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Maximum mass of hyperon stars with the Nijmegen ESC08 model
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We perform Brueckner-Hartree-Fock calculations of hypernuclear matter employing the recent Nijmegen
ESC08 hyperon-nucleon potentials, provide useful parametrizations of the numerical results, and compute the
structure of hyperon (neutron) stars within this approach. Very low maximum masses below 1.4 solar masses are
found.
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I. INTRODUCTION

The recent claim of discovery of a two-solar-mass neutron
star (NS) [1] reinforces the importance of theoretical calcu-
lations of neutron star structure and their interpretation in
confrontation with observational data. It has long been known
that the appearance of “exotic” components (quarks, mesons,
hyperons) in β-stable NS matter might strongly soften the
equation of state (EOS) and reduce the theoretical maximum
mass of the star [2]. Confronting accurate theoretical predic-
tions with observational data, one might therefore be able to
draw conclusions regarding the presence of these particles
in stellar matter, and thus on the features of the underlying
fundamental interactions.

This is in particular the case for hyperons, which are
expected to appear in β-stable matter already at relatively
low densities of about twice nuclear saturation density. If this
is the case, the existence of heavy NS’s would rule out the
presence of hyperons in their interior, and require alternative
scenarios. It is therefore of great importance to carry out
accurate theoretical calculations of hypernuclear matter and
the corresponding hyperon star structure, as much as possible
constrained by independent experimental information on the
hyperon-nucleon interactions.

This article is located in this framework, namely, it
studies the possible appearance of hyperons in NS matter
within the Brueckner-Hartree-Fock (BHF) theoretical many-
body approach, continuing several earlier publications [3–7].
The fundamental input of these parameter-free calculations
are the realistic potentials in the nucleon-nucleon (NN),
hyperon-nucleon (YN), and hyperon-hyperon (YY) sectors,
supplemented by three-body forces (TBF’s), which at least
in the NN sector are required in order to ensure a correct
saturation point of nuclear matter.

Currently several high-quality NN potentials are available
for theoretical calculation, together with nuclear TBF’s which
have been either determined empirically by fitting the sat-
uration point of nuclear matter [8,9], or constructed in a
microscopic way, compatible with the two-body potential that
is used [10–12]. There exist also several YN potentials fitted
to scattering data, while the potentials in the YY sector and
TBF’s involving hyperons have presently to be considered

rather uncertain or unknown, which is basically due to the lack
of appropriate experimental data and/or the great difficulties
of their theoretical analysis.

We have in the past performed BHF calculations of
hypernuclear matter using the Argonne V18 NN potential [13],
together with the phenomenological Urbana UIX′ TBF1 [8,9]
and the Nijmegen NSC89 [16] or NSC97 [17] YN potentials.
Very low maximum masses of hyperon stars, below 1.4 M�,
were always found [5,6].

The purpose of this work is to extend those calculations
by employing recently developed YN potentials and nuclear
TBF’s. More precisely, we will present results obtained with
the Nijmegen ESC08b YN potentials [18] and the microscopic
nuclear TBF developed in Ref. [12]. Both changes are expected
to stiffen the resulting EOS and could thus possibly allow
larger maximum masses of hyperon stars than found before,
for the following reasons: The ESC08b YN potential features
in particular a repulsive �−N interaction in agreement with
recent experimental indications [19], and in contrast to the
previously used YN potentials. Therefore a smaller �−
fraction is now expected in β-stable matter. Furthermore, the
microscopic TBF used now is more repulsive than the previous
UIX′ TBF, leading to much larger masses of nucleonic stars
[6,9].

We have, however, stressed in previous works the existence
of an important self-regulating compensation mechanism
that always leads to rather low neutron star masses by the
appearance of hyperons; namely, a stiffer nucleonic EOS
will cause an earlier onset of hyperons and thus a stronger
softening effect, and vice versa. The same is true for individual
components of the hyperon EOS, e.g., a more repulsive
�-nucleon interaction is expected to lead to an earlier onset of
the �, etc. It is thus of particular interest to see this mechanism
at work with the new calculation presented here.

1The prime denotes the fact that within the BHF approach the two
parameters A and U of the TBF are different from the original values
in [14] in order to fit the saturation point of symmetric nuclear matter.
The result is a less repulsive EOS, leading to smaller maximum
masses than in the variational calculation of [15].
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II. FORMALISM

We first provide a short review of the BHF approach
including hyperons (detailed accounts can be found in Refs. [3]
and [4]) and then describe briefly the new features of the
Nijmegen ESC08 potentials.

A. BHF approach to neutron star structure

The basic input quantities in the Bethe-Goldstone equation
are the NN, YN, and YY potentials. In this work we use
the Argonne V18 NN potential [13] supplemented by the
microscopic TBF of Ref. [12], and the recent Nijmegen
extended soft-core ESC08b YN potentials [18], that are well
adapted to the existing experimental YN scattering data.

With these potentials, the various G matrices are evaluated
by solving numerically the Bethe-Goldstone equation, which
can be written in operatorial form as

Gab[W ]=Vab+
∑

c

∑
p,p′

Vac|pp′〉 Qc

W − Ec + iε
〈pp′|Gcb[W ],

(1)

where the indices a, b, c indicate pairs of baryons and the Pauli
operator Qc and energy Ec characterize the propagation of
intermediate baryon pairs. The pair energy in a given channel
c = (B1B2) is

E(B1B2) = TB1

(
kB1

) + TB2

(
kB2

) + UB1

(
kB1

) + UB2

(
kB2

)
(2)

with TB(k) = mB + k2/2mB , where the various single-particle
potentials are given by

UB(k) =
∑

B ′=n,p,�,�−
U

(B ′)
B (k) (3)

and are determined self-consistently from the G matrices,

U
(B ′)
B (k) =

∑
k′<k

(B′ )
F

Re〈kk′|G(BB ′)(BB ′)[E(BB ′)(k, k′)]|kk′〉. (4)

The coupled Eqs. (1) to (4) define the BHF scheme with the
continuous choice of the single-particle energies. It has been
shown that with this choice the nuclear EOS can be cal-
culated with good accuracy in the Brueckner two-hole-line
approximation, and that the results in this scheme are quite
close to the calculations which also include the three-hole-line
contribution [20]. In contrast to the standard purely nucleonic
calculation, the additional coupled-channel structure due to
hyperons renders the calculations quite time-consuming.

Once the different single-particle potentials are known,
the total nonrelativistic baryonic energy density ε can be
evaluated:

ε =
∑

B=n,p,�,�−

∑
k<k

(B)
F

[
TB(k) + 1

2
UB(k)

]
= εN + εY , (5)

where

εN =
∑

N,N ′=n,p

∑
k<k

(N)
F

[
TN (k) + 1

2
U

(N ′)
N (k)

]
, (6)

εY =
∑

Y, Y ′ = �, �−
N = n, p

∑
k<k

(Y )
F

[
TY (k) + U

(N)
Y (k) + 1

2
U

(Y ′)
Y (k)

]
. (7)

Knowing the baryonic energy density Eq. (5), and adding
the contributions of the noninteracting leptons, the vari-
ous chemical potentials μi = ∂ε/∂ρi (of the species i =
n, p,�,�−, e, μ) can be computed straightforwardly and the
equations for β equilibrium, μi = biμn − qiμe (bi and qi

denoting baryon number and charge of species i), and charge
neutrality, �iρiqi = 0, allow one to determine the equilibrium
composition {ρi(ρ)} at given baryon density ρ and finally the
EOS:

p(ρ) = ρ2 d

dρ

ε({ρi(ρ)})
ρ

= ρ
dε

dρ
− ε. (8)

Knowing the EOS, the equilibrium configurations of
static neutron stars are obtained by solving the Tolman-
Oppenheimer-Volkoff (TOV) equations [2] for the pressure
p(r) and the enclosed mass m(r),

dp

dr
= −Gmε

r2

(1 + p/ε)(1 + 4πr3p/m)

1 − 2Gm/r
, (9)

dm

dr
= 4πr2ε, (10)

being G the gravitational constant. Starting with a central mass
density ε(r = 0) ≡ εc, one integrates out until the surface
density equals that of iron. This gives the stellar radius R

and its gravitational mass M = m(R). For the description
of the NS crust, we join the hadronic EOS with those by
Negele and Vautherin [21] in the medium-density regime, and
those by Feynman-Metropolis-Teller [22] and Baym-Pethick-
Sutherland [23] for the outer crust.

B. The Nijmegen ESC08 potential

The extended soft-core ESC08 model [18] for baryon-
baryon interactions of the SU(3) flavor octet of baryons
(N , �, �, and 	) provides a presentation of the forces
in terms of (i) meson exchange, using generalized soft-core
Yukawa functions; (ii) multiple gluon exchange (pomeron and
odderon); and (iii) structural effects due to the quark core of
the baryons. Relativistic effects are included via expansions
in inverse baryon masses 1/mB . The ESC meson-exchange
interactions contain local and nonlocal potentials due to
(a) one boson exchanges (OBE’s), which are members of
nonets of pseudoscalar, vector, scalar, and axial mesons;
(b) pomeron and odderon exchanges; (c) two pseudoscalar
exchanges (TME’s); and (d) meson pair exchanges (MPE’s).
The OBE and MPE vertices are regulated by Gaussian form
factors, where the assignment of the cutoff masses for the
baryon-baryon-meson (BBM) vertices depends on the SU(3)
classification of the exchanged mesons for OBE, and a similar
scheme for MPE.
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TABLE I. Fit parameters for the energy density of hypernuclear matter, Eqs. (11) through (15), obtained with the ESC08 or the NSC89 YN
potentials.

V18 + TBF + ESC08 V18 + UIX′+ NSC89

a0, b0, c0, a1, b1, c1 −140.7 390.1 2.08 88.3 634.3 3.11 −286.6 397.2 1.39 88.1 207.7 2.50
a0

�, a1
�, a2

�, b0
�, b1

�, b2
�, c� −625 67 0 656 −17 0 1.28 −403 688 −943 659 −1273 1761 1.72

a0
�, a1

�, a2
�, b0

�, b1
�, b2

�, c� −1285 −395 0 1856 −93 0 1.07 −114 0 0 291 0 0 1.63
a��, c��, d�� 218 0.95 0.84 136 0.51 0.93
a��, c��, d�� 0 0 0 0 0 0
a��, c��, d�� 0 0 0 0 0 0
a��, c��, d�� 157 0.95 0.80 89 0.33 0.81
c0
�, c1

�, c0
�, c1

� −0.13 1.76 −0.75 −0.44 0.22 −0.38 −0.59 −0.22

The ESC models describe the NN, YN, and YY interactions
in a unified way using broken flavor SU(3) symmetry. This

serves to connect the NN, YN, and YY channels and is
utilized to make a simultaneous fit to the NN and YN data
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FIG. 1. (Color online) Single-particle potentials of the different species n, p, �,�− in nuclear matter of normal nuclear density ρN =
0.17 fm−3, varying proton fraction xp , and vanishing hyperon densities. The dots indicate the positions of the Fermi momenta. Results obtained
with the ESC08 (upper panel) and NSC89 (lower panel) YN potentials are compared.
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with a restricted set (� 20) of free coupling constants, etc.;
see [18] for details. In particular, the BBM coupling constants
are calculated via SU(3) using, together with the meson mixing
angles, the fitted constants in the NN ⊕ YN analysis as input.
In ESC08 no breaking of SU(3) is assumed for the couplings
with the exception of the charge symmetry breaking in the �p

and �n channels. In the latter we include the SU(2) isospin
breaking in the OBE, TME, and MPE potentials.

The ESC08 model achieves, with single sets of parameters
and without ad hoc changes of the rules in particular channels,
excellent results for the NN and YN data: (i) For the selected
4233 NN data of the Nijmegen phase shift analysis [24] with
energies 0 � Tlab � 350 MeV a χ2/data = 1.094 is realized,
which is remarkably close to that of the multienergy phase
shift analysis [24]. (ii) For the usual set of 38 YN data used
in the Nijmegen studies the fit gives χ2/data � 0.83. (iii) For
YY there is a weak �� attraction, which matches the Nagara
event [25]. Among the predictions for the S = −2 channels
(��,	N,��,��) are the existence of S = −2 bound states
in the 	N (3S1 − 3D1, T = 0, 1) channels.

III. RESULTS

A. Parametrization of the energy density function

The large number of degrees of freedom (four partial
densities) renders inconvenient the use of the resulting hyper-
nuclear EOS in tabular form. We therefore tried to approximate
the numerical results by a sufficiently accurate analytical
parametrization. We find that the following functional form
provides an excellent fit of the numerical data for the
energy density, Eq. (5), in the required ranges of nucleon
density (0.1 fm−3 � ρN � 0.8 fm−3), proton fraction (0.0 �
ρp/ρN � 0.5), and hyperon fractions (0 � ρ�/ρN � 1.0, 0 �
ρ�/ρN � 0.5):

ε(ρn, ρp, ρ�, ρ�) = ENρN

+ (E� + E�� + E��)ρ� + C

2m�M�

ρ
5/3
�

+ (E�+E�� +E��)ρ� + C

2m�M�

ρ
5/3
� (11)

with

EN = (1 − β)
(
a0ρN + b0ρ

c0
N

) + β
(
a1ρN + b1ρ

c1
N

)
, (12)

EY = (
a0

Y + a1
Y x+a2

Y x2
)
ρN +(

b0
Y +b1

Y x+b2
Y x2

)
ρ

cY

N , (13)

EYY ′ = aYY ′ρ
cYY ′
N ρ

dYY ′
Y ′ , (14)

MY = 1 + (
c0
Y + c1

Y x
)
ρN, (15)

where ρN = ρn + ρp, x = ρp/ρN , β = (1 − 2x)2, Y, Y ′ =
�,�, and C = (3/5)(3π2)2/3 ≈ 5.742. Here ε and ρi are given
in units of MeV fm−3 and fm−3, respectively (and m�,� in
MeV−1fm−2).

Technically, these parametrizations were obtained by per-
forming about 103 BHF calculations in the (ρn, ρp, ρ�, ρ�)
space, yielding “data” points ε(ρn, ρp, ρ�, ρ�). The optimal
values of the fit parameters were then determined hierarchi-
cally first for nuclear matter, and then for hypernuclear matter,
so that the fits are optimized also for pure nuclear matter. The
optimal parameters are listed in Table I for both the V18 +
TBF + ESC08 and the V18 + UIX′ + NSC89 interactions that
we compare in this article. The final overall rms deviation of
fit and BHF data points for E/A = ε/ρ is less than 1.5 MeV,
which we consider fully satisfactory for our current purposes.

B. Neutron star structure

In order to illustrate the major differences between the
ESC08 and NSC89 YN potentials, we compare in Fig. 1
the BHF single-particle potentials UB(k), Eq. (3), of the
different species B = n, p,�,�− in nuclear matter of normal
nuclear density ρN = 0.17 fm−3, varying proton fraction xp,
and vanishing hyperon densities. The most striking difference
is the strong repulsion of the �− obtained with the ESC08
model: U�−(0) ranges from about 15 MeV in symmetric matter
to 55 MeV in neutron matter, whereas with the NSC89 model
its value is close to zero. The � is slightly more attractive
with the ESC08 in nuclear matter (−40 MeV vs −30 MeV),
while the values in neutron-rich matter are nearly the same.
One can thus expect reduced �− concentrations in β-stable
matter with the ESC08.
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FIG. 2. Composition of β-stable matter (upper panels) and equation of state (lower panels) for different models.
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FIG. 3. (Color online) Mass—radius and mass—central density
relations for different equations of state. Details are given in the text.

This is in fact confirmed by the composition of NS matter
shown in the upper panels of Fig. 2, where the results obtained
with the two models V18 + TBF + ESC08 and V18 + UIX′+
NSC89 are compared with those of purely nuclear matter,
V18 + TBF and V18 + UIX′, disregarding the appearance
of hyperons. It is striking to see how the roles of the � and
�− hyperons are reversed with the two YN potentials: With
the NSC89 the �− appears first at about twice normal nuclear
matter density and the � at about 0.6 fm−3, whereas with
the ESC08 the hyperon onset densities are nearly the same,
but � and �− are swapped. Furthermore, with the ESC08
the � concentration reaches much larger values than with the
NSC89, while the �− remains more suppressed, due to its
strong repulsion in neutron-rich matter; see Fig. 1.

Pressure and energy density of hyperonic NS matter, shown
in the lower panels of Fig. 2, are quite similar for both models.
This is in contrast to the purely nucleonic calculations, where
one observes a much stiffer nuclear EOS with the microscopic
TBF than with the UIX′, see also Refs. [6,9]. The proton
fraction is larger with the microscopic TBF, which would
favor also a larger �− concentration. Evidently this effect
is completely overcome by the strong �− repulsion with the
ESC08 potential.

These results allow to interpret easily the final resulting
mass—radius and mass—central density relations for the
different EOS that are shown in Fig. 3: Regarding the purely
nucleonic cases (thin curves), in accordance with the EOS

shown in Fig. 2 one obtains a much larger maximum mass
with the microscopic TBF than with the UIX′ (2.27 M� vs
1.82 M�) [6], while remarkably the introduction of hyperons
yields nearly the same maximum mass in both models
(1.37 M� vs 1.32 M�; thick solid and dashed curves). These
values are also very close to the result 1.34 M� that was
obtained in an approximate way in Ref. [6] by combining
the microscopic TBF with the NSC89 potential, i.e., V18 +
TBF + NSC89, and that we repeat here for completeness,
together with the result for V18 + UIX′+ ESC08 (1.36 M�),
obtained in the same way.

While the maximum masses of hyperon stars are thus
nearly identical, there are significant differences for the
corresponding radii that are linked to the maximum central
baryon density that is reached in the different models. In
any case, however, most current observed NS masses [26]
are superior to these theoretical values of hyperon stars.

IV. CONCLUSIONS

In this article the finding of very low maximum masses of
hyperon stars within the BHF approach is reconfirmed, using
very recent realistic nucleon-nucleon and hyperon-nucleon
interactions.

Compared to previous results based on the V18 + UIX′
NN force and the NSC89/97 YN models, both changes are in
principle able to stiffen the EOS and increase the maximum
mass (as clearly shown for purely nucleonic stars), but it is
amazing to see how well the self-regulating compensation
softening mechanism for the hypernuclear EOS works, finally
yielding nearly the same maximum mass of about 1.35 M� as
before.

This result reinforces once more the important conclusion
that in our approach massive neutron stars have to be hybrid
stars containing a core of nonbaryonic (“quark”) matter [27],
since the possibility of them being nucleonic stars is ruled out
by the early appearance of hyperons.

It seems difficult to avoid this conclusion, even in view
of the current uncertainties regarding hyperon-hyperon and
hyperonic three-body interactions. Only simultaneous strong
repulsion in all relevant channels could significantly raise the
maximum mass (see, however, Ref. [28]). Obviously it will
be an important task for the future to verify this by following
future experimental and theoretical developments in this field.
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