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Assuming that the ratio between asymptotic normalization coefficients of mirror states is model independent,
charge symmetry can be used to indirectly extract astrophysically relevant proton capture reactions on proton-rich
nuclei based on information on stable isotopes. The assumption has been tested for light nuclei within the
microscopic cluster model. In this work we explore the Hamiltonian independence of the ratio between asymptotic
normalization coefficients of mirror states when deformation and core excitation is introduced in the system. For
this purpose we consider a phenomenological rotor + N model where the valence nucleon is subject to a deformed
mean field and the core is allowed to excite. We apply the model to 8Li/8B, 13C/13N, 17O/17F, 23Ne/23Al, and
27Mg/27P. Our results show that, for most studied cases, the ratio between asymptotic normalization coefficients
of mirror states is independent of the strength and multipolarity of the couplings induced. The exception is for
cases in which there is an s-wave coupled to the ground state of the core, the proton system is loosely bound, and
the states have large admixture with other configurations. We discuss the implications of our results for novae.
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I. INTRODUCTION

Novae explosions are a consequence of a thermonuclear
runaway on the accreting disk of a white dwarf within a binary
system. The rp process which takes place in novae involves
reactions with proton-rich nuclei close to (or at) the proton
dripline [1–3]. Measuring the corresponding cross sections is
particularly challenging, due to not only the hindrance caused
by the Coulomb barrier but also the fact that they involve
rare isotopes (see, e.g., Ref. [4]). In many cases, the capture
process occurs through specific resonances which need to be
well known [5]. However, even in these cases, it is important
to understand the role of direct capture.

Direct proton captures at low relative energies needed
for astrophysics are always peripheral reactions due to the
Coulomb barrier. At the limit of E → 0 these reactions
are uniquely determined by the asymptotic normalization
coefficient (ANC) of the single proton overlap function of
the final nucleus [6]. Based on this realization, the ANC
method [6] has been put forth as an indirect way of extracting
proton radiative-capture cross sections from ANCs inferred
from measurements of nuclear reactions, such as transfer or
breakup.

Another indirect technique [7] uses information on the
mirror system. The idea introduced in Ref. [7] is that
charge symmetry can be used to relate the ANCs of the
proton and neutron overlap functions in mirror nuclei. In
this way, while proton capture may require the knowledge of
reactions involving a proton-rich radioactive beam, the neutron
counterpart can be performed with stable beams and, thus,
with much higher accuracy [8,9]. In Refs. [7–9] the ratio R
of the proton to neutron ANCs squared is determined for a
wide range of light nuclei within a microscopic cluster model
(MCM). This ratio R is shown to be independent of the choice
for the NN interaction within a few percentage points. An
analytic derivation of the ratio, R0, is also presented [7].

The ratio obtained from microscopic calculations is in fair
agreement with that predicted by the analytic formula [8,9].
Since the original idea was introduced, it has been generalized
to resonant states [10] and to α-cluster states [11]. In this
work, we want to explore the effects of couplings induced by
deformation and core excitation in the system.

One might wonder why not calculate the ANC theoretically,
instead of relying on charge symmetry approximations. The
reason for not doing so is the large uncertainty related to the
theoretical prediction of ANCs. The microscopic calculations
presented in Refs. [7–9] are strongly dependent on the effective
NN interactions used. Ab initio calculations for light nuclei
are increasingly gaining predictive power, but for the past
decade it has been a true challenge to produce ab initio
overlap functions with a reliable asymptotic behavior for
various technical reasons. The many-body community has put
remarkable efforts into extensions of the traditional methods
to enable a good description of the asymptotic behavior.
Examples include (i) the coupling of the resonating group
method techniques with the no-core shell model (NCSM) [12],
(ii) expanding the coupled cluster wave function in a Breggren
basis [13], and (iii) using a Green’s function method to extract
ANCs from Variational Monte Carlo (VMC) overlap functions,
which have poor asymptotic behavior [14]. To our knowledge
the work in Ref. [14] consists of the first ab initio ANC
calculations for light nuclei up to A = 9.

While ab initio efforts show promising results, their
limitations are hard set: only light nuclei for NCSM and VMC
and only nuclei around closed shells for the coupled-cluster
method. Many nuclei of interest in the rp process are midshell
nuclei with mass A > 20 and may have multiconfiguration
states. It is interesting to explore the effect of couplings induced
by core excitation in such systems.

Effects of including explicitly excited states of the core
were studied within the MCM in Refs. [8,9]. It was shown
that deviations from the analytic formula increased. A simple
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framework of including multiconfiguration and excitation
in the single nucleon overlap functions is provided by the
core + N phenomenological model [15–17]. In the 1990s, this
model was applied to a number of light nuclei, including the
one-neutron halos 11Be [15] and 19C [18]. Starting from a
two-body Hamiltonian with an effective deformed core + N

interaction which is adjusted to reproduce the energy levels of
the system, one arrives at a coupled-channels equation. The
resulting coupled-channels wave function has fragmentation
of strength from the original single-particle component to
other components involving possible excited states of the
core. Recently, this model was used to explore the connection
between the asymptotic properties of the wave function and
spectroscopic factors [19]. In the present work, we use the
model to study the asymptotic normalization of mirror states
and their ratio.

The paper is organized in the following way. In Sec. II we
briefly describe the model. Results are presented and discussed
in Sec. III, starting with numerical details in Sec. III A, some
specific applications to mirror partners in Sec. III B, and further
exploration of the parameter space in Sec. III C. Finally, in
Sec. IV, conclusions are drawn.

II. THEORETICAL CONSIDERATIONS

The A = B + x model introduced in Ref. [15] starts from
an effective Hamiltonian representing the motion of the
valence nucleon (x = n, p) relative to a core B:

HA = Tr + HB + VBx(r, ξ ), (1)

where Tr is the relative kinetic energy operator and HB is
the internal Hamiltonian of the core. The effective interaction
between the core and the valence nucleon depends on the B-x
relative coordinate r but also on the internal degrees of freedom
of the core ξ . In this model [15] VBx is taken to be a deformed
Woods-Saxon potential:

VBx(r) = −Vws

{
1 + exp

[
r − R(θ, φ)

a

]}−1

, (2)

in which the depth Vws may depend on the B-x orbital angular
momentum l. Motivated by a deformed shape, the radius R is
angle dependent:

R(θ, φ) = Rws

[
1 +

Q∑
q=2

βqYq0(θ, φ)

]
, (3)

where βq characterizes the deformation of the core and,
consequently, the strength of the coupling between various
B + x configurations. As usual, we set Rws = rwsA

1/3, with
A the mass number of the B + x system. In addition, we also
include an undeformed spin-orbit coupling term:

VSO(r) = l · sVso
1

r

d

dr

[
1 + exp

(
r − Rws

a

)]−1

, (4)

where s is the spin of the valence nucleon x. When x = p, a
point-sphere central Coulomb interaction is also included.

The B + x wave function is expanded in eigenstates of the
core �IπB , with spin I , parity πB , and eigenenergy εIπB :


Jπ =
∑

nljIπB

ψnlj (r)Ylj (r̂)�IπB (ξ ). (5)

Here we factorize the radial part ψnlj and the spin-angular
Ylj part for convenience. The quantum numbers n and j

correspond, respectively, to the principal quantum number
and the angular momentum obtained from the coupling of
the orbital angular momentum l and the spin s. Replacing the
expansion (5) into the Schrödinger equation, one arrives at a
coupled-channels equation [15]:[
T l

r + Vii(r)
]
ψi(r) +

∑
j �=i

Vij (r)ψj (r) = (
εx
Jπ − εi

)
ψi(r), (6)

where i represents all possible (nljIπB) combinations, εx
Jπ

is the relative energy in the A = B + x system (i.e., same
magnitude and opposite sign of the one-neutron or one-proton
separation energy), T l

r is the radial part of the B-x kinetic
energy operator, and the potential matrix elements Vij are

Vij (r) = 〈�i(ξ )Yi(r̂)|VBx(r, ξ )|Yj (r̂)�j (ξ )〉. (7)

We take �i directly from the rotational model although
parameters are fixed phenomenologically. Solutions of Eq. (6)
are found imposing bound-state boundary conditions and
normalizing 
Jπ to unity. For more details we refer to
Refs. [15,19].

In this model, the norm of ψi relates directly to a
spectroscopic factor:

Sx
i =

∫ ∞

0
|ψi |2r2dr, (8)

and the ANC Cx
i is determined from the asymptotic behavior

of ψi :

ψi(r) −→
r→∞ Cx

i W−ηx
i ,l+1/2(2κir) (9)

with κi =
√

2μBx |εJπ − εi |/h̄2 and μBx the reduced mass.
The mass of a particle is given by its mass number times
mN = 938.9 MeV/c2. In Eq. (9), W is the Whittaker function
with ηx

i the B-x Sommerfeld parameter in channel i [20].
To illustrate this model, let us consider the particular mirror

pair 17O/17F. The core of both nuclei is 16O, which has, apart
from the ground state 0+, two low-lying states, 2+ and 3−,
coupling strongly to the ground state through E2 and E3
transitions, respectively. If one includes in the model space
16O(0+, 2+), the ground state of 17O/17F (5/2+) would not only
contain a 1d5/2 valence nucleon coupled to the ground state
16O(0+) but also, for example, a 2s1/2 nucleon coupled to the
excited state 16O(2+). A model space containing 16O(0+, 3−),
would instead have a 1f5/2 valence nucleon coupled to the
excited state 16O(3−), among other orbitals with odd angular
momentum.

The main difference between both mirror nuclei is the
B-x Coulomb interaction. We should stress that in this work
our approach is strongly phenomenological. Because we are
interested in ANCs and these depend strongly on the energy
of the system relative to threshold [21], it is essential that we
reproduce the experimental separation energies exactly. Thus,
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TABLE I. Depths Vws of the central potential for the various cases listed in Sec. III A (values are given in MeV). The first number is the
depth for the neutron case, and the second number is for the proton case.

rws = 1.2 fm a = 0.5 fm rws = 1.25 fm a = 0.65 fm

IπB Vso = 6 MeV Vso = 8 MeV Vso = 6 MeV Vso = 8 MeV

8Li/8B 3/2−, 1/2−

Vws 58.9168/59.6080 61.5840/62.3011 42.6722/42.7479 41.5371/42.0051
13C/13N 0+, 2+

Vws 59.6504/60.4455 59.6635/60.4436 56.4058/56.8085 56.3261/56.7085
17O/17F 0+, 3−

Vws (l = 0 and 3) 51.6320/51.8248 51.5582/51.7569 47.6517/47.2511 47.6102/47.2151
Vws (l = 1 and 2) 60.3527/61.1595 59.5078/60.3983 57.0489/57.3955 56.4297/56.8736
17O/17F 0+, 2+

Vws (l = 0 and 3) 52.3626/53.1800 52.9035/53.6801 48.5662/48.6508 48.9239/48.9721
Vws (l = 1 and 2) 53.8238/54.2036 52.1111/52.4642 51.2895/51.2182 49.8253/49.7276
23Ne/23Al 0+, 2+, 4+

Vws (l = 0 and 3) 54.4839/54.4839 54.6976/54.6976 49.0477/49.0477 49.3356/49.3356
Vws (l = 1 and 2) 55.4659/56.2811 53.9916/54.7628 52.6434/52.7345 51.3534/51.4028
27Mg/27P 0+, 2+, 4+

Vws (l = 0 and 3) 52.5428/53.2944 51.2411/51.9676 48.9469/48.2467 47.7296/46.9657
Vws (l = 1 and 2) 56.4027/56.4027 56.9672/56.9672 53.6536/53.6536 54.1691/54.1691

although the initial proton and neutron Hamiltonians differ
only by the Coulomb interaction, in our calculations there
may be small differences in the adjusted depths of VBn and
VBp to reproduce exactly the corresponding binding energies.

As proposed in Ref. [7], we compare proton ANCs C
p

i with
neutron ANCs Cn

i for mirror states through their ratio

R =
∣∣∣∣C

p

i

Cn
i

∣∣∣∣
2

. (10)

In Refs. [7,11], a useful analytical approximation of this ratio
was derived

R0 =
∣∣∣∣∣

Fl

(
iκ

p

i RN

)
κ

p

i RNjl

(
iκn

i RN

)
∣∣∣∣∣
2

, (11)

with Fl and jl being the regular Coulomb function and the
spherical Bessel function, respectively [20]. The approxima-
tion R0 is not strongly dependent on the radius of the nuclear
interior, RN [7,8]. We will compare our results with the value
obtained from this relation.

III. RESULTS AND DISCUSSION

A. Numerical details

We consider the same cases as in Refs. [8,9] and present all
details concerning the model parameters. First, it is important
to keep in mind that it is not our aim to reproduce all the
properties of these nuclei with our simple model [15], since, in
principle, microscopic models are much better suited. Our aim
is to use the B + x model to explore to what extent core degrees
of freedom can modify the picture presented in Refs. [7–9].
As the B-x interaction is completely phenomenological, it is
essential to have energy levels to constrain the interaction.
We provide details of the fitting for each case below. Core
excitation energies are taken from the database of the National

Nuclear Data Center [22]. It is the deformation that introduces
tensor components in the interaction and that allows for
configuration admixture between various core states. Values
for the deformation parameters for each case, as well as the
states to be considered in the coupled-channels equation, are
given. The geometry for the Woods-Saxon interaction and
the strength of the spin-orbit force Vso are fixed at constant
values (see Secs. III B and III C). The depth of the central
potential Vws is then adjusted to reproduce the B-x separation
energy (shown in Table I). In some cases we fit more than one
state per nucleus. This introduces an l dependence in Vws. All
calculations are performed with the program FACE [23].

1. 8Li/8B

The B + x description of these mirror nuclei corresponds to
7Li+n for 8Li and 7Be+p for 8B. The respective B-x relative
energies are εn

2+ = −2.032 MeV and ε
p

2+ = −0.1375 MeV.
The 2+ ground state of these nuclei is described as a dominant
1p3/2 nucleon bound to the 3/2− ground state of the core.
The 1/2− state of the core is also considered [ε1/2− (7Li) =
0.478 MeV and ε1/2− (7Be) = 0.429 MeV]. The quadrupole
deformation that couples both core states of 7Li is β2 = 0.34.
That of 7Be, being predicted to be around 0.3–0.4 [24], is
chosen to be equal to that of 7Li.

2. 13C/13N

In this mirror pair the core is 12C for both nuclei. The
dominant configuration of the 1/2− ground state is a 1p1/2

nucleon coupled to the 0+ ground state of 12C. The relative 12C-
x energies are εn

1/2− = −4.946 MeV and ε
p

1/2− = −1.944 MeV
for 13C and 13N, respectively. The 2+ excited state of 12C at
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ε2+ = 4.439 MeV is also considered with the coupling β2 =
−0.6 [25].

3. 17O/17F

For this 16O+x mirror pair, our model reproduces both
the 5/2+ (εn

5/2+ = −4.144 MeV or ε
p

5/2+ = −0.601 MeV) and
1/2+ (εn

1/2+ = −3.273 MeV or ε
p

1/2+ = −0.106 MeV) bound
states as predominantly 1d5/2 and 2s1/2 valence nucleons
coupled to the 0+ ground state of 16O. For 16O we consider the
effect of the coupling between the 0+ ground state and either
the 2+ excited state at ε2+ = 6.917 MeV or the 3− excited
state at ε3− = 6.129 MeV. The corresponding quadrupole and
octopole deformations are β2 = 0.36 [26] and β3 = 0.75 [27],
respectively. To adjust both 5/2+ and 1/2+ states, Vws in
the s and d waves differ slightly. When considering the
coupling to the 3− excited state of 16O, we set the depths
of the potential in the negative-parity partial waves according
to Vws(l = 1) = Vws(l = 2) and Vws(l = 3) = Vws(l = 0). In
this way, the partial waves corresponding to the dominant
configurations in the 5/2+ and 1/2+ states have the same
potential depth.

4. 23Ne/23Al

The cores in this mirror pair are 22Ne and 22Mg. Our model
reproduces the 5/2+ ground state of both nuclei with εn

5/2+ =
−5.200 MeV or ε

p

5/2+ = −0.122 MeV and the 1/2+ excited
state of 23Ne with εn

1/2+ = −4.184 MeV. The configuration
of the ground state is dominated by a 1d5/2 nucleon bound
to the 0+ ground state of the core. The excited state of 23Ne
is mostly a 2s1/2 neutron bound to 22Ne(0+). We consider
couplings between the lowest 0+, 2+, and 4+ core states, with
excitation energies ε2+ = 1.274 MeV and ε4+ = 3.357 MeV
for 22Ne and ε2+ = 1.247 MeV and ε4+ = 3.308 MeV for
22Mg. These three states are described as the first three levels
of one rotational band with deformation parameters β2 = 0.58
[26] and β2 = 0.562 [26] for 22Mg and 22Ne, respectively. To
reproduce the two energy levels in 23Ne, we need to consider a
slight difference between Vws(l = 0) and Vws(l = 2). The same
value for Vws(l = 0) is used in 23Al with small adjustments
made to Vws(l = 2) to reproduce the binding energy exactly.

5. 27Mg/27P

In these 26Mg+n and 26Si+p mirror systems, we reproduce
the 1/2+ ground states as a dominant 2s1/2 nucleon bound to
the 0+ ground state of the core by εn

1/2+ = −6.443 MeV or
ε

p

1/2+ = −0.861 MeV. For the neutron system, we also consider
the excited state 3/2+ with εn

3/2+ = −5.459 MeV to pin down
the d-wave potential as its configuration is dominated by a
1d3/2 neutron bound to 26Mg(0+). Here, we consider couplings
between the first 0+, 2+, and 4+ core states, with excitation
energy ε2+ = 1.8 MeV for both cores and ε4+ = 4.32 MeV for
26Mg and ε4+ = 4.18 MeV for 26Si. Deformation parameters
are β2 = 0.482 [26] and β2 = 0.446 [26] for 26Mg and 26Si,
respectively. To reproduce the energy levels in 27Mg, different
depths Vws are taken for l = 0 and l = 2. For 27P, the same
Vws(l = 2) is used as for 27Mg but small adjustments are made
to Vws(l = 0) to obtain the correct binding energy.

B. Ratio for specific mirror partners

For comparison with previous works, we fix the deforma-
tion of the core, adjust the depth Vws of the interaction to
reproduce binding energies as detailed in Sec. III A, and solve
the coupled-channels equation. To evaluate the sensitivity
of our calculations to the choice of the B-x potential, we
consider two geometries for the mean field, namely radius
rws = 1.2 fm and diffuseness a = 0.5 fm and radius rws =
1.25 fm and diffuseness a = 0.65 fm. We first fix Vso = 6
MeV with the same geometry as the Woods-Saxon potential,
but repeat the calculations for the choice of Vso = 8 MeV. The
depths Vws obtained for each of the cases listed in Sec. III A
are given in Table I.

From the resulting proton and neutron wave functions,
we determine ANCs and the ratio R (10). The ratio R for
the dominant component for each case is shown in Table II
and corresponds to rws = 1.25 fm, a = 0.65 fm, and Vso =
6 MeV. The uncertainty reflects the range obtained with
the other geometry and spin-orbit strength. Our values for
R are compared to the values obtained from the analytic
formula R0 (11) (using the experimental binding energies
and RN = 1.25A1/3) and those obtained within the MCM,
assuming two clusters and taking the Minnesota interaction
RMCM [8,9].

TABLE II. Ratio of proton to neutron ANCs for the dominant component: Comparison of this work R with the results of the analytic
formula R0 (11) and the results of the microscopic two-cluster calculations RMCM [8,9], including the Minnesota interaction. The uncertainty
in R accounts for the sensitivity to the parameters of VBx .

Nuclei IπB nlj R R0 RMCM

8Li/8B 3/2−, 1/2− 1p3/2 1.04 ± 0.04 1.12 1.08
13C/13N 0+, 2+ 1p1/2 1.19 ± 0.02 1.20 1.14
17O/17F (g.s.) 0+, 3− 1d5/2 1.18 ± 0.01 1.22 1.19
17O/17F (e.s.) 0+, 3− 2s1/2 693 ± 16 799 736
17O/17F (g.s.) 0+, 2+ 1d5/2 1.219 ± 0.004 1.22 1.19
17O/17F (e.s.) 0+, 2+ 2s1/2 756 ± 23 799 736
23Ne/23Al 0+, 2+, 4+ 1d5/2 (1.852 ± 0.014) × 104 2.06 × 104 2.96 × 104

27Mg/27P 0+, 2+, 4+ 2s1/2 40.1 ± 1.8 43.7 44.3
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For the first three cases studied, namely 8Li/8B, 13C/13N,
and 17O/17F[ground state (g.s.)], our ratios are very close to
the values obtained with the analytical formula and those
obtained within the MCM. Larger deviations are found for
17O/17F[excited state (e.s.)], 23Ne/23Al, and 27Mg/27P. While
in 17O/17F(e.s.) the core in the neutron and proton systems are
the same, in the last two cases the core β2 differs slightly. The
deviations with the analytic formula and MCM are not caused
by this difference.

For 23Ne/23Al, it is important to note that in our calculations
we impose realistic binding energies, whereas in the MCM
results, binding energies can sometimes differ significantly.
Since R depends strongly on the binding energies, this can be
the cause for the large difference between our values and those
of Ref. [9]). The values ofR0 presented in Table II also assume
the experimental binding energies and, therefore, differences
between R and R0 must be related to the failure of the simple
analytical relation.

One could presume that the examples for which our
model predicts significantly different ratios than the analytic
prediction and the MCM are those in which the admixture
with core excited configurations are largest. This is not the
case: large admixture, or small spectroscopic factors, alone
are not sufficient to cause a deviation from R0 or previously
calculated RMCM. Spectroscopic factors are around 0.9 for
8Li/8B, 0.3 for 13C/13N, 0.6–0.9 for 17O/17F(g.s.), 0.7–0.9 for
17O/17F(e.s.), 0.7 for 23Ne/23Al, and 0.5 for 27Mg/27P. What
can be remarked is that the largest discrepancies appear for
the cases in which the proton is very loosely bound. Another
remarkable point is that our predicted ratio is always smaller
than the analytical estimate. This feature is further investigated
in the following section.

C. Exploring the parameter space

In this subsection, we use the deformation parameter as
a free variable to explore different physical situations beyond
the particular nuclei used as test cases. With the configurations
of the 23Ne/23Al and 27Mg/27P pairs being very similar to
those of the 17O/17F systems in its ground state and excited
state, respectively, we concentrate on the three lighter cases.
Given the range of values for the deformation parameters, we
vary the deformation between 0 and 0.7. For each deformation
parameter, energies for the proton and neutron systems were
refitted by small adjustments of Vws to eliminate erroneous
variations of the ANC due to changes in the binding energies:
overall V

p
ws ≈ V n

ws. We fix the geometry: the standard rws =
1.25 fm and a = 0.65 fm for 8Li/8B [28], rws = 1.14 fm
and a = 0.5 fm for 13C/13N [15], and rws = 1.2 fm and a =
0.64 fm for 17O/17F [29]. The geometry for the spin-orbit force
is taken to be the same as for the nuclear force, and the depth
is fixed at around 6 MeV for all cases.

We find no significant difference in the ratio R for both
8Li/8B and 13C/13N mirror pairs. In these cases the main
components of the wave function are p waves, even in the
configurations including core excitation. For |β2| = 0.0–0.7
the resulting range of values forR are (1.038–1.044) for 8Li/8B
and (1.201–1.251) for 13C/13N. This constancy is obtained

even though the variation in β2 leads to significant changes
in the spectroscopic factor: Sx

1p3/2
goes from 1 to 0.75 for

8Li/8B, while Sx
1p1/2

decreases down to 0.32 for 13C/13N. Even
if the system is made artificially less bound, the variation of
R remains small and within the uncertainties of the geometry
parameters for the interaction. The significant stability of R
with such large changes in both deformation and admixture of
different configurations suggests a universality of the mirror
technique developed in Ref. [7].

The situation for 17O/17F differs. In this case, core excitation
introduces different orbital angular momenta in the wave
function. We consider the separate effect of including the
3− state and the 2+ state. Let us first consider the inclusion
of 16O(0+, 3−). For each β3, energies for the two lowest
states in 17O and 17F were refitted by small adjustments of
Vws(l = 0) and Vws(l = 2). As mentioned in Sec. III A, the
depth of the potential in the negative-parity partial waves is set
to Vws(l = 1) = Vws(l = 2) and Vws(l = 3) = Vws(l = 0). In
this way, all the depths were constrained phenomenologically.
Here, again, the variations in R are small. Even though
over 30% of the 5/2+ ground-state wave function is in a
core-excited configuration at β3 = 0.7, the change in R is less
than 2%. For this β3, the 1/2+ excited-state wave function
is almost exclusively in the 16O(0+) ⊗ 2s1/2 configuration
(Sx

2s1/2
≈ 95%). Expectedly, the change in the corresponding

ratio is limited to less than 1%.
We next consider the inclusion of 16O(0+, 2+). In this case

the d5/2 ground state admixes with an s1/2 component with the
core in its excited state, while in the 1/2+ state, the s1/2 coupled
to the ground-state of the core admixes with d components
with the core in its 2+ state. Again, energies for the two
lowest states in 17O and 17F were refitted by simultaneously
adjusting Vws(l = 0) and Vws(l = 2) for each β2. For both 5/2+

and 1/2+ states, the spectroscopic factor (8) of the dominant
component (which has the core in its ground state) suffers
a large reduction at large β2, as shown in Fig. 1. While, for
the ground state, the proton and neutron spectroscopic factors
vary together [Fig. 1(a)], for the excited state it becomes
clear that the admixture in the neutron system is larger than
in the proton system [Fig. 1(b)]. This is then reflected in a
different behavior of the ANC ratios. In Fig. 2 we present
the ratio R (10), as well as a modified ratio compensating
for the changes in spectroscopic factors R∗ = RSn/Sp. The
analytical prediction R0 (11) is also shown (horizontal dashed
lines). For the 5/2+ ground state, neither R nor R∗ deviate
much from the value at β2 = 0, corresponding to the single-
particle prediction [Fig. 2(a)]. They are also very close to the
analytical prediction,R0. On the contrary, for the 1/2+ excited
state, R shows a large variation, mainly, but not only, caused
by the difference between neutron and proton spectroscopic
factors [Fig. 2(b)], as expected from the results of Ref. [19].
This can be deduced from their relative variations across the
considered β2 range: while R varies by 22%, R∗ varies by
less than 3%. They also differ more from R0. As noted in the
MCM studies [8,9], the ratio R at the realistic deformation
of the 16O core (i.e., β2 = 0.36) is well approximated by the
average between R0 and the single-particle ratio, i.e., R at
β2 = 0. Since this result is strongly dependent on the value of
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FIG. 1. (Color online) Neutron and proton spectroscopic factors
for 17O and 17F, respectively, considering the 16O core in its 0+ ground
state and 2+ first excited state: (a) 5/2+ ground state and (b) 1/2+

first excited state.

the deformation, we do not believe it can be safely generalized
to other systems. The features illustrated in Fig. 2 can be
directly extrapolated to 23Al and 27P. As mentioned before, the
former has a structure very similar to that of 17F(g.s.), while
the latter exhibits the same components as 17F(e.s.).

In Refs. [8,9] core excitation is explored within the MCM.
Even then there was growing disagreement between RMCM

and R0 as more core states were explicitly included in the
model space. This was understood in terms of the long-range
Coulomb quadrupole term added to the Hamiltonian in the
proton case, a term considered neither in the derivation of
R0 nor in our present calculations. Here, however, we see
not only a deviation from R0 but also a strong dependence
on the deformation parameter for particular cases. Therefore,
we conclude the source for deviations from R0 and the
breakdown of the constant ratio concept is induced by the
nuclear quadrupole term, which is present in both neutron and
proton systems.

The surprising results for the 1/2+ mirror states led to
several additional tests which isolated the cause for the large
coupling dependence in R. There are three essential ingre-
dients: low binding, the existence of an s-wave component
coupled to the ground state of the core, and a significant
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FIG. 2. (Color online) Ratio of proton and neutron ANCs for 17O
and 17F, respectively, including 16O(0+, 2+): (a) 5/2+ ground state
and (b) 1/2+ first excited state.

admixture with other configurations. It appears that when all
three conditions are met, the differences between the neutron
and proton wave functions increase around the surface, exactly
where the nuclear quadrupole interaction peaks. This results in
a stronger effect of coupling on the neutron system compared
to the proton system, inducing differences in Sn relative to Sp,
which reflect on a coupling dependence in R. Our tests show
that the effect is independent on whether the wave functions
have a node.

IV. CONCLUSIONS

A proposed indirect method for extracting proton capture
rates from neutron mirror partners relies on the ratio between
asymptotic normalization coefficients of the mirror states
being model independent. In this work, we test this idea
against core deformation and excitation. We consider a core
+ N model where the core is deformed and allowed to excite
and apply it to a variety of mirror pairs (8Li/8B, 13C/13N,
17O/17F, 23Ne/23Al, and 27Mg/27P). We stress that our approach
is strongly phenomenological: for each case we always fit
the neutron and proton binding energies exactly. This is not
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the approach followed in previous works [8–10]. Imposing
instead equal nuclear interactions Vn = Vp in our model
would lead to a strong and erroneous deformation dependence
of R due to unequal changes in the neutron and proton
binding energies. In that case, even R0 would become model
dependent.

We explored how the mirror states evolve as a function of
deformation (coupling strength). For most cases, the ratio of
the ANC of mirror states was found to be independent of the
deformation. From our investigations we conclude that there
are three conditions that need to be met for the idea of a model-
independent ratio to break down with deformation or core
excitation: (i) the proton system should have very low binding,
(ii) the main configuration should be an s-wave component
coupled to the ground state of the core, and (iii) there should
be significant admixture with other configurations. This has
implications for the application of the indirect method based on
the ANC ratio to reactions relevant to novae, namely pertaining
the direct capture component of 26Si(p, γ )27P. In connecting
the ANC of 27Mg and 27P one should be careful with coupling
between different configurations.

An analytic formula for the ratio R0 was derived [7]
using a single-particle configuration for neutron and proton
states. In Ref. [8] it is suggested that differences between R0

and R calculated within MCM arose due to the quadrupole

Coulomb interaction, which is not included in the proton state,
when deriving R0, but, of course, is included in the MCM
calculations. We do not include this term in our calculations
and yet still find deviations between our R and R0. These can
only be due to the nuclear quadrupole term.

When an incoming s-wave neutron is involved one should
choose an adequate probe to measure it. While s-wave proton
capture (usually to a bound p state) is a peripheral process for
the low relative energies of astrophysical interest, the s-wave
neutron capture is not and generally depends on the whole
overlap function. Nevertheless, in principle, one can extract
ANCs for the neutron system from peripheral nuclear reactions
(transfer or breakup) using an appropriate choice of kinematic
conditions. That ANC would then relate to the astrophysically
relevant proton ANC.
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