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Warm and dense stellar matter under strong magnetic fields
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We investigate the effects of strong magnetic fields on the equation of state of warm stellar matter as it may
occur in a protoneutron star. Both neutrino-free and neutrino-trapped matter at a fixed entropy per baryon are
analyzed. A relativistic mean-field nuclear model, including the possibility of hyperon formation, is considered.
A density-dependent magnetic field with a magnitude of 1015 G at the surface and not more than 3 × 1018 G at
the center is considered. The magnetic field gives rise to a neutrino suppression, mainly at low densities, in matter
with trapped neutrinos. It is shown that a hybrid protoneutron star will not evolve into a low-mass black hole if
the magnetic field is strong enough and the magnetic field does not decay. However, the decay of the magnetic
field after cooling may give rise to the formation of a low-mass black hole.
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I. INTRODUCTION

Neutron stars with very strong magnetic fields are known as
magnetars [1–3]. Recent observations suggest that anomalous
x-ray pulsars and soft γ -ray repeaters are candidates for
magnetars [4–6]. The magnetic field at the surface of the
magnetars may be as strong as 1014–1015 G, and magnetars
are warm young stars ∼1-kyear old. On the other hand, it is
estimated that the interior field in neutron stars may be as large
as 1018 G [7]. Ferrario and Wickammasinghe [8] suggest that
the extra strong magnetic field of the magnetars results from
their stellar progenitor with a high magnetic-field core. Iwazaki
[9] proposed that the huge magnetic field of the magnetars is
some color ferromagnetism of quark matter. Recently, Vink
and Kuiper [10] have suggested that the magnetars originate
from rapid rotating protoneutron stars.

Motivated by the existence of strong magnetic fields in
neutron stars, theoretical studies on the effects of extremely
large fields on dense matter and neutron stars have been
carried out by many authors [11–18]. For densities below
twice normal nuclear-matter density (ρ ∼ 0.153 fm−3), the
matter only consists of nucleons and leptons. However, for
baryon densities above 2ρ0, the equation of state (EOS) and the
composition of matter is much less certain, and the strangeness
degrees of freedom should be taken into account through the
inclusion of hyperons, kaon condensation, or a deconfinement
phase transition into strange quark matter. The inclusion of
hyperons and pion or kaon condensation in stars with strong
magnetic fields [19–25] tends to soften the EOS at high
densities.

In Ref. [19], it was shown that the threshold densities of
hyperons can significantly be altered by strong magnetic fields.
Similar conclusions were obtained in Ref. [23] where the
strangeness was included through an antikaon condensation
or in Ref. [24] where not only hyperons, but also the strange
mesons σ ∗ and φ were included in the EOS.

The effects of the magnetic field on the structure and
composition of a neutron star that allows quark-hadron phase
transition has been studied in Ref. [26]. A strong magnetic field
makes the overall EOS softer. However, due to the positive

contribution of the magnetic-field pressure to the total EOS,
an increase in the maximum mass is predicted [19,25,27,28].
Also, the effects of the magnetic field on quark matter [28–34]
and on the color superconducting phases of dense matter,
which could exist in the core of compact stars, have been
investigated extensively [35–40].

Protoneutron stars appear as the outcome of the gravita-
tional collapse of a massive star. During its early evolution, the
protoneutron star, with an entropy per baryon on the order of 1
(units of the Boltzmann constant), contains trapped neutrinos.
This stage is followed by a deleptonization period, during
which the core is heated up and reaches an entropy per particle
s ∼ 2, before cooling occurs. During the cooling stage, exotic
degrees of freedom, such as hyperons or a kaon condensate,
will appear [41].

In this paper, we focus on the properties of warm stellar
matter under a strong magnetic field, which is composed
of a chemically equilibrated and charge-neutral mixture of
nucleons, hyperons, and leptons. We will consider both
neutrino-free matter and matter with trapped neutrinos. The
effect of the magnetic field on the composition of warm
stellar matter, both with trapped neutrinos and neutrino free,
and the properties of the EOS will be discussed. Both the
Landau quantization, which affects the charged particles and
the incorporation of the nucleon anomalous magnetic moments
(AMMs) for field strengths B > 105Bc

e (Bc
e = 4.414 × 1013 G

is the electron critical field) have important effects.
This paper is organized as follows: In Sec. II, we derive the

EOS for hadronic matter at finite temperatures with a magnetic
field. We present the results in Sec. III. Finally, the conclusions
are summarized in Sec. IV.

II. HADRON-MATTER EOS

For the description of the EOS of stellar matter, we employ
a field-theoretical approach in which the baryons interact via
the exchange of σ -ω-ρ mesons in the presence of a static
magnetic field B along the z axis [42–44].
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The Lagrangian density of the nonlinear Walecka model
that we consider has the form [43]

L =
∑

b

Lb + Lm +
∑

l

Ll . (1)

The baryon, lepton (l = e, μ), and meson (σ, ω, and ρ)
Lagrangians are given by [42,44]

Lb = �̄b

(
iγμ∂μ − qbγμAμ − mb + gσbσ − gωbγμωμ

− gρbτ3b
γμρμ − 1

2μNκbσμνF
μν

)
�b,

Ll = ψ̄l(iγμ∂μ − qlγμAμ − ml)ψl, (2)

Lm = 1
2∂μσ ∂μσ − 1

2m2
σ σ 2 − U (σ ) + 1

2m2
ωωμωμ

− 1
4μνμν − 1

4FμνFμν + 1
2m2

ρρμρμ − 1
4 RμνRμν,

where �b and ψl are the baryon and lepton Dirac fields,
respectively. The index b runs over the eight lightest baryons
n, p, �, �−, �0, �+, �−, and �0, and the sum on l is
over electrons and muons (e− and μ−). σ, ω, and ρ represent
the scalar, the vector, and the vector-isovector meson fields,
which describe the nuclear interaction, and Aμ = (0, 0, Bx, 0)
refers to an external magnetic field along the z axis. The
baryon mass and isospin projection are denoted by mb

and τ3b
, respectively. The mesonic and electromagnetic-field

tensors are given by their usual expressions: μν = ∂μων −
∂νωμ, Rμν = ∂μρν − ∂νρμ, and Fμν = ∂μAν − ∂νAμ. The
baryon AMMs are introduced via the coupling of the baryons
to the electromagnetic-field tensor with σμν = i

2 [γμ, γν] and
strength κb = (μb/μN − qbmp/mb)μN , where μN is the
nucleon magneton and μb, qb, and mb, respectively, are the
magnetic moment, the charge, and the mass of baryon b.
The values of κb used in the present paper were taken from
Ref. [19]. The electromagnetic field is assumed to be generated
externally (and, thus, has no associated field equation), and
only frozen-field configurations are considered. The interac-
tion couplings are denoted by g, the electromagnetic couplings
are denoted by q, and the baryon, meson, and lepton masses are
denoted by m. The scalar self-interaction is taken to be of the
form

U (σ ) = 1
3bmn (gσNσ )3 + 1

4c (gσNσ )4 . (3)

From the Lagrangian density in Eq. (1), we obtain the follow-
ing meson-field equations in the mean-field approximation:

m2
σ σ + ∂U (σ )

∂σ
=

∑
b

gσbρ
s
b = gσN

∑
b

xσbρ
s
b, (4)

m2
ωω0 =

∑
b

gωbρ
v
b = gωN

∑
b

xωbρ
v
b , (5)

m2
ρρ

0 =
∑

b

gρbτ3b
ρv

b = gρN

∑
b

xρbτ3b
ρv

b , (6)

where σ = 〈σ 〉, ω0 = 〈ω0〉, and ρ = 〈ρ0〉 are the nonvanish-
ing expectation values of the meson fields in uniform matter,
and ρv

b and ρs
b, respectively, are the baryon vector and scalar

densities.

The Dirac equations for baryons and leptons, respectively,
are given by[

iγμ∂μ − qbγμAμ − m∗
b − γ0(gωω0 + gρτ3b

ρ0)

− 1
2μNκbσμνF

μν
]
�b = 0, (7)

(iγμ∂μ − qlγμAμ − ml)ψl = 0, (8)

where the effective baryon masses are given by

m∗
b = mb − gσσ, (9)

and ρs
b and ρv

b are the scalar density and the vector density,
respectively. For a stellar matter consisting of a β-equilibrium
mixture of baryons and leptons, the following equilibrium
conditions must be imposed:

μb = qbμn − qlμe, (10)

μμ = μe, (11)

where μi is the chemical potential of species i (i = b for
baryons, i = n for neutrons, i = e for electrons, and i = μ for
muons). The electric-charge neutrality condition is expressed
by ∑

b

qbρ
v
b +

∑
l

qlρ
v
l = 0, (12)

where ρv
i is the number density of particle i (i = b for baryons

and i = l for leptons). If trapped neutrinos are included, we
replace μe → μe − μνe

in the above equations,

μb = qbμn − ql(μe − μνe
). (13)

μμ − μνμ
= μe − μνe

, (14)

where μνe
and μνμ

are the electron and muon neutrino-
chemical potentials, respectively. The introduction of addi-
tional variables, the neutrino-chemical potentials, requires
additional constraints, which we supply by fixing the lepton
fraction YLe = Ye + Yνe

= 0.4 [41,45]. Since no muons are
present before and during the supernova explosion, the
constraint YLμ = Yμ + Yνμ

= 0 must be imposed. However,
because the muon fraction is very small in matter with trapped
neutrinos, we only include muons in neutrino-free matter.

The energy spectra for charged baryons, neutral baryons,
and leptons (electrons and muons), respectively, are given by

Eb
ν,s = ε̃b

ν,s + gωbω
0 + τ3b

gρbρ
0, (15)

Eb
s = ε̃b

s + gωbω
0 + τ3b

gρbρ
0, (16)

El
ν,s = ε̃l

ν,s =
√

(kl
‖)2 + m2

l + 2ν|ql |B, (17)

where

ε̃b
ν,s =

√
(kb

‖ )2 + (√
m∗2

b + 2ν|qb|B − sμNκbB
)2

, (18)

ε̃b
s =

√
(kb

‖ )2 + [√
m∗2

b + (kb
⊥)2 − sμNκbB

]2
, (19)

and ν = n + 1
2 − sgn(q) s

2 = 0, 1, 2, . . . enumerates the Lan-
dau levels (LLs) of the fermions with electric charge q, the
quantum number s is +1 for spin-up and −1 for spin-down
cases, and k‖, k⊥, respectively, are the momentum components
parallel and perpendicular to the magnetic field.
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At finite temperature, the occupation-number distribution
functions are given for charged and neutral baryons, respec-
tively, by

f b
k,ν,s = 1

1 + exp
[
β
(
ε̃b
ν,s − μ∗

b

)] ,

(20)

f̄ b
k,ν,s = 1

1 + exp
[
β
(
ε̃b
ν,s + μ∗

b

)] ,

f b
k,s = 1

1 + exp
[
β
(
ε̃b
s − μ∗

b

)] ,

(21)

f̄ b
k,s = 1

1 + exp
[
β
(
ε̃b
s + μ∗

b

)] ,

and for the charged leptons,

f l
k,ν,s = 1

1 + exp
[
β
(
ε̃l
ν,s − μl)]

,

(22)

f̄ l
k,ν,s = 1

1 + exp
[
β
(
ε̃l
ν,s + μl

)] ,

where the baryon-effective chemical potential (μb)∗ is given
by

μ∗
b = μb − gωbω

0 − gρbτ3b
ρ0. (23)

For the charged baryons, the scalar and vector densities,
respectively, are given by

ρs
b = |qb|Bm∗

b

2π2

∑
ν,s

∫ ∞

0

dkb
‖√

(kb
‖ )2 + (

m̄c
b

)2

(
f b

k,ν,s + f̄ b
k,ν,s

)
,

(24)

ρv
b = |qb|B

2π2

∑
ν,s

∫ ∞

0
dkb

‖
(
f b

k,ν,s − f̄ b
k,ν,s

)
,

where we have introduced the effective mass,

m̄c
b =

√
m∗2

b + 2ν|qb|B − sμNκbB. (25)

For the neutral baryons, the scalar and vector densities,
respectively, of the neutral baryon b are given by

ρs
b = 1

2π2

∑
s

∫ ∞

0
kb
⊥dkb

⊥

(
1 − sμNκbB√

m∗2
b + (kb

⊥)2

)

×
∫ ∞

0
dkb

‖
m∗

b

ε̃b
s

(
f b

k,s + f̄ b
k,s

)
,

ρv
b = 1

2π2

∑
s

∫ ∞

0
kb
⊥dkb

⊥

∫ ∞

0
dkb

‖
(
f b

k,s − f̄ b
k,s

)
. (26)

The vector density of the charged leptons is given by

ρv
l = |ql|B

2π2

∑
ν,s

∫ ∞

0
dkl

‖
(
f l

k,ν,s − f̄ l
k,ν,s

)
, (27)

and for neutrinos, the vector density is given by

ρv
νe

= 1

2π2

∫ ∞

0
k2dk

(
f ν

k,s − f̄ ν
k,s

)
. (28)

We solve the coupled Eqs. (4)–(8) self-consistently at a given
baryon density ρ = ∑

b ρv
b in the presence of a strong magnetic

field. The energy density of stellar matter is given by

εm=
∑

b

εb+
∑
l=e,μ

εl+1

2
m2

σ σ 2+U (σ )+1

2
m2

ωω2
0+

1

2
m2

ρρ
2
0 ,

(29)

where the energy densities of charged baryons εc
b, neutral

baryons εn
b , and leptons εl , respectively, have the following

forms:

εc
b = |qb|B

2π2

∑
ν,s

∫ ∞

0
dkb

‖

√
(kb

‖ )2 + (
m̄c

b

)2(
f b

k,ν,s + f̄ b
k,ν,s

)
,

εn
b = 1

2π2

∑
s

∫ ∞

0
kb
⊥dkb

⊥

∫ ∞

0
dkb

‖

×
√

(kb
‖ )2 + [√

m∗2
b + (kb

⊥)2 − sμNκbB
]2(

f b
k,s + f̄ b

k,s

)
,

εl = |ql|B
2π2

∑
ν,s

∫ ∞

0
dkl

‖
√

(kl
‖)2 + m2

l + 2ν|ql |B

× (
f l

k,ν,s + f̄ l
k,ν,s

)
. (30)

The thermodynamical grand potential and the free-energy
density are defined as

 = F −
∑

b

μbρ
v
b , F = εm − T S, (31)

where the entropy density S is given by

S =
∑

b

Sb +
∑

l

Sl , (32)

with

Sc
b = −|qb|B

2π2

∑
ν,s

∫ ∞

0
dkb

‖
{
f b

k,ν,s ln f b
k,ν,s + (

1 − f b
k,ν,s

)

× ln
(
1 − f b

k,ν,s

) + f̄ b
k,ν,s ln f̄ b

k,ν,s

+ (
1 − f̄ b

k,ν,s

)
ln

(
1 − f̄ b

k,ν,s

)}
,

Sn
b = − 1

2π2

∑
s

∫ ∞

0
kb
⊥dkb

⊥

∫ ∞

0
dkb

‖
{
f b

k,s ln f b
k,s

+ (
1 − f b

k,s

)
ln

(
1 − f b

k,s

)
+f̄ b

k,s ln f̄ b
k,s + (

1 − f̄ b
k,s

)
ln

(
1 − f̄ b

k,s

)}
,

Sl = −|ql|B
2π2

∑
ν,s

∫ ∞

0
dkl

‖
{
f l

k,ν,s ln f l
k,ν,s + (

1 − f l
k,ν,s

)
× ln

(
1 − f l

k,ν,s

) + f̄ ν
k,ν,s ln f̄ ν

k,ν,s

+(
1 − f̄ ν

k,ν,s

)
ln

(
1 − f̄ ν

k,ν,s

)}
. (33)

The pressure of neutron-star matter is given by

Pm = − = μn

∑
b

ρv
b − εm + T S, (34)

where the charge neutrality and β-equilibrium conditions are
used to get the last equality. If the stellar matter contains
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TABLE I. The parameter set GM1 [43] used in the calculation.

ρ0 −B/A gσN/mσ gωN/mω gρN/mρ

(fm−3) (MeV) M∗/M (fm) (fm) (fm) xσH xωH xρH b c

0.153 16.30 0.70 3.434 2.674 2.100 0.600 0.653 0.600 0.002 947 −0.001 070

trapped neutrinos, their energy density, pressure, and entropy
contributions, respectively,

ενe
= 1

2π2

∫ ∞

0
k3dk

{
f ν

k,s + f̄ ν
k,s

}
,

Pνe
= 1

6π2

∫ ∞

0
k3dk

{
f ν

k,s + f̄ ν
k,s

}
,

Sνe

l = − 1

2π2

∫ ∞

0
(kl)2dkl

{
f ν

k,s ln f ν
k,s + (

1 − f ν
k,s

)
× ln

(
1 − f ν

k,s

)+f̄ ν
k,s ln f̄ ν

k,s+
(
1 − f̄ ν

k,s

)
ln

(
1 − f̄ ν

k,s

)}
(35)

should be added to the stellar-matter energy and pressure.

III. RESULTS AND DISCUSSION

We now study stellar matter at finite temperatures with
magnetic fields. We include the baryonic octet in the EOS
and choose the GM1 parameter set [43] for our calculation.
The static properties of the baryons were given in previous
papers [11,25]. The parameters of the model are the nucleon
mass mn = 939 MeV, the masses of mesons mσ , mω, mρ ,
and the coupling constants. The meson-hyperon couplings are
assumed to be fixed fractions of the meson-nucleon couplings
giH = xiH giN , where, for each meson i, the values of xiH

are assumed equal for all hyperons H . The values of xiH

are chosen to reproduce the binding energy of � at nuclear
saturation as suggested in Ref. [43] and given in Table I.
A different choice could have been made to consider that
the optical potential of �− in nuclear matter is repulsive as
shown in Ref. [46]. However, there is very little experimental
information that can be used to fix the �− interaction.
Moreover, the main difference that would occur would be the
onset of �− at larger densities and �− at lower densities.

We consider that the external magnetic field is constant.
The magnetic field will be defined in units of the critical field
Bc

e = 4.414 × 1013 G so that B = B∗Bc
e .

In Figs. 1 and 2, the pressure is plotted versus the density
for B∗ = 0, 105, and 2 × 105 for neutrino-free matter (Fig. 1)
and matter with trapped neutrinos (Fig. 2), without and with
the inclusion of the AMMs, respectively, in the left and right
panels. We consider an entropy per baryon s = 0 and 2. The
kink on each EOS curve identifies the onset of hyperons. The
effects of the AMMs are only noticeable for a strong magnetic
field above B∗ = 105 as already discussed in Ref. [11].

We start by discussing neutrino-free matter, which is shown
in Fig. 1. The strong magnetic field makes the EOS softer at
low densities because of the Landau quantization of charged-
particle orbitals and the high degeneracy of these levels
[11,25]. The density of baryons per level is proportional to

the strength of the magnetic field, and therefore, the stronger
the magnetic field, the larger the softening induced by Landau
quantization. At low densities, the only baryons affected by
the Landau quantization are the protons. Landau quantization
reduces the Fermi momentum of protons, and as a result, the
equilibrium state has a larger (smaller) fraction of protons
(neutrons). Although charge neutrality implies a larger fraction
of electrons, these also suffer Landau quantization, and the
overall effect is the softening of the EOS. At low densities,
if the field is strong enough, all the protons will be in the
lowest LL; still, at high densities, more than one LL could be
occupied, according to the field intensity. Consequently, the
effects of Landau quantization are stronger at low densities
than at high densities. The main effects are a softening of the
EOS, see the dashed and dotted thin lines in the left panel of
Fig. 1 below 2ρ/ρ0, and an increase in the proton fraction.

On the other hand, the onset of hyperons occurs at larger
densities in the presence of a strong magnetic field, and
therefore, the EOS becomes harder at high densities as the thin
lines in the left panel of Fig. 1 show above 2ρ/ρ0. At finite
temperatures, these effects are partially washed out because
all levels have a finite probability of being occupied. In the
left panel of Fig. 1, it is seen that the EOS for B∗ = 2 × 105

(dotted thick line) is not much softer than the corresponding
EOS for B∗ = 0 below 2ρ/ρ0. Also, a smaller effect is seen
at large densities: The EOS does not become so hard above
2ρ/ρ0 because of the earlier onset of strangeness at finite
temperatures.

The effects of temperature are even stronger when the
AMMs are included (right panel). As discussed in Ref. [11],
in the presence of a strong magnetic field, the extra hardness
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FIG. 1. (Color online) Matter pressure as a function of the
baryonic density for several values of a magnetic field (B∗ = 0, B∗ =
105, 2 × 105) without (left panels) and with AMMs (right panels) for
an entropy per baryon s = 0 and 2 and for neutrino-free matter.
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FIG. 2. (Color online) The same as Fig. 1 but for matter with
trapped neutrinos and lepton fraction YLe = 0.4.

obtained with the inclusion of the AMMs is mainly caused by
an increase in the neutron-degeneracy pressure because of the
spin polarization of the neutrons. In fact, including AMMs
induces spin polarization, which increases with increasing
B, and a larger polarized neutron fraction gives rise to a
larger neutron degeneracy pressure. Temperature partially
destroys this degeneracy because there is a finite probability
that unoccupied levels at zero temperature become partially
occupied and, consequently, give rise to a softening of the
EOS: At large densities, the three EOS plotted for s = 2
with B∗ = 0, 105, and 2 × 105 almost coincide. Whereas,
for the zero-magnetic field, the EOS becomes harder with
the inclusion of temperature, this is not necessarily true for
a strong magnetic field because of the competing effects of
temperature and magnetic field.

We conclude that one of the main effects of temperature on
the EOS of matter under a strong magnetic field is to wash out
the effects of the Landau quantization and spin polarization
and to bring the EOS closer to the no-field case. For a strong
magnetic field, the temperature will soften the EOS, contrary
to what happens for B = 0.

In Fig. 2, we show results for matter with trapped neutrinos
and a lepton fraction YLe = 0.4. In this case, at low densities,
the EOS becomes harder in the presence of a strong magnetic
field. This is mainly caused by the larger electron fraction
below the onset of strangeness. However, just as before, the
effect of the field is not so strong for a finite entropy per
baryon. Above ρ = 2ρ0, the equation becomes softer in the
presence of a magnetic field both taking into account AMMs
or not if s = 2, although for s = 0, the opposite occurs. In
fact, above this density, for B∗ = 2 × 105, the proton fraction
becomes comparable or even larger than the neutron fraction,
and therefore, the kinetic contribution to the pressure reduces.
When the AMMs are included, there is not much difference
at s = 2, however, for s = 0, the EOS is slightly harder than
in the case without the AMMs because of a larger electron
fraction and a smaller hyperon fraction.

In Fig. 3, to compare the effect of temperature on neutrino-
free matter and matter with trapped neutrinos in the presence
of a magnetic field, we have plotted, for B∗ = 2 × 105 and
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FIG. 3. (Color online) Matter pressure as a function of the bary-
onic density for B∗ = 2 × 105: comparison between both neutrino-
free and neutrino-trapped matter for several values of the entropy per
baryon s.

s = 0, 1, and 2, the pressure for neutrino-free matter and
neutrino-trapped matter without (left panel) and with (right
panel) AMMs.

At zero-magnetic field, the EOS of matter with trapped
neutrinos becomes softer at finite temperatures at low den-
sities [41]. Trapped neutrinos increase (decrease) the proton
(neutron) fraction at low density, and this softens the EOS
relative to the neutrino-free case because of an overall smaller
baryonic kinetic pressure. However, at larger densities, trapped
neutrinos hinder the onset of hyperons, therefore, shifting
the softening of the EOS caused by strangeness to larger
densities [41,47,48]. For B∗ = 2 × 105 and zero temperature,
neutrino-trapped matter is not softer than neutrino-free matter
because the decrease in the neutron fraction caused by trapped
neutrinos is much smaller, and the overall decrease in the
baryonic kinetic pressure does not compensate the increase in
the total lepton contribution to the EOS. At finite temperatures,
however, the onset of hyperons and leveling out of the neutron
and proton fractions at lower densities gives rise to a softening
of the EOS for densities 2ρ0 < ρ < 3ρ0.

As discussed before, the inclusion of the AMMs makes
the EOS harder, however, finite temperatures wash LL-filling
effects and spin-polarization effects, and a softer EOS results.

The behavior of the EOS is determined by the onset of
hyperons, the proton-to-neutron ratio and the lepton fraction.
In the following, we will analyze how the temperature, in
conjunction with a strong magnetic field, affects the particle
fractions. In Fig. 4, the particle fraction Yi = ρi/ρ for baryons
and leptons is plotted as a function of the baryon density
for B∗ = 2 × 105 (thick lines) and B∗ = 0 (thin lines) for
an entropy per particle s = 0, 1 and 2. Neutrino-free matter is
represented in the left panels, and matter with trapped neutrinos
is represented in the right panels.

At zero-magnetic field, the main effect of the temperature
is to move the onset of hyperons to lower densities [41]. This
feature is still true for a finite-magnetic field. However, the
magnetic field affects the onset of the different hyperons: If no
AMM is included, the onset of �− is shifted to larger densities,
the onset of �+ is shifted to smaller densities, while the neutral
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FIG. 4. (Color online) Particle fractions as a function of the
baryonic density for B∗ = 0 and 2 × 105 without AMMs for neutrino-
free matter (left panel) and matter with trapped neutrinos (right panel)
with s = 0, 1, 2.

hyperons are not much affected. In general, the onset of the
negatively (positively) charged hyperons is shifted to larger
(smaller) densities. If the AMM is included, the onset of the
hyperons is defined not only by the charge, but also by the
magnitude of the κb, and a more complex behavior is obtained.

As discussed in Refs. [19,49], the behavior observed among
the different hyperons is mainly caused by a decrease in
the neutron-chemical potential, because a smaller isospin
asymmetry occurs, and a decrease in the electron-chemical
potential caused by Landau quantization. In fact, at low
densities, the fractions of proton and leptons are significantly
affected by the magnetic field. The Landau quantization
increases the proton abundance, and, therefore, the electron
abundance because of the charge-neutrality condition. The
inclusion of AMMs reduces the chemical potential of all the
hyperons, and a complicated balance between the different
terms, including the magnitude of the AMMs, defines whether
the onset is shifted to larger or smaller densities. We have not
shown the particle fractions with AMMs because the net effect
of the onset of the different species of hyperons at different
densities does not change the main properties of the star if
magnetic fields below 1018 G are considered.

At B = 0 and T = 0, the presence of neutrinos shifts the
onset of hyperons to larger densities because the neutron-
chemical potential is smaller and the neutrino-chemical po-
tential is finite. However, temperature makes this effect less
effective. For warm matter under a strong magnetic field, we
conclude that, if AMMs are not taken into account, a smaller
chemical potential of both neutrons and neutrinos explains
a smaller (larger) shift in the negatively (positively) charged
hyperons to larger densities, and a smaller neutron-chemical
potential gives rise to a shift to larger densities of the neutral
hyperons onset, as compared to the neutrino-free case.

To summarize, we conclude that, in the presence of a strong
magnetic field, we still have the onset of hyperons in warm
stellar matter at lower densities as compared with cold matter
at B = 0, however, according to the charge and flavor of the
hyperon and the fraction of the leptons, the onset can occur at
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FIG. 5. (Color online) Strangeness fraction as a function of the
baryonic density for several values of the magnetic field B and s =
0, 1, 2, without and with AMMs for the GM1 model. (Top panel)
The strangeness fraction at a fixed entropy for different values of
B, (bottom panel) the strangeness fraction at a fixed B for different
values of the entropy per particle s.

smaller or larger densities than the ones observed for T = 0
and B = 0.

The effect of the magnetic field on the total strangeness
fraction is better seen in Fig. 5, where we show the total
strangeness fraction for different values of a magnetic field at
fixed entropy (right panel) and different values of the entropy
per baryon s at a fixed magnetic field (left panel). We only
show results without AMMs. The fraction of the strangeness
in the system is given by

rs =
∑

b qb
s ρb

3ρ
, (36)

where qb
s is the strange charge of baryon b.

At zero entropy, the strangeness onset occurs below 2ρ0 and
3ρ0, respectively, for neutrino-free and neutrino-trapped mat-
ter, and at ρ = 6ρ0, neutrino-trapped matter has a strangeness
fraction 0.03–0.04 smaller than neutrino-free matter because
of the larger electron fraction. In Figure 5, the left panel allows
a comparison of the strangeness fraction at a fixed B and
different entropies. As already pointed out, the temperature
shifts the onset of strangeness to lower densities. Generally,
this trend is still valid in the presence of a magnetic field for
both neutrino-trapped and neutrino-free matter [48,50], except
at large densities in neutrino-trapped matter, if the temperature
is not high enough.

In the right panel of Fig. 5, we compare the strangeness frac-
tion for fixed entropy per baryon and different magnetic-field
intensities. The magnetic field lowers the strangeness fraction
in neutrino-free matter, although at finite temperatures, this
effect is smaller. On the other hand, the strangeness fraction in
neutrino-trapped matter is almost not affected by the magnetic
field. This behavior was already discussed in Ref. [49] and
is explained by the presence of neutrinos. In neutrino-free
matter, a smaller neutron fraction and the Landau quantization
decrease the hyperon fraction. However, in matter with trapped
neutrinos, the neutron-chemical potential does not suffer such
a large reduction as in free-neutrino matter, and therefore, the
strangeness fraction does not change much with the magnetic
field, and it may even occur that the strangeness fraction
increases with B at low density.
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FIG. 6. (Color online) Neutrino fraction as a function of the
baryonic density for several values of the magnetic field B and entropy
per baryon s without (left panel) and with (right panel) AMMs.

If the AMMs are included in the calculations, similar
conclusions are obtained, and therefore, we do not show results
with AMMs.

It is also interesting to analyze the effect of B on the
neutrino fraction, which is shown in Fig. 6 as a function of
the baryonic density for several values of a magnetic field
and s = 0, 2. In Ref. [49], it was discussed that, for zero
temperature, the magnetic field gave rise to a strong neutrino
suppression at small densities as seen in the top panels. This
was attributed to the large proton and, therefore, also attributed
to electron fractions. At finite temperatures, the suppression
at low densities persists, although the fluctuations caused by
the filling of the LLs disappear. It is seen that, for a finite
entropy also at high densities, a strong magnetic field gives
rise to a decrease in neutrino fraction caused by the larger
proton fraction that favors a larger electron fraction. A smaller
neutrino fraction may imply a slower cooling of the star core,
since the core essentially cools by neutrino emission [41]. The
effect of AMMs is only noticeable at zero temperature.

In Fig. 7, the temperature of the system is plotted for an
entropy per baryon s = 1 and 2, respectively, for neutrino-free
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FIG. 7. (Color online) Temperature as a function of the baryonic
density for several values of the magnetic field B without (left panels)
and with (right panels) AMMs for neutrino-free matter (top panels)
and matter with trapped neutrinos (bottom panels). The thin line is
for s = 1, and the thick line is for s = 2.

matter and matter with trapped neutrinos. As expected, for a
larger entropy per baryon, higher temperatures are reached.
In a strong magnetic field, these temperatures can even
be larger. At low densities, before the onset of hyperons,
temperature rises slower for the larger magnetic fields because
the proton (neutron) fraction increases (decreases) with B,
and the nucleonic degrees of freedom become more equally
distributed. The kink in all the curves identifies the onset of
hyperons and, as discussed before, occurs at lower densities
for lower values of B. This is true for both s = 1 and 2 with or
without AMMs. At high densities, the temperature becomes
approximately constant: This is clearly seen for s = 1; for
s = 2, the temperature saturation occurs at higher densities
because the hyperon fractions increase during a larger range
of densities until they attain a saturation fraction. If AMMs
are included, the temperature rises to larger values at finite
B because of the larger lepton fraction and smaller hyperon
fraction.

For matter with trapped neutrinos, we have a similar
situation. However, because the proton fraction is larger,
caused by the fixed lepton fraction constraint, the effect of
B in reducing the neutron fraction at low densities is not
so large, and the differences in the dependence of T on the
baryonic density below 2ρ0 is mainly defined by the neutrino
fraction. Also, a smaller overall neutron fraction favors lower
temperatures as compared with neutrino-free matter.

We finish the discussion on the effect of the magnetic field
on warm stellar matter by summarizing the main conclusions:
(a) All the effects of the magnetic field discussed at zero
temperature are still valid but are diluted partially because
of the partial filling of the different LL levels for charged
particles or spin levels for particles with an AMM; (b) Landau
quantization softens the EOS and makes stellar matter less
isospin asymmetric, therefore, matter with trapped neutrinos
will never be softer than neutrino-free matter even before the
hyperon onset; (c) just as for B = 0, for a fixed magnetic
field, increasing the temperature increases the strangeness
fraction, however, the overall strangeness fraction in the star
is smaller for a larger magnetic field; (d) there is a neutrino
suppression at low densities and an overall smaller neutrino
fraction in a protoneutron star with a strong magnetic field,
which implies a slower cooling process; (e) at low densities,
temperature increases slower with density at fixed entropy for
the stronger magnetic fields because of the smaller asymmetry
of stellar matter; at high densities, larger temperatures are
attained because of a larger electron fraction and a smaller
negatively charged hyperon fraction.

In the following, we study the properties of protoneutron
stars with strong magnetic fields. Since to date, there is no
information available on the interior magnetic field of the star,
we assume that the magnetic field is baryon-density dependent
as suggested by Ref. [13]. The variation in magnetic field B

with baryon density ρ from the center to the surface of a star
is parametrized [13,14] by the following form:

B

(
ρ

ρ0

)
= Bsurf + B0

[
1 − exp

{
−β

(
ρ

ρ0

)γ }]
, (37)
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FIG. 8. (Color online) Mass-radius curve of neutron stars for
several values of the magnetic field by using a density-dependent
magnetic field B given by Eq. (37). Thin lines correspond to
neutrino-free matter, and thick lines correspond to trapped neutrino
matter with lepton fraction YLe = 0.4.

where ρ0 is the saturation density, Bsurf is the magnetic field at
the surface taken equal to 1015 G in accordance with the values
inferred from observations, and B0 represents the magnetic
field at large densities. The parameters β and γ are chosen in
such a way that the field decreases with the density from the
center to the surface. In this paper, we use the set of values
β = 0.05 and γ = 2 to allow a slowly varying field with the
density. The magnetic field will be considered in units of the
critical field Bc

e = 4.414 × 1013 G so that B0 = B∗
0 Bc

e . We
take B∗

0 as a free parameter to check the effect of magnetic
fields on stellar matter. Here, we consider the EOS by taking
the hyperon-meson-coupling constants xσ = 0.6.

Hadron-star properties are obtained from the EOS stud-
ied, for several values of magnetic field, by solving the

Tolman-Oppenheimer-Volkoff equations, which result from
the Einstein general relativity equations for spherically sym-
metric static stars. This is an approximation since the magnetic
field destroys the spherical symmetry, and therefore, we
interpret the obtained results as average values. We do not
allow the magnetic field at the center of the star to exceed ∼
3 × 1018 G according to the results of Ref. [19], which indicate
that stable stars do not occur with a larger central magnetic
field.

In Fig. 8, we show the family of stars, which correspond
to the maximum mass configuration given in Tables II and
III. Two main conclusions may be drawn: (a) warm stars with
trapped neutrinos have larger masses and radii. However, the
differences get smaller for the most massive stars if a strong
magnetic field exists; (b) a strong magnetic field makes the star
radius and the mass of the maximum mass star configuration
larger.

In Table II, the maximum gravitational and baryonic
masses of stable stars, their radii, central energy densities, and
magnetic fields at the center are given for neutrino-free matter.
In Table III, the same quantities are displayed for matter with
trapped neutrinos.

The main conclusions we draw from the tables are as
follows: (a) for a finite-magnetic field and neutrino-free stars,
the maximum gravitational mass decreases slightly with s,
however, the opposite occurs for B = 0; (b) for stars with
trapped neutrinos, the maximum baryonic mass of the star
generally decreases with an increase in s, (c) in the presence
of large magnetic fields, the central baryonic density of the
star decreases with an increase in B and/or temperature. On
the other hand, both B and T increase the star radius, (d) the
strength of the magnetic field increases from 1015 G at the
surface to a maximum of ∼3 × 1018 G at the center.

Neutrinos diffuse out of the core after a first period when
they are trapped in the core of a protoneutron and the star
reaches an entropy per particle of s ∼ 1 (in units of the
Boltzmann constant). During the deleptonization period, the
core is heated up and reaches an entropy per particle of s ∼ 2.
After the core deleptonizes, exotic degrees of freedoms, such
as hyperons will appear. We will discuss how the magnetic
field may influence the evolution of the star from a stage with
s = 1 and trapped neutrinos to a stage of warm neutrino-free
matter with s = 2 and finally, a cold neutrino-free star with

TABLE II. Properties of the stable baryon star with maximum mass for several values of a magnetic field using [see Eq. (37)] the
parametrization. Mmax, Mb

max, R, E0, ρc, Bc, and Tc, respectively, are the gravitational and baryonic masses, the star radius, the central
energy density, the central baryonic density, and the values of the magnetic field and the temperature at the center. Neutrino-free matter.

B∗
0 s Mmax (M
) Mb

max [(
) R (km) E0 (fm−4) ρc (fm−3) Bc (G) Tc (MeV)

B = 0 0 1.790 2.033 11.527 5.939 0.985
1 1.794 2.024 11.717 5.854 0.967 19.24
2 1.808 2.004 12.467 5.656 0.922 40.79

B∗
0 = 105 0 2.372 2.672 12.694 4.846 0.688 2.812 × 1018

1 2.368 2.652 12.796 4.860 0.687 2.808 × 1018 17.96
2 2.358 2.597 13.269 4.837 0.674 2.746 × 1018 37.43

B∗
0 = 2 × 105 0 2.926 3.234 14.509 3.629 0.454 3.150 × 1018

1 2.919 3.207 14.630 3.616 0.451 3.117 × 1018 15.92
2 2.902 3.147 15.032 3.612 0.445 3.040 × 1018 33.54
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TABLE III. Properties of the stable baryon star with maximum mass for several values of a magnetic field by using [see Eq. (37)] the
parametrization. Mmax, Mb

max, R, E0, ρc, Bc, and Tc, respectively, are the gravitational and baryonic masses, the star radius, the central
energy density, the central baryonic density, and the values of the magnetic field and the temperature at the center. Neutrino-trapped matter.

B∗
0 s Mmax (M
) Mb

max (M
) R (km) E0 (fm−4) ρc (fm−3) Bc (G) Tc (MeV)

B = 0 0 2.046 2.293 12.455 5.420 0.856 -
1 2.040 2.271 12.529 5.395 0.847 16.21
2 2.036 2.226 13.198 5.192 0.808 34.78

B∗
0 = 105 0 2.454 2.694 13.123 4.819 0.660 2.678 × 1018

1 2.449 2.686 13.122 4.842 0.662 2.682 × 1018 16.76
2 2.441 2.641 13.622 4.731 0.644 2.593 × 1018 34.72

B∗
0 = 2 × 105 0 2.889 3.063 14.547 3.886 0.464 3.261 × 1018

1 2.890 3.071 14.621 3.834 0.461 3.228 × 1018 16.81
2 2.897 3.058 15.094 3.720 0.451 3.117 × 1018 33.83

s = 0. During this evolution, the gravitational mass of the star
decreases, but its baryonic mass stays constant.

At zero-magnetic field, the maximum baryonic mass of a
star with trapped neutrinos and s = 1 is 2.27 M
. This star will
deleptonize and will heat up. However, since the maximum
baryonic mass of a neutrino-free star with s = 2 is 0.27 M

smaller (equal to 2.00 M
), the star will evolve into a low-mass
black hole [41]. This is caused by the softening that the EOS
suffers with the appearance of hyperons and is well illustrated
in Fig. 9 by the full lines: For B = 0, all configurations with
trapped neutrinos and a baryonic mass above the maximum of
the neutrino-free s = 2 configurations 2.024 M
 will evolve
into a black hole.

We will now consider that the decay of the magnetic field
will occur in a much longer time scale than the deleptonization
phase, and therefore, during the star evolution, the magnetic
field will remain constant. If we consider B∗

0 = 105, the
maximum baryonic mass of a star with trapped neutrinos
and s = 1 is 2.69 M
. The maximum mass of a neutrino-free
star with s = 2 is smaller, but the difference is much smaller
than the one, which occurs at B = 0: A maximum mass of
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FIG. 9. (Color online) Gravitational mass as a function of the
baryonic mass of neutron stars for several values of the magnetic
field by using a density-dependent magnetic field B given by
Eq. (37).

2.60 M
 only corresponds to a 0.09-M
 difference. The set
of stars that will evolve into a low-mass black hole will be
much smaller. In Fig. 9, the dashed curves correspond to
B∗

0 = 105, from top to bottom, s = 1 with trapped neutrinos,
neutrino-free s = 2 and s = 0. The configurations of a star
with trapped neutrinos and s = 1 above the maximum of the
neutrino-free s = 2 curve 2.597 M
 will evolve into a black
hole. However, if we consider B∗

0 = 2 × 105, all configurations
with trapped neutrinos and s = 1 will evolve into stable s = 2
and afterward, into s = 0 neutrino-free star configurations.
The maximum mass star configuration with trapped neutrinos
and s = 1 is smaller than the maximum mass neutrino-free star
with s = 2, 3.07 M
 and 3.15 M
, respectively. No evolution
into a low-mass black hole will occur. This could be expected,
since we have discussed that the magnetic field hinders the
appearance of hyperons.

However, it is important to notice that, if the star cools
down into a stable star, which keeps the magnetic-field
configuration described by Eq. (37) with B∗

0 = 2 × 105, it may
still decay into a low-mass black hole during the magnetic-field
decay.

IV. CONCLUSIONS

In the present paper, we have studied the effect of a very
strong magnetic field on the EOS and properties of warm stars.
We have used a relativistic mean-field model with the GM1
parameter set [43] and have considered stellar matter both
neutrino free and with trapped neutrinos.

All the effects of the magnetic field discussed at zero
temperature are still valid: In neutrino-free matter, the EOS
becomes softer at low densities because of the Landau
quantization suffered by protons and becomes harder at large
densities because the onset of hyperons is shifted to larger
densities; in matter with trapped neutrinos, spin polarization
of neutrons contributes to a larger neutron degeneracy pressure
and hardens the EOS. However, these effects are partially
diluted because of the partial nonzero filling of the different
LLs for charged particles or spin levels for particles with an
AMM at finite temperatures.

Just as for B = 0, for a fixed magnetic field, to increase the
temperature increases the strangeness fraction. However, the
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overall strangeness fraction in the star is smaller for a larger
magnetic field. In matter with trapped neutrinos, the opposite
may occur, and for s = 2, the larger the magnetic field, the
larger the strangeness fraction below ρ = 3ρ0.

Previously, it was shown that there was a strong neutrino
suppression at low densities for finite-magnetic fields [49].
For a finite entropy also at high densities, a strong magnetic
field gives rise to a decrease in the neutrino fraction caused by
the larger proton fraction that favors a larger electron fraction.
A smaller neutrino fraction may imply a slower cooling of
the star core, since the core essentially cools by neutrino
emission [41].

It has been shown that a strong magnetic field increases
the mass and radius of the most massive cold stable star
configuration [19]. This is still true for warm stars. The
radius of these stars increases with s, just as it occurs for
B = 0 [41,47] but at a much smaller rate. On the other hand,
their baryonic masses decrease with the entropy per particle,
and the larger decrease occurs for the larger magnetic field.
For stronger magnetic fields, the contribution of the magnetic
field to the total EOS is larger, which gives rise to a stiffer
EOS. As a result, the star central energy density and baryon
density decrease as the magnetic field increases.

The mass of the observed neutron stars may set an upper
limit on the possible magnetic field acceptable in the interior
of a star. Of course, it may also occur that the most massive
stars decay into low-mass black holes when the magnetic field
in their interior decays.

For B = 0, a hybrid star may evolve into a low-mass black
hole because the maximum baryonic mass of a warm star with
trapped neutrinos and an entropy per particle s ∼ 1 is larger
than the maximum mass of a warm deleptonized star with
s = 2 or a cold deleptonized star [41,50]. In the present paper,
it was shown that, for a strong enough magnetic field, the star
would cool down as a stable compact star, if the magnetic field
did not decay during the deleptonization phase. However, the
decay of the magnetic field may cause star instability and,
consequently, the formation of a black hole.
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[3] B. Paczyński, Acta Astronaut. 42, 145 (1992).
[4] C. Kouvellioton, Nature (London) 393, 235 (1998).
[5] K. Hurley et al., Astrophys. J. 510, L111 (1999).
[6] S. Mareghetti and L. Stella, Astrophys. J. 442, L17 (1995);

J. vanParadijs, ibid. 513, 464 (1999).
[7] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs

and Neutron Stars (Wiley Interscience, New York, 1983).
[8] L. Ferrario and D. Wickrammasinghe, Mon. Not. R. Astron. Soc.

367, 1323 (2006).
[9] A. Iwazaki, Phys. Rev. D 72, 114003 (2005).

[10] J. Vink and L. Kuiper, Mon. Not. R. Astron. Soc.: Letters 370,
L14 (2006).

[11] A. Broderick, M. Prakash, and J. M. Lattimer, Astrophys. J. 537,
351 (2000).

[12] C. Y. Cardall, M. Prakash, and J. M. Lattimer, Astrophys. J. 554,
322 (2001).

[13] D. Bandyopadhyay, S. Chakrabarty, and S. Pal, Phys. Rev. Lett.
79, 2176 (1997); S. Chakrabarty, Phys. Rev. D 54, 1306 (1996).

[14] G.-J. Mao, A. Iwamoto, and Z.-X. Li, Chin. J. Astron. Astrophys.
3, 359 (2003).

[15] F. X. Wei, G. J. Mao, C. M. Ko, L. S. Kisslinger, H. Stöcker,
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[40] R. González Felipe, D. Manreza Paret, and A. Pérez Martinez,
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