed up at a given
iteration of the FHNC scheme, may become internal points
of the next generation of diagrams. The true external points 1
and 2 are those at convergence.

The chain algorithm for a Fermi system has to take into
account the statistical nature of the convolution node, which

2If convergence cannot be achieved one can mix the newly computed
functions with those computed during the previous iteration.
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Ndd,1st = · · ·+

1 2

3

1 2

3

+

1 2

3

+

FIG. 4. Building of an Ndd : graphical counterpart to Eq. (25).

can be either d or e in the case of the chain equations for Ndd ,
Nde, and Nee, and has to be necessarily of the type c for Ncc.
As an example, the equation used to build Ndd (rij ) is

Ndd (rij ) = ρ

∫
	

drkjXdd (rik)[Xdd (rkj ) + Ndd (rkj )]

+ ρ

∫
	

drkjXdd (rik)[Xed (rkj ) + Ned (rkj )]

+ ρ

∫
	

drkjXde(rik)[Xdd (rkj ) + Ndd (rkj )], (25)

where in the first convolution integral the node is of the d type
and, in the remaining two, it is of type e. Figure 4 exemplifies
the above chain equation.

In close analogy with HNC theory, the equation used to
build an Xdd diagram is

Xdd (r12) = gdd (r12) − Ndd (r12) − 1, (26)

where

gdd (r12) = f 2(r12) exp(Ndd (r12) + Edd (r12)). (27)

The complete set of formulas that are needed to compute
the pair distribution function and the energy per particle are
given in Ref. [23]. At present we do not know any formula
able to give us a useful prescription to sum E diagrams in a
closed form, like those for N and X. Luckily enough their
contribution was shown to be almost negligible in the case of
translationally invariant nuclear systems [26]. This allows us
to neglect them for all practical purposes and hence to use the
so-called FHNC/0 approximation.

A. Vertex corrections

Linked diagrams can be divided into two classes:
(i) reducible diagrams [like diagram (b) of Fig. 2] having one
or more reducibility points, which are the only contact points of
two subdiagrams; (ii) irreducible diagrams [like diagrams (c)
and (d) of Fig. 2] which have no reducibility points. The cluster
integral corresponding to reducible diagrams is factorizable in
the product of the cluster integrals corresponding to the under-
lying irreducible diagrammatic structures. The FHNC scheme
sketched in the previous section sums up the irreducible
diagrams only. In fact, they are the only remaining diagrams in
pure Jastrow theory (f‖ = f⊥), because all the reducible ones
cancel each other exactly. For instance, diagrams a and b of
Fig. 5 cancel each other because the exchange loop insertion
leads to a factor −1 because of the orthonormality of the
single-particle orbitals φn. However, the cancellation is no
longer true in the more general case of the ansatz given in
Eq. (10) and in Eq. (13) or when the Slater determinant of
plane waves is substituted by a BCS wave function to describe

1 2

3

1 2

3

+

1 21 2

+

1 21 2

= ξd(r1)

1 2

a b c

d e

FIG. 5. Diagrammatic exemplification of vertex correction. Di-
agrams (a)–(c) are summed up to give ξd (r1). Diagrams (d) and (e)
show a basic property of the FHNC equations for Ud and Ue. They are
the same under integration. However diagram (e) contrary to diagram
(d) is invariant under the exchange P23. Hence, it has to be weighted
with a prefactor 1/2. That is why in the explicit formula for Ud one has
to subtract from

∫
drijXdd (rij ) several other terms that are needed to

remove the overcounting coming from these missing prefactors (see
Ref. [22]).

a superfluid Fermi system like, for instance, neutron matter at
low density and zero temperature.

It was proved [22] that one can still use the FHNC scheme
previously described, paying the price of renormalizing the
various points of the irreducible diagrams by proper vertex
corrections, which take into account all the possible one-body
subdiagrams that can be linked to them. The process is
exemplified by the diagrammatic equation displayed in Fig. 5.
There are two types of vertex corrections, ξd (r) for points not
reached by exchange lines and ξe(r) for the others. They are
given by the following equations:

ξd (r) = (1 + Ue(r)) exp(Ud (r)), ξe(r) = exp(Ud (r)), (28)

where Ue and Ud are the sums of diagrams with e and d

starting points, respectively. In practice, this is accomplished
by integrating the functions Xdd (rij) and Xde(rij) over rj for
Ud and Xed (rij) and Xee(rij) over rj for Ue and then correcting
them to avoid overcounting that would arise because of the
increased symmetry passing from a two-body diagram to a
one-body one. For instance, triangular diagrams of Fig. 5 have
different symmetry factors. The factor is 1 for the two-body
diagram d of Fig. 5 and 1/2 for the one-body diagram e of
Fig. 5. The derivation of the equations leading to Ud and Ue

can be found in Ref. [22]
In the above equations Ud comes in the exponential to

account for the unlimited number of Ud terms that can stem

1 2

3
(fppfpn − 1) or (fnnfnp − 1)

1 2

nn

pp

FIG. 6. (Left panel) Diagram showing how the new δ correlation
results from the isospin-state flip of a particle. (Right panel) An
exchange loop passing through two different external points.

035807-7



NICOLA BASSAN, STEFANO FANTONI, AND KEVIN E. SCHMIDT PHYSICAL REVIEW C 84, 035807 (2011)

from any point either of type d or type e. On the contrary, one
can have one Ue term only as a vertex correction of a point of
type d. It should be noted that ξd corresponds to the sum of
all the possible one-body linked diagrams and, hence, to the
one-body correlation function that, for a homogeneous system,
is g1(r) = 1. The sum rule ξd = 1 can be used as a measure of
the accuracy of the FHNC approximation.

As a final remark, we should note that vertex corrected
(or renormalized) diagrams do not need to obey our third
FHNC rule (i.e., there may be diagrams with internal points
not reached by a dashed line). However, this requires that the
point should have been reached by a dashed line pertaining
to a subdiagram accounted for by a correction, implying that
we will introduce a third correction ξc that includes the same
diagrams as ξe except for the identity:

ξc = ξe − 1. (29)

After having sketched the main instruments of PB-FHNC
theory we extend it in the following to include longitudinal
isospin dependence in the correlation operator and to the N 
=
Z trial functions.

VI. STATE-DEPENDENT PB-FHNC EQUATIONS

The PB-FHNC equations derived in this paper are obtained
for the more general form of the correlation operator, given in
Eq. (11) and not for the restricted one of Eq. (13). It follows that
nodal, composite, elementary functions, as well as distribution
functions, will have the structure of a four-component vector,

A(rij ) = (ANN (rij ), APP (rij ), ANP (rij ), APN (rij )), (30)

where we have also indicated the projectors used in Eq. (13).
Our nodal equations can be written in a compact way by

exploiting the convolution formalism. We make the definition:

Cα(rij ) = (A(rik) |B(rkj ))α, (31)

where the subscript α denotes the exchange nature of the node
k and, consequently, that of the related vertex correction. It can
be of type d, e, or c. The four components of C are given by

CNN
α (rij ) =

∑
b=N,P

ρbξ
b
α

∫
	

drkA
Nb(rik)BbN (rkj ),

CPN
α (rij ) =

∑
b=N,P

ρbξ
b
α

∫
	

drkA
Pb(rik)BbN (rkj ),

(32)
CNP

α (rij ) =
∑

b=N,P

ρbξ
b
α

∫
	

drkA
Nb(rik)BbP (rkj ),

CPP
α (rij ) =

∑
b=N,P

ρbξ
b
α

∫
	

drkA
Pb(rik)BbP (rkj ).

1. Nodal diagrams

Using the above convolution formalism the chain equations
for Ndd , Nde, Ned , and Nee can be recast in a more compact

way, as follows:

Ndd = (Xdd |Ndd + Xdd )d + (Xde |Ndd + Xdd )e
+ (Xdd |Ned + Xed )e,

Nde = (Xdd |Nde + Xde)d + (Xde |Nde + Xde)e
+ (Xdd |Nee + Xee)e,

(33)
Ned = (Xed |Ndd + Xdd )d + (Xee |Ndd + Xdd )e

+ (Xed |Ned + Xed )e,

Nee = (Xed |Nde + Xde)d + (Xee |Nde + Xde)e
+ (Xed |Nee + Xee)e.

The chain equation for Ncc can be written in convolution
notation as

Ncc(r12) =
(

Xcc |Xcc + Ncc − l
d

)
e

+
(

− l
d

∣∣∣∣Xcc + P
)

e

+
(

− l
d

∣∣∣∣− l
d

+ Ncc − P
)

c

, (34)

where P is given by

P(r12) =
(

Xcc |Xcc + Ncc − l
d

)
e

. (35)

These last two equations cannot, however, be applied blindly.
According to the RF definitions, cc diagrams have exchange-
line paths connecting 1 directly to 2 and so, since exchange
correlations cannot flip spins, only PP and NN components
are allowed,whereas the components NP and PN vanish for
Ncc, Xcc, Ecc, and P . The degeneracy factor (d) here is equal to
2, accounting only for the two possible spin states (the isospin
states of a pair are singled out in our treatment).

2. Composite diagrams

The equations for the composite functions are a straightfor-
ward generalization of the corresponding equations in standard
PB-FHNC theory, and are given by

Xα
dd (r12) = gα

dd (r12) − Nα
dd (r12) − 1,

Xα
de(r12) = Xα

ed (r21) = gα
dd (r12)

[
Nα

de(r12) + Eα
de(r12)

]
−Nα

de(r12),
(36)

Xα
ee(r12) = gα

dd (r12)

{
Nα

ee(r12) + Eα
ee(r12)

+ [Nα
de(r12) + Eα

de(r12)
]2 − d

[
Nα

cc(r12)

− 1

d
�α(r12) + Eα

cc(r12)

]2}
− Nα

ee(r12),

Xα
cc(r12) = gα

dd (r12)
[
Nα

cc(r12) − 1
2�a(r12) + Eα

cc(r12)
]

−Nα
cc(r12) + 1

2�α(r12),

where the gdd distribution function is defined as

gα
dd (r12) = f α2(r12) exp

[
Nα

dd (r12) + Eα
dd (r12)

]
. (37)
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It is useful to define also the following four distribution
functions:

gα
de(r12) = gᾱ

ed (r21) = Nα
de(r12) + Xα

de(r12),

(gdir)
α
ee(r12) = gα

dd (r12)
{
Nα

ee(r12) + (Edir)
α
ee(r12)

+ [Nα
de(r12) + Eα

de(r12)
]2}− Nα

ee(r12),
(38)

(gexch)αee(r12) = −d gα
dd (r12)

[
Nα

cc(r12) − 1

d
�a(r12)

+Eα
cc(r12)

]2

+ gα
dd (Eexch)αee(r12),

gα
cc(r12) = Nα

cc(r12) + Xα
cc(r12) − 1

d
�α(r12),

where the components α = NP and α = PN of (gexch)ee are
identically zero.

3. Vertex corrections

In deriving the vertex corrections we need to distinguish
whether the vertex to be corrected is a neutron or a proton.
Extending the derivation of Ref. [22] we get the following
expressions:

UN
d =

∑
b=N,P

ρb

∫
	

dr12
{
ξb
d

[
XNb

dd (r12) − ENb
dd (r12)

− SNb
dd (r12)

(
gNb

dd (r12) − 1
)]+ξb

e

[
XNb

de (r12)−ENb
de (r12)

− SNb
dd (r12)gNb

de (r12)−SNb
de (r12)

(
gNb

dd (r12)−1
)]}+En

d ,

(39)

for the vertex correction of type d, and

UN
e =

∑
b=N,P

ρb

∫
	

dr12
{
ξb
d

[
XNb

ed (r12) − ENb
ed (r12)

]+ ξb
e

[
XNb

ee (r12) − ENb
ee (r12)

]− ξb
d

[
SNb

dd (r12)gNb
ed (r12) + SNb

ed (r12)gNb
dd (r12)

]

− ξb
e

[
SNb

ee (r12)
(
gNb

dd (r12) − 1
)+ SNb

ed (r12)gNb
de (r12) + SNb

de (r12)gNb
ed (r12) + SNb

dd (r12)gNb
ee (r12)

]}

− d

∫
	

dr12

{
ρNξN

e SNN
cc (r12)gNN

cc (r12) + �N (r12)

[
NNN

cc (r12) − 1

d
�N (r12)

]}
+ EN

e , (40)

for the vertex correction of type e, where N is a shorthand for

NNN
cc (r12) = NNN

cc (r12) − ξN
e ρN

∫
	

dr32X
NN
cc (r13)

[
XNN

cc (r32)

+NNN
cc (r32) − 1

d
�N (r32)

]
, (41)

and the quantity S is defined as

Sij = 1
2 (Nij + Eij ). (42)

Obviously U
p

e,d is given by simply interchanging each super-
script p ↔ n in the above.

4. Two-body distribution function

The above equations can be solved iteratively. At con-
vergence, the solutions can be used to compute the scalar
two-body distribution function, given by

gc(r12) =
∑

a,b=N,P

gab
c (r12)

= 1

ρ2

∑
a,b=N,P

ρaρb

[
ξa
d ξb

d gab
dd (r12) + ξa

d ξb
e gab

de (r12)

+ ξa
e ξb

d gab
ed (r12) + ξa

e ξb
e

(
(gdir)

ab
ee (r12)

+ (gexch)ab
ee (r12)

)]
. (43)

In the case of symmetric nuclear matter (N = Z) and of a
state-independent correlation operator (f‖ = f⊥), the quantity
gc(r12) recovers the two-body distribution function g(r12) of
Jastrow theory given in Eq. (24). This can be easily understood

by taking into account (i) the sum rule ξd = 1 and (ii) that ξegde

and ξ 2
e gee of our vertex corrected PB-FHNC theory coincide

with the corresponding distribution functions gde and gee of
the standard one.

A. Potential energy expectation value

The expectation value of a two-body potential of the v4 type
on the trial function F̂JL|0] is given by

〈V 〉
A

= ρ

2

∫
	

dr12{υc(r12)gc(r12) + 3υσ (r12)gσ (r12)

+υτ (r12)gτ (r12) + 3υστ (r12)gστ (r12)}. (44)

The first term on the right-hand side corresponds to the
expectation value of the scalar component of the v4 potential.
We discuss, in the following, the remaining three terms. Recall
that we are dealing with a polarized system with respect to
isospin (N 
= Z), but with a strictly nonpolarized one with
respect to spin.

1. σ1 · σ2 term

The correlation operator F̂JL has no spin dependence. Since
〈σ1 · σ2〉 = 0 in spin symmetrical matter, in the calculation of
the expectation value of vσ (r12)σ1 · σ2, the direct terms of the
distribution function do not contribute. On the contrary, the
exchange terms carry the spin-exchange operator and one has
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to take care of the following spin algebra

〈(σ1 · σ2)Pσ (1, 2)〉 =
〈
(σ1 · σ2)

1 + σ1 · σ2

2

〉

=
〈

3 − σ1 · σ2

2

〉
= 3

2
. (45)

In conclusion we have

gσ (r12) = 1

ρ2

((
ξN
e ρN

)2
(gexch)NN

ee (r12)

+ (ξP
e ρP )2(gexch)PP

ee (r12)
)
. (46)

2. τ1 · τ2 term

The operator τ1 · τ2 carried by the τ component of the v̂4 po-
tential requires a specific and new PB-FHNC treatment, when
dealing with a correlation operator of the F̂JL type and a N 
=
Z matter. We begin by calculating the isospin matrix elements.

The direct terms are

〈NN |υτ (τ1 · τ2) |nNN〉 = 〈PP |υτ (τ1 · τ2) |PP 〉
= υτ (r12),

〈NP |υτ (τ1 · τ2) |NP 〉 = 〈PN |υτ (τ1 · τ2) |PN〉
= −υτ (r12), (47)

and the exchange terms are

〈NN |υτ (τ1 · τ2)Pτ |nNN〉 = 〈PP |υτ (τ1 · τ2)Ptau |PP 〉
= υτ (r12),

〈NP |υτ (τ1 · τ2)Pτ |NP 〉 = 〈PN |υτ (τ1 · τ2)Pτ |PN〉
= 2υτ (r12). (48)

The second row of the above equation deserves particular
attention. Because of the fact that we have, for example,|NP 〉
in the ket and 〈PN | in the bra, we have the following:

(i) A different kind of correlation reaching the external
point 1 or the external point 2. Under the assumption of
Eq. (13) there is only one type for such new correlations,
and we denote it as δ correlation (See Fig. 6 left panel):

hδ(rij ) = f‖(rij )f⊥(rij ) − 1. (49)

(ii) The exchange loop passing through 1 and 2 is made of
two cyclic nodal functions, one of type P and the other
of type N (See Fig. 6 right panel).

It follows that the g distribution for these matrix elements,
which we denote by gδ(�r12), has to be built by solving
appropriate PB-FHNC equations, taking into account the
above two properties. We have

gτ (r12) = 1

ρ2

(
gδ(r12) +

∑
a=N,P

{
ρ2

a

[
(ξa

d )2gaa
dd (r12) + ξa

d ξa
e

(
gaa

de (r12) + gaa
ed (r12)

)+ (ξa
e

)2(
(gdir)

aa
ee (r12) + (gexch)aa

ee (r12)
)]}

−
∑

a=N,P

ρaρā

[
ξa
d ξ ā

d gaā
dd (r12) + ξa

d ξ ā
e gaā

de (r12) + ξa
e ξ ā

e gaā
ed (r12) + ξa

e ξ ā
e (gdir)

aā
ee (r12)

))
, (50)

where ā labels the isospin conjugate of a, namely| ā〉 = τx |a〉
and the mixed distribution function gδ is given by

gδ(r12) = −4dρNρP ξ 2
eδf

2
⊥eNNP

δδ (r12)

[
NNN

δδcc(r12) − 1

d
�N (r12)

]

×
[
NPP

δδcc(r12) − 1

d
�P (r12)

]
. (51)

In the case of N = Z matter and f‖ = f⊥, one has ρN = ρP ,
ξN = χP with the result that gδ = 2gσ and consequently that
gτ = 3gσ .

The nodal function NNP
δδ (r12) is defined by the convolution:

NNP
δδ (r12) = (Xδd |Ndδ + Xdδ)d + (Xδe |Ndδ + Xdδ)e

+ (Xδd |Neδ + Xeδ)e, (52)

where the nodal and composite vector functions of the type
dδ and eδ have only the two components which specify the
isospin state of the particle related to the external label d or e.
The two chain equations are

Nδd (r12) = ((Xδd | (Ndd + (Xdd )d + ((Xδe |Ndd + Xdd )e
+ (Xδd |Ned + Xed )e,

(Nδe(r12) = (Xδd | (Nde + (Xde)d + ((Xδe | (Nde + (Xde)e
+ ((Xδd | (Nee + (Xee)e, (53)

and the composite functions are

Xb
δd (r12) = gb

δd (r12) − Nb
δd (r12) − 1,

Xb
δe(r12) = Xb

eδ(r21) = gb
δd (r12)

[
Nb

δe(r12) + Eb
δe(r12)

]
−Nb

δe(r12), (54)

with b = N,P , and gδd given by

gb
δd (r12) = f‖(r12)f⊥(r12)e(Nb

δd (r12)+Xb
δd (r12)). (55)

The two components Nα
δδcc, with α = NN,PP , entering

Eq. (51), can be given in terms of the following convolution
equation:

Nδδcc(r12) =
(

Xδcc |Xδcc + Nδcc − l
d

)
e

+
(
− l

d

∣∣∣∣Xδcc + P̂δ

)
e

+
(

− l
d

∣∣∣∣− l
d

+ Nδcc − Pδ

)
c

, (56)

where the two-component vector functions Nδδcc, Xδδcc, and
Pδ are given by

Nδcc(r12) =
(

Xδcc |Xcc + Ncc − l
d

)
e

+
(

− l
d

∣∣∣∣Xcc + P
)

e

+
(

− l
d

∣∣∣∣− l
d

+ Ncc − P
)

c

,
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TABLE I. Results for symmetrical nuclear matter at ρ = 0.16 for
different correlated models. The first two rows for each potential are
obtained for 2060 nucleons in a periodic box by using the vertex
corrected PB-FHNC equations. We have used a grid with 60 points in
each direction.The third and fourth rows report the results obtained
with FHNC/SOC equations in the thermodynamic limit for the F̂2

and F̂4 models. The energies are in MeV.

Potential Approx. A Efree PE KE E

AT 4′ Jastrow 2060 22.136 −43.595 28.455 −15.150
F̂JL 2060 22.136 −44.053 28.016 −16.090
F̂2 ∞ 22.107 −44.163 28.208 −15.955
F̂4 ∞ 22.107 −44.756 28.587 −16.169

(AV 8′)4 Jastrow 2060 22.136 −27.545 29.499 1.954
F̂JL 2060 22.136 −30.070 31.722 1.652
F̂2 ∞ 22.108 −28.569 30.152 1.583
F̂4 ∞ 22.108 −31.146 32.055 0.909

Xα
δcc(r12) = gα

δd (r12)
[
Nα

δcc(r12) − 1

2
�a(r12) + Eα

δcc(r12)
]

−Nα
δcc(r12) + 1

2
�a(r12),

Pδ(r12) =
(

Xcc |Xccδ + Nccδ − l
d

)
e

. (57)

To complete our PB-FHNC set, we need to define Ua
δ so as

to define ξa
δe:

ξδe = eUδ , (58)

Uδ =
∑

b=N,P

ρb

∫
	

dr12
{
ξb
d

[
Xb

δd (r12) − Eb
δd (r12)

− Sb
δd (r12)

(
gb

δd (r12) − 1
)]+ ξb

e

[
Xb

δe(r12) − Eb
δe(r12)

− Sb
δd (r12)gb

δe(r12) − Sb
δe(r12)

(
gb

δd (r12) − 1
)]}+ Eδ,

(59)
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FIG. 7. (Color online) AT4′ correlation functions at ρ = 0.16.
The parallel and antiparallel correlations of the F̂JL model are
compared with Jastrow correlation.

TABLE II. PB-FHNC Results for the AT 4′ potential at ρ0. For
the smaller systems, 26 neighbor cells were summed over; our grid
had 60 points in each direction. �E gives the difference in energy
with respect to the Jastrow case. The energies are in MeV.

A Efree PE KE E �E

28 22.427 −43.994 28.311 −15.682 −0.888
76 21.231 −44.890 27.119 −17.771 −0.938
108 21.277 −44.933 27.163 −17.769 −0.932
132 21.996 −44.304 27.895 −16.409 −0.935
2060 22.136 −44.053 28.016 −16.090 −0.940

where

gb
δe(r12) = Nb

δe(r12) + Xb
δe(r12),

(60)
Sb

δt (r12) = 1
2

(
Nb

δt (r12) + Eb
δt (r12)

)
(t = d, e).

3. (σ1 · σ2)(τ1 · τ2) term

The distribution function gστ can be easily calculated by
using the expressions derived in the previous two subsections.

gστ (r12) = 1

ρ2

(
ρ2

N

(
ξn
e

)2
(gexch)NN

ee (r12)

+ ρ2
P

(
ξp
e

)2
(gexch)PP

ee (r12) + gδ

)
. (61)

B. Kinetic energy expectation value

In this section we calculate the expectation value of the
kinetic energy 〈K〉/A using the Jackson-Feenberg identity,
following the procedure shown in Ref. [27] and further
discussed in Ref. [22]. It is given as a sum of three terms: a term
giving the Fermi energy (EF ), a term accounting for two-body
contributions (E2), and a term for three-body contributions
(E3).

The Fermi energy is easily expressed as

EF = 1

N

∑
filled N states

h̄2k2
N

2m
+ 1

Z

∑
filled Z states

h̄2k2
P

2m
. (62)

The two-body contribution to the kinetic energy can be split
into two parts: the first one accounting for the contribution
coming from �2 acting on the correlations f‖ and f⊥ and the
second one accounting for exchanges. The resulting expression

TABLE III. Results for the (AV 8′)4 potential at ρ0. See captions
of Table II.

A Efree PE KE E �E

28 22.427 −30.937 31.971 1.034 −0.270
76 21.231 −30.618 30.782 0.164 −0.250
108 21.277 −30.590 30.826 0.235 −0.249
132 21.996 −30.187 31.559 1.372 −0.256
2060 22.136 −30.070 31.722 1.652 −0.302
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FIG. 8. (Color online) AT4′ correlation functions at ρ = 0.016
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(marked with a). We show for comparison two correlation functions
whose healing distance was set to 1 so to keep their value everywhere
below 1.

for the case of the F̂JL ansatz and a N 
= Z matter is

E2 = EF
2 + E�

2 ,

EF
2 = − h̄2

4m
ρ

∫
	

dr
[
gNN

c (r) + gPP
c (r)

]
�2 ln f‖(r)

− h̄2

4m
ρ

∫
	

dr
[
gPN

c (r) + gNP
c (r)

]
�2 ln f⊥(r),

E�
2 = − h̄2

8m

ρ2
N

ρ

∫
	

dr
(
gNN

dd (r) − 1
) ( 1

d
�2�N

2(r)

− 2ξN
e NNN

cc (r)�2�N (r) + 2ξN
c

�N

d
�2�N (r)

)

− h̄2

8m

ρ2
P

ρ

∫
	

dr
(
gPP

dd (r) − 1
) ( 1

d
�2�P

2(r)

− 2ξP
e NPP

cc (r)�2�P (r) + 2ξP
c

�P

d
�2�P (r)

)
. (63)

The three-body contribution comes from (��12 · ��13) and is
given by

E3 = − h̄2

4md

∑
a=N,P

ρ3
a

ρ

∫
	

dr
∫

	

dr′��a(r) · ��a(r′)

× (gaa
dd (r) − 1

)(
gaa

dd (r′) − 1
)

× ξa
e

[
Na

cc(r − r′) − 1

d
�a(r − r′)

]
gaa

dd (r − r′). (64)

C. Single-particle excitation spectrum

The single-particle potential of nuclear matter is calculated
by applying the method devised in Ref. [28] to PB-FHNC
theory and N 
= Z matter. This will allow us to evaluate the
single-particle neutron and proton potentials in neutron-rich
matter.

TABLE IV. SNM energy per particle computed at ρ = 0.016
using the AT4′ potential. Our grid was set up to have 45 points in
every direction.

d fm 1 3 3.1 3.2 3.3 3.35
E MeV −0.73 −2.634 −2.787 −2.950 −3.087 −3.097

It is convenient to calculate, as in Ref. [28], the particle-
hole excitation energy rather than directly the single-particle
excitation, mainly because the|ph) state has the same number
of particles as the ground state. Let us consider,

εa(p, h) = 〈(paha |H |paha)〉p̂a ,ĥa
− E0, (65)

where (ph |H |ph) is defined in Eq. (9), the label a specifies
the isospin nature of the excitation, and 〈〉 stands for average
over the directions of p and h. As discussed in Sec. III A
the variational estimates of diagonal states are maintained
after orthogonalization. The single-particle excitation εa(q)
can be obtained from εa(q, kF ) = ±εa(q) ∓ εFa , where the
upper sign is for particle state (q > kF ) and the lower one for
hole states (q < kF ), and

εFa = E0

A
+ ρa

A

∂E0

∂ρ
,

= ε0 + ρa

∂ε0

∂ρ
. (66)

The single-particle spectrum is related to the real part of
the nuclear optical potential by

εa(q) = h̄2q2

2m
+ Ua(q). (67)

One can eliminate q from εa(q) and Ua(q) to obtain an
energy-dependent Ua(ε). Perturbative corrections to εa(q)
and Ua(q) include coupling with two-particle one-hole states
|p′, p′′, h) for q > kF or two-hole one-particle states
|h′, h′′, p), for q < kF , giving a width to|q).
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FIG. 9. (Color online) AT4′ g functions at ρ = 0.016 for d = 3.30.
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TABLE V. Number of protons and neutrons for different admixtures that we studied and results at different densities.

Z N A �A % α2 E(10−2ρ0) E(10−1ρ0) E(ρ0) E(ρ = 0.25)

0 1898 1898 0 0.00% 1.000 1.26 4.94 25.55 57.13
54 1850 1904 6 2.84% 0.890 1.16 4.28 20.78 47.52
114 1790 1904 6 5.99% 0.775 1.05 3.62 15.95 39.30
186 1694 1880 −18 9.89% 0.643 0.93 2.86 10.44 29.00
294 1598 1892 −6 15.54% 0.475 0.78 1.91 3.44 15.84
406 1502 1908 10 21.28% 0.330 0.65 1.08 −2.64 4.40
514 1382 1896 −2 27.11% 0.210 0.55 0.42 −7.55 −4.88
730 1174 1904 6 38.34% 0.054 0.42 −0.43 −13.84 −16.79
874 1030 1904 6 45.90% 0.007 0.38 −0.70 −15.88 −20.67

The particle-hole state |paha) is generated in PB-FHNC
theory by introducing the following density matrices:

la(rij ; qa; kFa) = la(rij ) + �a(rij ; qa; kFa),

�a(rij ; qa; kFa) = ± 1

Nqa

Nqa∑
n∈qa

φ∗
n(i)φn(j )

∓ 1

NkFa

kFa∑
n∈kFa

φ∗
n(i)φn(j ), (68)

where the summations are extended to the Nqa
states of the

shell h̄2q2
a/(2m) and the NkFa

states of the shell h̄2k2
Fa/(2m).

The cluster diagrams contributing to εa(q, h) can be
obtained by substituting in all the allowed diagrams of E0

one and only one la line with a �a line, for all the la lines of
the diagram. To sum up the resulting series of cluster terms
one can use the following algorithm:

(i) Modify the density matrices in the following way:

la → la + x�a, (69)

where x is a smallness parameter and serves to take
only one � line at a time in each diagram.

(ii) Solve the PB-FHNC equations with the modified
density matrices.
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FIG. 10. (Color online) Energies per particle (E/A) of admix-
tures with different α2 at different densities.

(iii) Compute the energy expectation value
εa(ρN, ρP ; q; kF ; x), as for the ground-state energy,
with the Fermi energy given by

εFa(q, kF ) = h̄2

2m

(± q2 ∓ k2
Fa

)
. (70)

(iv) Compute the particle-hole excitation from

εa(q, kF ) = ∂

∂x
εa(ρN, ρP ; q; kF ; x) | x=0. (71)

Note that the discrete character of PB-FHNC implies
that εFa will lie in between two energy shells, that we
denote as εFa− and εFa+. It follows that the particle energies
will be extracted from εa(pa, kFa−) and the hole states
from εa(ha, kFa+). Therefore, one also needs to compute
εa(kFa+, kFa−).

The neutron and proton effective masses are given by the
derivatives,

m∗
a(ε)

m
= 1 = ∂Ua(ε)

∂ε
. (72)

Enhancements of m∗
a(ε) will correspond to flattening of

Ua(ε) around ε ∼ εFa which, most likely, will happen only
after having added the perturbative corrections [29].

VII. RESULTS

In this section we present and discuss vertex corrected PB-
FHNC calculations, performed with the F̂JL model, under the
parallel-antiparallel approximation of Eq. (13) for the AT 4′
and (AV 8′)4 potentials.

We encoded our PB-FHNC scheme as an extension of the
code already used in Ref. [19] and we refer the reader to that
paper for details of the numerical techniques used. Whenever
possible, we made use of standard libraries (e.g., fftw3) and
routines documented elsewhere (e.g., the ODE integration

TABLE VI. Symmetry energy computed at different densities
using the AT4′ potential.

ρ (fm−3) 10−2ρ0 10−1ρ0 ρ0 0.25

S (MeV) 0.89 5.66 41.62 77.96
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FIG. 11. (Color online) Energy per particle of SNM computed
at different densities using the AT4′ potential. For low densities we
forced the system to be homogeneous.

routines from Ref. [30]). We tested our double-precision code
with different compilers and different optimizations, always
obtaining consistent results.

A. Comparison of various correlated models

We tested our vertex corrected PB-FHNC scheme by
comparing the results for SNM with the simple Jastrow ansatz
with those of Ref. [19]. The results obtained for the expectation
values of the kinetic energy, KE, the potential energy, PE,
and the total energy, E, and displayed in the first and the
fifth row of Table I coincide within five digits with those of
Ref. [19]. Note that this check is not at all trivial because it
follows from the fulfillment of the sum rule ξd = 1 and of the
relations ξegde = gF

de and ξ 2
e gee = gF

ee, where gF
de and gF

ee are
the not vertex corrected PB-FHNC distribution functions of
Ref. [19].

We have analyzed the quality of our proposed variational
model F̂JL by comparing it against the results obtained
with the F̂2 and F̂4 models for SNM at ρ0. As shown in
Table I, the longitudinal isospin-dependent model correlation
F̂JL improves considerably the Jastrow ansatz for the AT 4′
potential. In addition, it gives equally good energy results
as those of the F̂2 model. The effectiveness of τz(1)τz(2)
correlations as compared with the τ1 · τ2 ones is confirmed
by the results obtained with the (AV 8′)4 potential which has a
stronger σ · σ dependence. In Fig. 7, we show our correlation
functions computed at ρ = 0.16. As expected from the Pauli
exclusion principle, at r = 0 there is a stronger antiparallel
correlation and weaker parallel one.

Tables II and III show the dependence of the energy results
on the number of nucleons in the periodic box. One can see that
with A = 132 finite size effects are still large. They become
totally negligible at A = 2060 (see also Ref. [19])

B. Clustering at subnuclear densities

Although our variational ansatz does not allow an explicit
clustering of the nucleonic matter, there are strong indications
for such clustering phenomena for density below 0.1ρ0. To
analyze these indications we have studied the behavior of

total energy and of the pair distribution functions of SNM
at ρ = 0.1ρ0 in two different regions of the healing distance
d. At small d (d ∼ 1 fm) the correlation functions f‖ and f⊥
are below 1 for r � d, and the system does not show any
clustering phenomena. On the contrary, as shown in Fig. 8, at
large d (3 fm � d � 3.35 fm) the correlation functions have
pronounced peaks, occurring roughly at the same value of the
interparticle distance, irrespective of the value of d, as typically
happens in clustering phenomena. One can see from Table IV
that the variational energy gets lower in the region of large d

reaching a minimum around d ∼ 3.3 fm.
In Table IV we show the energy of a system of 2060

nucleons (SNM) computed with different healing distances.
For all these calculations we enforced the same level of
convergence of our FHNC equations. For d > 3.35 fm we
were not able to make our equations converge any longer.
For comparison we show the energy obtained with d = 1 fm
which is the largest healing length that does not produce the
clustering effect.

In Fig. 9 we show our results, obtained with d = 3.30 fm for
the various g components and for gdd, gde, and gee. It is easy
to see that indeed in the channel np there is a clear evidence
of clustering occurring.

Our results strongly indicate that at such low densities
variational functions allowing for a nucleus embedded in a
neutron fluid would have a lower energy with respect to those
describing an homogeneous fluid. In the following we have
always forced the system to behave as an homogeneous fluid.

C. Symmetry energy at subnuclear densities

One of the main advantages of a τz1τz2 form of the
isospin correlations is that one can easily compute the energy
expectation value of nuclear matter with N 
= Z, provided
that both N and Z are magic numbers (i.e., they correspond
to shell closure). For this reason, we cannot keep A = N + Z

fixed. The average value of A which we find more convenient
because it is sufficiently large to reduce finite size effects and
allows for a quite large number of admixtures with the smallest
fluctuations (�A) is the magic number 1898. In Table V we
report the number of protons and neutrons for each admixture,
the percentage Z/A = 0.5(1 − α), and the energy results of
our calculations—performed using AT4′ potential—at four
different densities.

We used our results to check whether the standard way of
fitting asymmetric admixture energies (i.e., using a simple
quadratic fit) can be reliably used at subnuclear densities.
We used MATHEMATICA to fit our results using a sixth-degree
polynomial as a prior. As expected we get null coefficients
for the odd power terms. We also get nonzero coefficients for
the fourth power term. Such coefficients, however, are always
negligible, being at most one order of magnitude smaller than
the second power term one.

In Fig. 10 we show our results and our fits for the energies
(E) of admixtures with different α2. In Table VI we give
our best estimate for the symmetry energy (S) at different
densities computed using the AT4′ potential and a purely
quadratic fit. The value obtained at ρ0 is somewhat larger
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FIG. 12. (Color online) Equation of state for matter at subnuclear
densities; see text for details.

than the experimental results of S ∼ 36 MeV; this is expected
because of the phenomenological nature of our potential.

D. Equations of state for AT4′

In Fig. 11 we show our results for the energy of SNM
computed at different densities using the AT4′ potential. We
find that we can nicely fit our data by

ESNM(ρ) = E0 + a(ρ − ρeq)2 + b(ρ − ρeq)3eγ (ρ−ρeq), (73)

where E0 = −22.51 MeV, ρeq = 0.33 fm−3, a =
220 MeV fm6, b = −1.56 MeV fm9, and γ = −5.570 fm3.
The EOS for asymmetric matter can then be written, fitting
the data for different α, as

E(ρ, α) = ESNM(ρ) + Cs

(
ρ

ρeq

)γs

α2, (74)

where Cs = 82.86 MeV and γs = 0.913.
In Fig. 12 we show our EOS at subnuclear density computed

in two cases: PNM and 10% protons. We show in the same plot
the BPS EOS [31] as a useful comparison. Quite comfortingly
our results show quite a good agreement at the edge of the
inner crust. This agreement is obviously not preserved at
lower densities because of the absence of clusters. In the
same diagram we also show a point computed subtracting,

from the energy of the pure gas, the binding energy of the
corresponding nucleus (as reported by Ref. [32]) obtained
using the semiempirical mass formula. We used different
polynomials to fit E(ρ) and hence to derive P . The error
bars show our best estimate obtained using a cubic spline
interpolation.

E. Particle hole

In Fig. 13 we show our results for the single-particle energy
in different test cases as a function of q = p − kf . The values
at q = 0 are given by the corresponding chemical potentials
εFa given in Eq. (66). The correlation effects can be viewed
by comparing the F̂4 results with the corresponding Fermi
gas estimates. Our results at ρ0 and α = 0 are in reasonably
good agreement with the FHNC/SOC calculations of Ref. [29]
obtained with the Urbana V14 + TNR interaction. One can see
that at lower densities the effects on the optical potential from
the asymmetry are much reduced.

VIII. CONCLUSIONS AND PERSPECTIVES

We have made a first step toward the development of a
technique, based on CBF theory, allowing for a study of the
NS crust from first principles. In particular we have developed
a theoretical framework suitable for studying NS crustal cells
using υ4 potentials and we have applied it, using the AT4′
potential as a test case.

Our results are promising in several respects. First of all it
is shown that using only the third component of the isospin
dependent correlation is a good enough approximation. We
are in a good position, from the variational point of view, to
insert a nucleus in our system as discussed in the introduction.
We are also in a good position to rewrite the FHNC/SOC
scheme, and the CBF perturbative corrections, using this
simplified operator to treat the isospin. This would enable us
to use more realistic potentials (particularly those with tensor
interaction) and hence to refine our results. Notice that standard
FHNC/SOC does not allow for asymmetric matter.

Moreover the vertex corrected theory developed here can
be readily used to include superfluid effects, thus improving
the accuracy of our description of the crustal matter.

Finally the extension of PB-FHNC theory to the treatment
of asymmetric matter is essential to deal with the crustal matter,
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FIG. 13. (Color online) Single-particle energy e(p) for N = Z and N = 2Z at ρ = 0.16 fm−3 and ρ = 0.016 fm−3 computed using the
AT4 ′ potential. The figures report also the Fermi gas estimates.
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thus, enabling a fully self-consistent description of the neutron
star equation of state.
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APPENDIX A: COMPUTATION OF CORRELATIONS

To compute the correlation function needed for our calcula-
tion, we have to solve a set of differential equations which can
be derived by minimizing the expectation value of the energy
given by the lowest order diagrams, as shown in Ref. [26]. The
expectation value of the energy is

ELO = 1

2ρ

∫
	

dr
{

h̄2

m
(�f‖)2

[
ρ2

N

(
1 − 1

2
�2

N

)
+ ρ2

P

(
1 − 1

2
�2

P

)]
+ f 2

‖

[
(υc + υτ )

(
ρ2

N

(
1 − 1

2
�2

N

)
+ ρ2

P

(
1 − 1

2
�2

P

))

− 3 (υσ + υστ )

(
1

2
ρ2

P �2
P + 1

2
ρ2

N�2
N

)]}
+ ρP ρN

ρ

∫
	

dr
{

h̄2

m
(�f⊥)2 + f 2

⊥

[
(υc − υτ ) − 4

�P

2

�N

2
(υτ + 3υστ )

]}
.

(A1)

Minimizing this expression with respect to f‖ and f⊥ gives

−h̄2

m
(�f⊥)2 + f⊥[υc − υτ − �P �nN (υτ + 3υστ )] = 0,

−h̄2

m
[(�f‖)2G + �f‖(�G)] + f‖

[
(υc + υτ )G

− 3(υσ + υστ )
(
ρ2

N + ρ2
P − G

)] = 0, (A2)

where

G = ρ2
N

(
1 − 1

2�2
N

)+ ρ2
P

(
1 − 1

2�2
P

)
. (A3)

Without any loss of generality, we can divide each term of
the second equation by ρ2 and redefine G accordingly. In the
following, we set ζa = ρa/ρ.

These two differential equations need to be solved bearing
in mind that f should heal smoothly to one at some distance
d. For easily solving them, it is convenient to start from r = 0
after having redefined the variables:

φ⊥ = rf⊥, ψ‖ = r
√

Gf,

with

φ⊥(d) = d φ′
⊥(d) = 1,

ψ‖(d) = d
√

G(d) ψ ′
‖(d) =

√
G(d) + 1

2

dG′(d)√
G(d)

.

These two new functions are defined so that their value at the
origin is zero. Since there are then three boundary conditions,
we need to introduce two lagrange multipliers λ to ensure that
they are all satisfied simultaneously. This leads to

−h̄2

m
φ′′

⊥ + φ⊥[υc − υτ − �p�n(υτ + 3υστ )] = λφφ⊥,

−h̄2

m
ψ ′′

‖ + ψ‖

[
(υc + υτ )G − 3(υσ + υστ )

(
ζ 2
n + ζ 2

p − G
)

G

+ h̄2

m

(
1

2

G′′

G
+ G′

rG
− 1

4

G′2

G2

)]
= λψψ‖. (A4)

We solve these two equations using a standard adaptive-
stepsize Bulirsch-Stoer method, varying d so as to minimize
the energy and iterating to evaluate the λs. The equations have
the form,

φ′′ + (a(r) − λ)φ = 0, (A5)

and we can adjust λ by adding, at each iteration, a δλ defined
as

δλ = φT (d)φ′
C(d) − φC(d)φ′

T (d)∫ d

0 φ2
C

, (A6)

where the quantities denoted with a subscript C are those
computed numerically at the previous step, and those with
a subscript T are theoretically derived boundary conditions
which need to be satisfied at r = d.

APPENDIX B: SOME STANDARD QUANTUM
MECHANICS RESULTS

As a useful reference we recall that

A[ψ∗
1 · · · ψ∗

N ]Ô(x1, . . . , xn)A[ψ1 · · ·ψN ] (B1)

can be rewritten as

1√
N !

N∑
i=1,i 
=j

[ψ∗
1 · · · ψ∗

N ]Ô(x1, . . . , xn)A[ψ1 . . . ψN ]. (B2)

The antisymmetrizing operator can be written in terms of the
two-particle exchange operator P :

A = 1 −
∑
i<j

Pij +
∑

i<j<k

(PijPjk + PikPkj )

+
∑

i<j<k<l

(PijPkl + PikPjl + PilPjk)

−{ijkl loop} + · · · . (B3)
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Applying Eq. (B3), it is easy to check that the Fermi gas n-body correlation function is given by

gFG
n (r1, . . . , rn) = 1 −

∑
a,(i<j )

1

d
�a(ri,j )2 +

∑
a,(i<j<k)

2

d3
�a(ri,j )�a(rj,k)�a(rk,i) + · · · . (B4)

and, in a more compact form, by the following determinant:

gFG
n (r1, . . . , rn) =

∣∣∣∣∣∣∣∣∣

1 1
d

∑
a �a(1, 2) 1

d

∑
a �a(1, 3) . . . 1

d

∑
a �a(1, n)

1
d

∑
a �a(2, 1) 1 1

d

∑
a �a(2, 3) . . . 1

d

∑
a �a(2, n)

. . . . . . . . . . . . . . .
1
d

∑
a �a(n, 1) 1

d

∑
a �a(A, 2) 1

d

∑
a �a(n, 3) . . . 1

∣∣∣∣∣∣∣∣∣
,

where �a(i, j ) and �a(ri,j ) are defined in Eq. (16), the
summations run over the isospin states, (a = N,P ), and
d = 2. The products of the �a(i, j ) operators also imply the
matrix elements of the relative spin-isospin states (all the

spin-isospin states of the particle in a loop must be the same).
In infinite matter �a(ri,j ) reduces to

�a(ri,j ) = �(x = kFarij ) = 3

x3
[sin(x) − x cos(x)]. (B5)
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