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deuteron data with final-state interaction effects
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The incoherent pion photoproduction reaction γ d →π−pp is considered theoretically in a wide energy region
Eth � Eγ � 2700 MeV. The model applied contains the impulse approximation as well as the NN and πN

final-state-interaction (FSI) amplitudes. The aim of the paper is to study a reliable way for getting the information
on elementary γ n→π−p reaction cross sections beyond the impulse approximation for γ d →π−pp. For the
elementary γN →πN , NN →NN , and πN →πN amplitudes, the results of The George Washington University
(GW) Data Analysis Center (DAC) are used. There are no additional theoretical constraints. The calculated cross
sections dσ/d�(γ d →π−pp) are compared with existing data. The procedure used to extract information on
the differential cross section dσ/d�(γ n→π−p) on the neutron from the deuteron data using the FSI correction
factor R is discussed. The calculations for R versus π−p center-of-mass (CM) angle θ1 of the outgoing pion
are performed at different photon-beam energies with kinematic cuts for a “quasifree” process γ n→π−p. The
results show a sizable FSI effect R �= 1 from the S-wave part of pp-FSI at small angles close to θ1 ∼ 0: this
region narrows as the photon energy increases. At larger angles, the effect is small (|R−1| � 1) and agrees with
estimations of FSI in the Glauber approach.
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I. INTRODUCTION

The N∗ family of nucleon resonances has many well-
established members [1], several of which exhibit over-
lapping resonances with very similar masses and widths
but with different JP spin-parity values. Apart from the
N (1535)1/2− state, the known proton and neutron pho-
todecay amplitudes have been determined from analyses of
single-pion photoproduction. The present work studies the
region from the threshold to the upper limit of the Scatter-
ing Analysis Interactive Dial-in (SAID) analyses, which is
center-of-mass (CM) energy W = 2.5 GeV. There are two
closely spaced states above �(1232)3/2+: N (1520)3/2− and
N (1535)1/2−. Up to W ≈ 1800 MeV, this region also encom-
passes a sequence of six overlapping states: N (1650)1/2−,
N (1675)5/2−, N (1680)5/2+, N (1700)3/2−, N (1710)1/2+,
and N (1720)3/2+.

One critical issue in the study of meson photoproduction
on the nucleon comes from isospin. While isospin can change
at the photon vertex, it must be conserved at the final hadronic
vertex. Only with good data on both proton and neutron
targets can one hope to disentangle the isoscalar and isovector
electromagnetic couplings of the various N∗ and �∗ resonances
(see Refs. [2,3]), as well as the isospin properties of the
nonresonant background amplitudes. The lack of γ n → π−p

and π0n data does not allow us to be as confident about the
determination of neutron couplings relative to those of the
proton. Some of the N∗ baryons [N (1675)5/2−, for instance]
have stronger electromagnetic couplings to the neutron relative
to the proton, but the parameters are very uncertain [1]. Data on
the γN →πN reactions are needed to improve the amplitudes
and expand them to higher energies.

Incoherent pion photoproduction on the deuteron is inter-
esting in various aspects of nuclear physics, and particularly,
provides information on the elementary reaction on the
neutron, i.e., γ n→πN . Final-state interaction (FSI) plays
a critical role in the state-of-the-art analysis of the γN →
πN interaction as extracted from γ d →πNN data. The
FSI was first considered in Refs. [4,5] as responsible for
the near-threshold enhancement (Migdal-Watson effect) in
the NN mass spectrum of the meson production reaction
NN → NNx. In Ref. [6], the FSI amplitude was studied in
detail. Calculations of NN -FSI and πN -FSI for the reactions
γ d →πNN can be traced back to Refs. [7–9]. In Refs. [8,9],
the elementary γN →πN amplitude, constructed in Ref. [7]
from the Born terms and �(1232)3/2+ contribution, was used
in γ d →πNN calculations with FSI terms taken into account.
Good descriptions of the available deuteron data for charged
pion photoproduction in the threshold and �(1232)3/2+
regions were obtained.

Further developments of this topic (see [10–17] and
references therein) included improvements of the elementary
γN →πN amplitude, predictions for the unpolarized and
polarized (polarized beam, target or both, see [10,12–16]
and references therein) observables in the γ d →πNN re-
actions, and comparison with new data. Different models
for γN →πN amplitude were used in the above-mentioned
papers, i.e., Mainz Unitary Isobar Model MAID (MAID) [18]
(Refs. [12,13]), SAID [19] (Refs. [13,15]), and MAID [20]
(Ref. [15]). As discussed in Refs. [13,15], the main uncertain-
ties of γ d →πNN calculations stem from the model depen-
dence of the γN →πN amplitude. In the latest SAID [19] and
MAID [20] analyses, the models for γN →πN amplitudes
are developed for the photon energies Eγ < 2.7 GeV [19]
and Eγ < 1.65 GeV [20], respectively. Summary results from
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the existing γ d →πNN calculations show that FSI effects
significantly reduce the differential cross section for the π0pn

channel, mainly due to the pn rescattering, and contribute
much less in the charged-pion case, i.e., in π+nn and π−pp

channels.
The role of FSI depends on the kinematic region considered.

In Ref. [21], a narrow enhancement in the pp mass spectrum
observed in the reaction pp→ppπ− with backward outgoing
π− was explained by the pp-FSI. The result was shown
to be model independent, determined only by pp scattering
parameters for the pp pair produced at high momentum
transfer. In the same approach, it was shown [22] that the
observed energy behavior of the total cross section of the
reaction pp→ppη in the near-threshold region can be also
explained by pp-FSI. In Ref. [17], the meson photoproduction
on deuteron was considered at high energies (Eγ ∼ several
GeV) and high momentum transferred to the final meson.
This work was focused mainly on special kinematic regions
close to the logarithmic singularities of the triangle NN- and
πN-FSI amplitudes, and the latter are strongly enhanced.
These configurations where the FSI amplitudes dominate may
be interesting, say, in connection with color transparency
hypothesis [23]. On the other hand, to extract the neutron
data, we are interested in the opposite case, i.e., when FSI is
suppressed.

In this paper the role of FSI in the γ d →π−pp reaction is
under consideration. Our analysis addresses the data [24,25]
that come from the γ d →π−pp experiment at JLab using
CEBAF Large Acceptance Spectrometer (CLAS) for a wide
range of photon-beam energies up to about 3.5 GeV. The
calculated FSI corrections for this reaction are further used
to extract the γ n→π−p data that constrain the γN → πN

amplitude used in PWA and coupled channel technologies.
In our approach, the γ d →π−pp amplitude has three

leading terms, represented by the diagrams in Fig. 1: impulse
approximation (IA) [Fig. 1(a)], pp-FSI [Fig. 1(b)], and πN -
FSI [Fig. 1(c)] contributions. IA and πN diagrams [Figs. 1(a)
and 1(c)] include also the cross terms between outgoing
protons. It is convenient to study the FSI effects in terms of
the ratio

RFSI = (dσ/d�πp)/(dσ IA/d�πp), (1)

i.e., the ratio of the differential cross sections dσ/d�πp,
including the full calculations of diagrams [Figs. 1(a)–1(c)]
to the (dσ IA/d�πp), associated with the IA diagram [Fig.
1(a)], where �πp is the solid angle of the relative motion in
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FIG. 1. Feynman diagrams for the leading components of the
γ d → π−pp amplitude. (a) Impulse approximation, (b) pp-FSI, and
(c) πN -FSI. Filled black circles show FSI vertices. Wavy, dashed,
solid, and double lines correspond to the photons, pions, nucleons,
and deuterons, respectively.

the final πp system. The ratio RFSI (1) depends on different
kinematic variables. It can be used to extract the differential
cross sections dσ/d� for the reaction γ n→π−p from the
γ d →π−pp data. We use the recent The George Washington
University (GW) pion photoproduction multipoles to constrain
the amplitude for the impulse approximation [26] with no
additional theoretical input. While for the pp-FSI and πN -FSI
we include the GW NN [27] and GW πN amplitudes [28],
respectively, for the deuteron description, we use the wave
function of the CD-Bonn potential [29] with S- and D-wave
components included.

This paper is organized as follows. In Sec. II we describe the
model. In Secs. II A and II B, we introduce the notations and
write out the impulse approximation terms of the γ d →πNN

amplitude. In Secs. II C and II D we derive the NN -FSI and
πN -FSI terms of the reaction amplitude, respectively.

The results are presented in Sec. III. In Sec. III A we com-
pare our numerical results for the cross section dσ/d�(γ d →
π−pp) with the Deutsches Elektronen-Synchrotron (DESY)
data and discuss the contributions from different amplitudes. In
Sec. III B we discuss the procedure to extract the cross section
dσ/d�(γ n→π−p) for the neutron from the γ d →π−pp data
and define the correction factor R. In Sec. III C we present
the numerical results for the factor R and discuss the role
of the S-wave pp-FSI. In Sec. III D we estimate the R factor
in the Glauber approach. The conclusion is given in Sec. IV.

II. MODEL FOR γ d → π− pp AMPLITUDE

A. Kinematic notations

Hereafter m, μ, and md are the proton, pion, and deuteron
masses, respectively; q = (Eγ , q), pd = (Ed, pd ), k = (ω, k),
and pi = (Ei, pi) (i =1, 2) are the four-momenta of the initial
photon, deuteron and final pion, nucleons, respectively; k′ =
(ω′, k′), p′ = (E′, p′), and p′

i = (E′
i , p′

i) are the four-momenta
of the intermediate particles. The four-momenta are shown in
Fig. 1. The total energies Eγ , Ed, . . . E′

i and three-momenta
q, pd, . . . p′

i are given in the laboratory system (LS), i.e., in
the deuteron rest frame, where pd = 0 and Ed = md .

The cross-section element dσ (γ d →π−pp), according to
the usual conventions for invariant amplitudes and phase
spaces (see Appendix A1), can be written in the form

dσ = 1

2

|Mγd |2
4Eγ md

dτ3, dτ3 = d 3p2

(2π )3 2E2
dτ2,

(2)

dτ2 = k1d�1

(4π )2 W1
.

Here Mγd is the γ d →π−pp invariant amplitude; |Mγd |2 is
the square |Mγd |2, calculated for unpolarized particles; dτ3

is the πNN phase space element, written in terms of the
πp1-pair phase space element dτ2 and three-momentum p2
of the second proton; the factor 1

2 in dσ (2) takes into account
that the final protons are identical; k1 and �1 are the relative
momentum and solid angle of relative motion in the πp1

system, respectively; and W1 is the effective mass of the πp1

system.
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B. Impulse-approximation amplitudes

Let us use the formalism of Ref. [30], which is similar to that
of Gross [31] in the case of small nucleon momenta | p|2/m �
m in the deuteron vertex. Then the impulse-approximation
term Ma [Fig. 1(a)] of the γ d →πNN amplitude can be
written in the form

Ma = M (1)
a + M (2)

a ,

M (1)
a = ū1 M̂

(1)
γN iĜN (p ′) i�̂d (p2−p ′) uc

2, (3)

M (2)
a = −M (1)

a (N1 ↔N2).

Here ui is the bispinor (isospinor also) of the ith final
nucleon, ūu = 2m; uc = τ2Ucū

T = τ2γ2u
∗, where Uc = γ2γ0

is the charge-conjugation matrix; M
(1,2)
γN = ū1,2M̂

(1,2)
γN u is

the amplitude of subprocess γN →πN1,2, and u is the
bispinor (isospinor also) of the intermediate nucleon with four-
momentum p ′ =pd −p 2,1; ĜN (p ′) = (p/ ′+ m)/(p ′ 2− m2+
i0) is the nucleon propagator, where p/ ≡ pμγμ; �̂d (p 2,1 −p ′)
is the dNN vertex related to the deuteron wave function
(DWF) as given in Appendix A 2. The amplitude Ma is
antisymmetric with respect to the nucleon permutations in
accordance with the Pauli principle.

Further, we retain only the positive-energy part of the
nucleon propagator GN (p ′) and apply the connection between
�̂d and DWF �̂d . Then, for a given spin and isospin states of
the particles, we obtain

M (1)
a = 2

√
m

∑
m′,τ ′

〈
π,m1, τ1

∣∣ M̂ (1)
γN

∣∣ λ,m′, τ ′〉
×〈m′, τ ′,m2, τ2| �̂d ( p2)| md〉, (4)

and the second term is M (2)
a = −M (1)

a (with permutation of
the variables of the final nucleons). Here m1,2, m′, λ, and md

are spin states of the final nucleons, virtual nucleon, photon,
and deuteron, respectively; π , τ1,2, and τ ′ are isospin states
of pion, final nucleons, and virtual nucleon, respectively. By
substituting isospin states for the reaction γ d →π−pp, one
gets

Ma = 2
√

m
∑
m′

[ 〈
m1

∣∣ M̂ (1)
γ n

∣∣ λ,m′〉〈m′,m2| �̂d ( p2)| md

〉
−〈

m2

∣∣ M̂ (2)
γ n

∣∣ λ,m′〉〈m′,m1| �̂d ( p1)| md

〉 ]
, (5)

where now M (i)
γ n = 〈mi | M̂ (i)

γ n| λ,m′〉 are the γ n→π−pi am-

plitudes. The expressions for DWF 〈m1,m2 |�̂d ( p)| md〉 are
given in Appendix A 2. The γN →πN amplitudes M̂γN

can be expressed through the Chew-Goldberger-Low-Nambu
(CGLN) amplitudes [32] (see Appendix A 3). The CGLN
amplitudes as functions of the πpi invariant masses Wi depend
on the virtual nucleon momentum p′ through the relation
W 2

i = (q + p′)2 = (k + pi)2. Thus, the Fermi motion is taken
into account in the γ d →π−pp amplitude Ma (5). The matrix
elements 〈m1| M̂γN | λ,m′〉 are given in Appendix A 4.

Note that we use phenomenological γN →πN amplitudes,
which are gauge-invariant for free nucleons. However, with
this input the γ d →πNN amplitudes do not satisfy rigorously
the gauge invariance. This problem cannot be solved on the
phenomenological level and should be carefully considered in
the quantum-field approach. An example of such an approach

can be found in Ref. [33], where the γ d →π+nn amplitude
constructed in the effective chiral theory is gauge-invariant but
the theory is valid only in the near-threshold region.

C. N N final-state interaction

The NN -FSI term Mb [Fig. 1(b)] of the γ d →πNN

amplitude can be written in the form

Mb = −i

∫
d4p ′

2

(2π )4

×
∑

m′
1, m

′
2

〈
m′

1,m
′
2

∣∣ M̂IA
γ d

∣∣ λ,md〉
〈
m1,m2| M̂NN | m′

1,m
′
2〉(

p ′ 2
1 − m2 + i0

)(
p ′ 2

2 − m2 + i0
) .

(6)

Here m′
1 and m′

2 are spin states of the intermediate nucleons;
the notations for m1, m2, λ, and md are the same as in Eqs. (4)
(for short, we omit isospin indices); and M̂IA

γ d is the amplitude
of subprocess γ d →πNN in the impulse approximation〈

m′
1,m

′
2

∣∣ M̂IA
γ d

∣∣ λ,md

〉
= 2

√
m

∑
m′

〈m′
1| M̂γN | λ,m′〉〈m′,m′

2| �̂d ( p ′
2)| md〉, (7)

where M̂NN is the NN scattering amplitude. The integral over
the energy in Eq. (6) can be related to the residue at the nucleon
(momentum p ′

2) pole with positive energy. Let us rewrite the
three-dimensional integral

∫
d p ′

2 in the NN center-of-mass
system. Then we get p ′ 2

1 −m2+ i0 =2W (E− E′+ i0), where

W is the NN -system effective mass, E =W/2=
√

p 2
N +m2,

pN =| pN |, E′ =
√

p ′ 2
N +m2, p ′

N =| p ′
N |, and pN ( p ′

N ) is the
relative three-momentum in the final (intermediate) NN state.
We thus obtain

Mb =
∫

d p ′
N

(2π )3

〈· · · 〉
4E′ W (E′ − E − i0)

,

〈· · · 〉 =
∑

m′
1, m

′
2

〈m′
1,m

′
2

∣∣ M̂IA
γ d

∣∣ λ,md

〉〈m1,m2| M̂NN | m′
1,m

′
2

〉
.

(8)

One can rewrite Mb as

Mb = Mon
b + Moff

b

=
∫

d p ′
N

(2π )3

〈· · · 〉
4E′ W

[
iπδ(E′−E) + P

1

E′−E

]
. (9)

Here, Mon
b and Moff

b are the contributions from the first and
second terms, respectively, in square brackets in the rhs of
Eq. (9), where P means the principal part of the integral.
The amplitudes Mon

b and Moff
b correspond to the on-shell and

off-shell intermediate nucleons, respectively. For Mon
b we get

Mon
b = iπ

∫
d p ′

N

(2π )3

〈· · · 〉
4E′ W

δ(E′−E)

= ipN

32π2W

∫
d�′ 〈· · · 〉, (10)
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where d�′ = dz′dϕ′ (z′ = cos θ ′) is the element of solid angle
of relative motion of the intermediate nucleons. Consider the
second term Moff

b . Let us use Eqs. (A3) of Appendix A 2 for
�̂d ( p ′

2) in Eq. (7) and represent the integrand 〈· · · 〉 in Eq. (8)
as the sum of two terms, proportional to the S- and D-wave
components of DWF, i.e., u(p′

2) and w(p′
2). We then obtain

〈· · · 〉 = Au(p′
2) + B w(p′

2) (p′
2 = | p′

2|),
A = 2

√
m

∑
m′,m′

1,m
′
2

〈m′
1| M̂γN | λ,m′〉 (11)

×〈m′,m′
2| Ŝu| md〉〈m1,m2| M̂NN | m′

1,m
′
2〉,

and B is given by the expression for A after the replacement
Ŝu → Ŝw, where Ŝu and Ŝw are given in Eqs. (A3) of
Appendix A 2. The factors A and B contain γN and NN

amplitudes, spin structure of the DWF, and depend on the
momenta of the particles in Fig. 1(b). Note that the NN -FSI
amplitude Mb (8) takes into account the Fermi motion, since
the amplitudes M̂γN and M̂NN depend on the intermediate
momenta p′ and p′

2, respectively. In the integral
∫
d p ′

N =∫
d�′dp ′

Np ′ 2
N (9), we take out of subintegral

∫
dp ′

N the factors
A and B (11) at p ′

N = pN , i.e., we calculate A and B as
well as the amplitudes M̂γN and M̂NN with the on-shell
intermediate nucleons. This approximation means that we
neglect the off-shell dependence of the γN and NN amplitudes
in comparison with sharp momentum dependence of DWF.
Then we get

Moff
b =

∮
d p ′

N

(2π )3

〈· · · 〉
4E′ W (E′−E)

= 1

32π2W

∫
d�′ (AIu + B Iw),

(12)

Iu =
∮

dp ′
N p ′ 2

N

πE′
u(p′

2)

E′−E
, Iw =

∮
dp ′

N p ′ 2
N

πE′
w(p′

2)

E′−E
,

where
∮

denotes the principal part of the integral. We also
include the form factor f (p ′

N ) [13] to parameterize the off-
shell 1S0 partial amplitude of pp scattering and define the
integrals

I (0)
u =

∮
dp ′

N p ′ 2
N

πE′
u(p′

2)f (p ′
N )

E′−E
, f (p ′

N ) = p 2
N + β2

p ′ 2
N + β2

, (13)

with β = 1.2 fm−1 [13]; I (0)
w = I (0)

u [u(p′
2)→w(p′

2)]. Let us
write the terms A and B (11) as

A = A0 + A1, B = B0 + B1, (14)

where A0 (A1) is given by Eq. (11) when only the 1S0 part is
saved (excluded) in the pp scattering amplitude M̂NN [for B0,1

the substitution Ŝu → Ŝw in Eq. (11) is implied]. Combining
Eqs. (9)–(13), we obtain

Mb =
∫

d�′

32π2W

{
ipN [Au(p′

2) + B w(p′
2)]

+A0I
(0)
u +A1Iu+B0I

(0)
w +B1Iw

}
. (15)

The integrals Iu, Iw, I (0)
u , I (0)

w and
∫
d�′ (15) are carried

out numerically. The NN scattering amplitude is described
in Appendix A 5.

D. π N final-state interaction

The πN -FSI term Mc [Fig. 1(c)] of the γ d →πNN

amplitude can be written in the form

Mc = M (1)
c + M (2)

c ,M (1)
c = −

∫
dk ′

2

(2π )3

〈· · · 〉
2E′ (k ′ 2− μ2+ i0)

,

(16)

〈· · · 〉 =
∑

π ′,τ ′
2,m

′
2

〈
π ′, τ1,m1, τ

′
2,m

′
2

∣∣ M̂IA
γ d

∣∣ λ,md

〉

× 〈
π, τ2,m2

∣∣ M̂ (2)
πN

∣∣π ′, τ ′
2,m

′
2

〉
,

where the integral over the energy is also related to the residue
at the nucleon pole (momentum p ′

2), as in Eq. (7). Here m′
2 and

τ ′
2 are spin and isospin states of the intermediate nucleon with

four-momentum p ′
2; τ ′ is isospin state of intermediate pion;

the notations m1,2, τ1,2, π , λ, and md are given above [see

Eq. (4)]; M
(2)
πN = 〈π, τ2,m2| M̂ (2)

πN | π ′, τ ′
2,m

′
2〉 is the πN →

πN2 amplitude; and k ′
2 is the relative three-momentum in

the intermediate πN system. The second term M (2)
c = −M (1)

c

(with permutation of the final nucleons). Substituting isospin
states for the reaction γ d →π−pp, and making use of Eq. (7),
we get the integrand 〈· · · 〉 in Eq. (16) in the form

〈· · · 〉 = 2
√

m
∑

m′, m′
2

[ 〈m1| M̂ (1)(γ n→π−p)| λ,m′〉

× 〈
m2

∣∣ M̂ (2)
π−p

∣∣m′
2

〉 − 〈m1| M̂ (1)(γp→π0p)| λ,m′〉
× 〈

m2

∣∣ M̂ (2)
cex

∣∣ m′
2

〉] 〈m′,m′
2| �̂d ( p′

2)| md〉, (17)

where M̂
(i)
πN and M̂ (i)

cex are the elastic and charge-exchange
(π0n→π−p here) πNi amplitudes, respectively. The relative
sign “–” between two terms in Eq. (17) arises from the
isospin antisymmetry of the DWF with respect to the nucleons.
Furthermore, we rewrite the denominator k ′ 2 − μ2 + i0 in
Eq. (16) as

k ′ 2 − μ2 + i0 = 2W2(E −E′ + i0), E =
√

k 2
2 + m2,

(18)
E′ =

√
k′ 2

2 + m2

(k2 = |k2|, k′
2 = |k′

2|), where W2 is the effective mass of the
rescattering πN2 system, and E (E′) is the total energy of the
final (intermediate) nucleon in the πN2 rest frame. In a way
similar to Sec. II C, we split the amplitude M (1)

c into “on-shell”
and “off-shell” parts and obtain

M (1)
c = M (1), on

c + M (1), off
c =

∫
d�′

32π2W2
{A [ik2 u(p′

2) + Iu]

+B [ik2 w(p′
2) + Iw]},

(19)
Iu =

∮
dk ′

2 k ′ 2
2

πE′
u(p′

2)

E′−E
, Iw =

∮
dk ′

2 k ′ 2
2

πE′
w(p′

2)

E′−E
.

Here d�′ = dz′dϕ′ is the element of solid angle of relative
motion in the intermediate πN system; the factor A(B) is
given by the rhs of Eq. (17) after the replacement �̂d ( p′

2)→
Ŝu(Ŝw) [see Appendix A 2, Eq. (A3)] and is calculated with
the on-shell intermediate pion and nucleon. The “off-shell”
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FIG. 2. The differential cross section dσ/d� of the reaction γ d → π−pp in the laboratory frame at different values of the photon laboratory
energy Eγ �1900 MeV; θ is the polar angle of the outgoing π−. Dotted curves show the contributions from the IA amplitude Ma [Fig. 1(a)].
Successive addition of the NN-FSI [Fig. 1(b)] and πN -FSI [Fig. 1(c)] amplitudes leads to dashed and solid curves, respectively. The filled
circles are the data from Ref. [34].

part M (1),off
c of the amplitude M (1)

c (19) is given by the
terms containing the integrals Iu and Iw. The πN scattering
amplitude is described in Appendix A 6.

III. RESULTS

A. Comparison with the experiment

We present herein the results of calculations and com-
parison with the experimental data on the differential cross
sections dσγd (θ )/d�, where � and θ are solid and polar angles

of outgoing π− in the laboratory frame, respectively, with z
axis along the photon beam. The results are given in Fig. 2
for a number of the photon energies Eγ . Calculations were
done with DWF of the CD-Bonn potential (full model) [29].
The filled circles denote the data from the bubble chamber
experiment at DESY [34].

The dotted curves show the results obtained with the IA
amplitude Ma [Fig. 1(a)]. It is known that the IA cross
section σ (γ d →π−pp) can be expressed in the closure
approximation [35] through the cross section σ (γ n→π−p)
and Pauli correction factor, which comes from the cross term
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FIG. 3. The differential cross section of the reaction γ d →π−pp

in the laboratory frame at Eγ = 500 MeV. (a) The dotted curve is
the IA contribution, i.e., the same as in Fig. 2; the dashed one is
the contribution from |M (1)

a |2+|M (1)
b |2, i.e., without the cross term.

(b) The solid and dashed curves means the same as in Fig. 2; the
dotted curve is obtained with the IA term and S-wave part of NN-FSI.
The data are from Ref. [34].

of the amplitudes M (1)
a and M

(1)
b (3). It reads

dσ

d�
(γ d →π−pp) = dσ

d�
(γ n→π−p) [· · · ],

(20)

[· · · ] = 1 − FS(�) + 2

3

|K |2
|L|2 + |K |2

FS(�).

Here [· · · ] is the Pauli factor, FS(�) is the spherical form
factor of the deuteron (we neglect the contribution of the
quadrupole form factor), and � = p1+ p2 is three-momentum
transfer; |L|2 and |K |2 are nonspin-flip and spin-flip γ n→
π−p amplitudes, respectively [see Appendix A 4, Eq. (A10)]
squared and averaged over the photon polarization. For zero-
angle (θ = 0) pions, the nonspin-flip term |L|2 = 0. Then at
�→0 we have FS(�)→1 and the Pauli factor [· · · ]→2/3 in
Eq. (20). At � → ∞ we have FS(�)→0 and [· · · ]→1. The
momentum transfer � increases together with the laboratory
angle θ . Thus the spectra of Fig. 2 should be partly suppressed
at small angles θ ∼ 0 as compared with dσ/d�(γ n→π−p).
Figure 3(a) shows two different results for dσγd (θ )/d� at
Eγ = 500 MeV: the dotted curve represents the contribution
from the IA amplitude squared |M (1)

a +M
(1)
b |2 and the dashed

one shows the contribution from |M (1)
a |2+|M (1)

b |2, i.e., without
the cross term. The difference in the curves in Fig. 3(a), i.e.,
the Pauli effect, at small angles is clearly seen.

The dashed curves in Fig. 2 are the contribution of IA- and
NN -FSI terms Ma+ Mb [Figs. 1(a) and 1(b)]. The solid curves
show the results obtained with the full amplitude Ma+ Mb+
Mc [Figs. 1(a), 1(b), and 1(c)], including IA-, NN -, and πN -
FSI terms. Figure 2 shows a sizable FSI effect at small angles
θ � 30 ◦, and it mainly comes from NN-FSI (the difference
between dotted and dashed curves). Comparing dashed and
solid curves, one finds that πN -FSI affects the results very
slightly. Note that at the energies Eγ = 300 − 500 MeV, the
effective masses of the final πp states predominantly lie in

the �(1232)3/2+ region. Thus, the plots at Eγ = 370 and
500 MeV of Fig. 2 show that the role of πN rescattering even
in the �(1232)3/2+ region is very small.

Figure 2 demonstrates a reasonable description of the data
[34] on dσγd (θ )/d�. These data are also confirmed by recent
results from the Gerasimov-Drell-Hearn (GDH) experiments
[36] in Mainz. Note that the data are absent at small angles
θ � 30◦, where the FSI effects are sizable. This is also the
region of the most pronounced disagreements between the
theoretical predictions of different authors [36].

The role of FSI is shown in more detail at Eγ = 500 MeV in
Fig. 3(b). Here the dashed curve is the result obtained including
the IA term and the S-wave part of NN-FSI. The dotted and
solid curves mean the same as in Fig. 2. Thus we see that at
small angles, the S-wave part of NN-FSI dominates the FSI
contribution.

At large angles, the FSI effects are more significant as the
photon energy increases. This is evident from the plots at
Eγ � 1050 MeV in Fig. 2. Our interpretation is that at both
high energies and at large angles, the role of configurations
with fast final protons increases. For these configurations, the
IA amplitude is suppressed by the deuteron wave function in
comparison to the rescattering terms. These kinematic regions
are considered in more detail in Ref. [17].

B. Extraction of the γ n→π− p cross sections from the γ d data

The data on the deuteron target does not provide direct
information on the differential cross section dσ/d�(γ n→
π−p), because of the γ d →π−pp squared amplitude term
|Mγd |2, where Mγd = Ma + Mb + Mc [Fig. 1] and cannot be
expressed directly through the term |Mγn|2. Let us neglect
for the time the FSI amplitudes [Figs. 1(b) and 1(c)] and let
the final proton with momentum p1( p2) be fast (slow) in the
laboratory system and denoted by p1(p2). Then the IA diagram
M (1)

a with a slow proton p1 emerging from the deuteron
vertex dominates, M (2)

a is suppressed, and Mγd ≈ M (1)
a . This

approximation corresponds to the “quasifree” (QF) process on
the neutron. In this case, one can relate the differential cross
section dσ/d�1(γ n→π−p) on the neutron with that on the
deuteron target as follows. (Hereafter, �1 is the solid angle of
relative motion in the π−p1 pair.) From Eq. (4) we get

∣∣M (1)
a

∣∣2 = 4m
∣∣M (1)

γ n

∣∣2
(2π )3ρ(p2),

(21)
(2π )3ρ(p) = u2(p) + w2(p),

∫
ρ(p) d p = 1,

where ρ(p) is the momentum distribution in the deuteron.
Making use of Eqs. (2) and (21), and multiplying by a factor
of 2 (we include also the configuration when slow and fast
protons are replaced, and the amplitude M (2)

a dominates), we
obtain

dσ
QF
γd

d p2 d�1
= n( p2)

dσγn

d�1
, n( p2) = E ′

γ

Eγ

ρ(p2),

(22)
E ′

γ

Eγ

= 1 + β cos θ2, β = p2

E2
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TABLE I. “Effective number” of neutrons with momenta p < pmax in the deuteron.

pmax (MeV/c) 50 100 200 300 Ref.

c(pmax) 0.335 0.719 0.941 0.981 (Full model) [29]
c(pmax) 0.326 0.704 0.932 0.978 (Energy independent) [29]

(see, for example, Refs. [7–9]). Here E ′
γ is the photon energy

in the rest frame of the virtual neutron with momentum p′
[Fig. 1(a)]; the factor E ′

γ /Eγ is the ratio of photon fluxes
in γ d and γ n reactions; and θ2 is the laboratory polar
angle of the final slow proton p2. Hereafter, we use the
notation dσ i

γ d/d p2d�1, where index “i” specifies the γ d →
π−pp amplitude M i

γd , namely, M
QF
γd = M (1)

a and MIA
γd = Ma .

The notation dσγd/d p2d�1 (without index) represents the
differential cross section, calculated according to Eqs. (2)
with full amplitude Mγd = Ma + Mb + Mc. Let us rewrite
Eqs. (22) in the form

dσγd

d p2d�1
= n( p2) r

dσγn

d�1
, r = rP rFSI ,

(23)

rP = (IA)

(QF)
, rFSI = (full)

(IA)
,

where, for short, we use the notations (full) = dσγd/d p2d�1

and (i) = dσ i
γ d/d p2d�1 for i = QF and IA. Equations (23)

enable one to extract the differential cross section dσγn/d�1

on neutron from dσγd/d p2d�1, making use of the factors
n( p2) and r . Here the factor n( p2), defined in Eqs. (22), takes
into account the distribution function ρ(p2) and Fermi motion
of the neutron in the deuteron; r = rP rFSI is the correction
coefficient, written as the product of two factors of different
nature. The factor rP takes into account the difference in
IA and QF approximations. Formally, we call it the “Pauli
correction” factor, since the IA amplitude Ma = M (1)

a + M (2)
a

is antisymmetric over the final nucleons. However, the factors
rP in Eqs. (23) and the expression in square brackets [· · · ] in
Eq. (20) are not identical. The factor rFSI in Eqs. (23) is the
correction for “pure” FSI effect.

Generally for a given photon energy Eγ , the cross section
dσγd/d p2d�1 (23) with unpolarized particles and the factor
r depend on p2, θ2, θ1, and ϕ1 (four variables), where θ1 and
ϕ1 are the polar and azimuthal angles of relative motion in
the final π−p1 pair. To simplify the analysis, we integrate the
differential cross section on deuteron over p2 in a small region
p2 < pmax and average over ϕ1. Then we define

dσ i
γ d

d�1
(Eγ , θ1) = 1

2π

∫
dσ i

γ d

d p2 d�1
d p2dϕ1, (24)

where the index “i” was introduced above [after Eqs. (22)].
The cross section (24) depends on Eγ and θ1. We calculate the
same integral from the rhs of Eqs. (22). Then we take the cross
section dσγn/d�1 out of the integral

∫
d p2, assuming n( p2)

to be a sharper function. Thus, making use of Eqs. (24)–(24),

we obtain

dσ
QF
γd

d�1
(Eγ , θ1) = c

dσ̄γ n

d�1
, c =

∫
n( p2) d p2(| p2| < pmax),

(25)

where dσ̄γn/d�1 is averaged over the energy E′
γ in some

region E′
γ ∼ Eγ . The value c = c(pmax) can be called the

“effective number” of neutrons with momenta p < pmax in
the deuteron. Under the restriction | p2| < pmax in the integral
for c (25), we get

c(pmax) = 4π

∫ pmax

0
ρ(p)p2dp → 1 at pmax →∞. (26)

A number of values of c(p) are given in Table I for two versions
of CD-Bonn DWF [29].

Further, we rewrite Eqs. (25) in the form

dσγd

d�1
(Eγ , θ1) = c R

dσ̄γn

d�1
, R = RP RFSI,

(27)

RP = (IA)

(QF)
, RFSI = (full)

(IA)
.

Here (i) = dσ i
γ d/d�1 (i = QF and IA) and (full)= dσγd/d�1

[the definitions are different from those in Eqs. (23)]; the
factors R, RP , and RFSI are similar to r , rP , and rFSI,
respectively, but are defined as the ratios of the “averaged”
cross sections dσ i

γ d/d�1.
Finally, we replace dσγd/d�1 in Eqs. (27) by the γ d →

π−pp data and obtain

dσ̄
exp
γ n

d�1
(Ēγ , θ1) = c−1(pmax) R−1(Eγ , θ1)

dσ
exp
γ d

d�1
(Eγ , θ1),

(28)

where dσ̄
exp
γ n /d�1 is the neutron cross section, extracted from

the deuteron data dσ
exp
γ d /d�1. Since the factor R = (full)/(QF)

is the ratio of the calculated cross sections, we assume that
(full) ≡ dσ theor

γ d /d�1 = dσ
exp
γ d /d�1. The factor R in Eq. (26)

is the function of the photon laboratory energy Eγ and pion
angle θ1 in the π−p1 frame, but also depends on the kinematic
cuts applied. The value Ēγ in Eq. (28) is some “effective” value
of the energy E′

γ = Eγ (1 + β cos θ2) in the range Eγ (1 ± β).
Limiting the momentum p2 to small values, we have β � 1
and Ēγ ≈ Eγ . This approximation also improves, since ρ(p2)
peaks at p2 = 0, where E′

γ = Eγ .
Equation (28) is implied to be self-consistent, i.e., the

γ n→π−p amplitude, extracted from the dσ̄
exp
γ n /d�1, is the

same as that used in calculations of the correction factor R.
Then the following iterations are proposed. The first step:
one obtains the cross section dσ̄

exp
γ n /d�1 from Eq. (28) at

R = 1 (no corrections), making use of the coefficient c(pmax),
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and extracts the γ n amplitude M
(0)
γN (0th approximation). The

next step: one calculates the factor R defined in Eqs. (27),
making use of the amplitude M

(0)
γN for the calculations of the

cross sections dσ i
γ d/d�1. We then repeat the procedure of

the previous step with the new value of R and obtain the
amplitude M

(1)
γN in the first approximation. The procedure

can be continued. If the correction is small, i.e., R ≈ 1
(|R − 1| � 1), then M

(1)
γN is a good approximation for the

corrected γ n→π−p amplitude. Since there are regions where
R ∼ 1 and the FSI effects are insignificant then the preliminary
analysis of the R factor is important for the procedure of the
extraction of the γ n→π−p amplitudes.

C. Numerical results for the R factor

We present the results, obtained with the model discussed
above, for the correction factor R, defined in Eqs. (27). The
results depend on the kinematic cuts. We use cuts, similar
to those applied to the CLAS data events [24], and select
configurations with

| p2| < 200 MeV/c < | p1|, (29)

where p1( p2) is the three-momentum of the fast (slow) final
proton in the laboratory system. The results are given in Fig. 4
as functions of the photon laboratory energy Eγ and θ1, where
θ1 is the polar angle of outgoing π− in the π−p1 rest frame
with the z axis directed along the photon momentum.

The solid curves show the results for R, where the
differential cross section (full) in Eqs. (25) takes into account
the full amplitude Ma+ Mb+ Mc [Figs. 1(a), 1(b), 1(c)].
The dashed curves were calculated, excluding the πN -FSI
contribution from the (full) cross section. The main features
of the results in Fig. 4 are

(i) A sizable effect is observed in the region close to θ1 = 0,
which narrows as the energy Eγ increases; and

(ii) The correction factor R is close to 1 (small effect) in the
larger angular region.

Since R consist of two factors RP and RFSI, we also present
them separately in Figs. 5(a) and 5(c) for Eγ = 1000 and
2000 MeV, respectively, where dotted, dashed, and solid curves
show the values of RP , RFSI, and R, respectively; the factor
RFSI was calculated with the full amplitude Ma+ Mb+ Mc

[Figs. 1(a), 1(b), and 1(c)] taken into account. We find that
RP �= 1 at small angles, i.e., the factor RP in addition to the
pure FSI factor RFSI also contributes to the total correction
factor R.

This can be naturally understood. Since RP is the correction
for the second (“suppressed”) IA amplitude M (2)

a , one should
expect M (1)

a ∼ M (2)
a and RP �= 1 at p1 ∼ p2. The probability

of such configuration increases at θ1 →0. It is clear that the
possibility of the configuration p1 ∼ p2 and the value of RP

should be rather sensitive to kinematic cuts.
The dominant role of the S-wave NN rescattering in the

FSI effect was marked in Sec. III A. This contribution to the
factor R is presented in Figs. 5(b) and 5(d) for Eγ = 1000
and 2000 MeV, respectively. Here, solid curves mean the same

as in Fig. 4, i.e., the total results; the dashed curves show the
values R, where RFSI takes into account only the correction
from the S-wave part of NN-FSI. Comparing the solid and
dashed curves, we see that the FSI effect mostly comes from
the S-wave part of pp-FSI. Note that the S-wave pp amplitude
and the total elastic pp cross section σel(pp) sharply peak near
the threshold at the relative momentum pN ≈ 23 MeV/c2.
Thus, the S-wave NN-FSI effect should be important in some
region p1 ∼ p2, i.e., at small angles as mentioned above, and
is evident from Figs. 5(b) and 5(d). Obviously, the result is
sensitive to the kinematic cuts.

D. Factor R and the Glauber approximation

Now consider the region of large angles θ1, where FSI
effects are small (R ∼ 1). In this case we have the rescattering
of fast pions and nucleons on the slow nucleon-spectator with
small momentum transfer. Then we may estimate the FSI
amplitudes in the Glauber approach [37], if the laboratory
momentum of the rescattered particle � p̄ (typical value
in the deuteron). For NN -FSI, this condition gives sin θ1 �
p̄W1/mEγ , where W1 is the π−p1 effective mass. Taking p̄ =
150 MeV/c, we get θ1 � 15.4 ◦(10 ◦) for Eγ = 1000 (2000)
MeV. As for the πN -FSI, we should also exclude some region
close to θ1 ∼ 180 ◦, where π− is slow in the laboratory system.
The high-energy NN scattering amplitude can be written as

Mt
NN = 2ip Wσ t

NN exp(bt), (30)

where p, W , t , b, and σ t
NN are the relative momentum, NN

effective mass, square of the four-momentum transfer, slope,
and total NN cross section, respectively. The amplitude is
assumed to be purely imaginary and the spin-flip term is
neglected. Retaining only the S-wave part of DWF, we obtain
the IA- and NN-FSI amplitudes (Ma and Mb) in the form

Ma = M (1)
a = 〈· · · 〉u(p2), Mb = −1

4
σ t

NN 〈· · · 〉 J,

〈· · · 〉 = 2
√

m
∑
m′

〈m1| M̂γN | λ,m′〉〈m′,m′
2| Ŝu| md〉, (31)

J =
∫

d2p⊥
(2π )2

u(p⊥) ebt .

Here the IA amplitude M (1)
a is equal to the first term in the

rhs of Eq. (5) with the replacement �̂d ( p2) → u(p2)Ŝu [see
Eqs. (A3)]; the second term (M (2)

a ) of the IA amplitude is
neglected; and t = −b( p2⊥ − p⊥)2, where p2⊥( p⊥) is the
transverse two-momentum of slow final (intermediate) proton
with Oz ‖ p1 (fast-proton momentum). The factor exp(bt) is
smooth in comparison with sharper DWF u(p⊥) in the integral
J (31); thus, we neglect it for simplicity, i.e., calculate J

(31) at b=0. Considering the case of a very slow proton
spectator with p2 ∼ 0, we take u(p2) ≈ u(0) for the IA
term Ma in Eqs. (31). We also add the πN -FSI amplitude
Mc with the same assumptions as for the NN-FSI, i.e.,
Mc = −(1/4) σ t

πN 〈· · · 〉 J . Finally, the FSI correction factor is
R = |Ma + Mb + Mc|2/|Ma|2, and with the CD-Bonn DWF
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FIG. 4. The correction factor R, defined by Eq. (27), where θ1 is the polar angle of the outgoing π− in the rest frame of the pair π− + fast
proton. The kinematic cut (29) is applied. The solid (dashed) curves are obtained with both πN - and NN-FSI (only NN-FSI) taken into account.

[29] we obtain

R = RFSI =
(

u(0) − 0.25
(
σ t

NN +σ t
πN

)
J

u(0)

)2

≈ 0.95.

(32)

Here we use some typical values σ t
NN ≈ 45 mb and σ t

πN ≈
35 mb for the total cross sections at laboratory momentum
plab ∼ 1−1.5 GeV/c. For the integral J at b=0 in Eq. (32)

with CD-Bonn DWF [29], one gets J = −(2π )−1 ∑
i ci ln mi

in the notations of Eqs. (A4).
Our Glauber-type calculations are extremely simplified in

a number of ways and give only a qualitative estimation. Some
predictions for the FSI corrections in the Glauber approach for
π− photoproduction on light nuclei were done in Ref. [38].
The analysis [39] of the reaction γ d →π−pp at high energies
of the photons, based on the approach of Ref. [38], gave a
Glauber FSI correction of the order of 20%. Similar values
15%–30% for this effect in the same approach were obtained
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FIG. 5. The correction factors at Eγ = 1000 MeV [(a), (b)] and
Eγ = 2000 MeV [(c), (d)]. The solid curves are the same as in
Fig. 4. (a, c) The dashed (dotted) curves are the results for the factor
RFSI(RP ), defined in Eq. (27). (b, d) The dashed curves show the factor
R, when RFSI takes into account only the S-wave part of NN-FSI.

in Refs. [24,25], while our estimation (32) gave a smaller value
∼5%. To comment on this difference in the results, let us point
out the difference in the approaches used. Here we use the
diagrammatic technique. The analyses of Refs. [24,25,38,39]
are based on the approach which considers a semiclassical
propagation of final particles in the nuclear matter. The
applicability of the latter approach to the deuteron case is
rather questionable. Notice that our approximate estimation in
terms of Glauber FSI correction gives results similar to those
obtained with our full dynamical model at large angles, i.e.,
the solid curves in Fig. 4 are in a reasonable agreement with
the value of R from Eq. (32).

Thus we obtain the following behavior of the correction
factor R for the reaction γ n→π−p, calculated from the
reaction γ d →π−pp at a high-energy photon beam with a
slow proton spectator. A sizable effect R �= 1 is observed in
the relatively narrow region θ1 ∼ 0 dominated by the S-wave
part of NN-FSI with additional some contribution from the
“Pauli effect” due to the “suppressed” IA diagram. A small
but systematic effect |R−1| � 1 is found in the large angular
region, where it can be estimated in the Glauber approach,
except for narrow regions close to θ1 ∼ 0 or θ1 ∼ 180 ◦.

IV. CONCLUSION

The incoherent pion photoproduction process γ d →π−pp

was considered in a model containing the IA and FSI

amplitudes. The NN - and πN -FSI were taken into account.
The inputs to the model are the phenomenological γN →πN ,
NN →NN , and πN →πN amplitudes, the deuteron wave
function, and the additional parameter (β) for the off-shell
behavior of the 1S0 partial amplitude of pp scattering. The
Fermi motion was also taken into account in the IA amplitudes,
as well as in the FSI (NN + πN ) terms.

The model reasonably describes the existing data on the
differential cross section dσ/d�(γ d →π−pp). Sizeable FSI
effects were observed at small laboratory angles θ � 30◦ for
outgoing pions, where the main part of the effect comes from
the 1S0 part of pp-FSI. In this angular range, the theoretical
predictions of different authors reveal the most pronounced
disagreements. Thus, future experiments on the reactions
γ d →πNN are welcome, especially at small angles θ � 30◦,
where data are absent.

The procedure to extract the differential cross section
dσ/d�(γ n→π−p) on the neutron target from the deuteron
data was derived in terms of the FSI correction factor r (23).
To reduce the number of variables, we gave the results for the
averaged correction factor R (27), defined as the ratio of the
differential cross sections dσ/d�1(γ d →π−pp), calculated
with full amplitude as well as in the quasi-free-process
approximation, where �1 is the solid angle of relative motion
in the system π−+ a fast proton. Also the kinematic cuts with
a slow spectator proton were used. The results show a sizable
FSI effect R �= 1, predominantly coming from the 1S0 part of
pp-FSI, at the angular region close to θ1 ∼ 0, and the region
narrows with the increasing photon energy. In the wide angular
range, the effect is small (|R−1| � 1) and in agreement with
the Glauber estimations.

The more refined analysis requires the use of the factor
r (23) instead of the averaged one (R). Then we deal
with the ratio of multidimensional differential cross sections
dσ i

γ d/d p2d�1, used in Eqs. (23). Furthermore, one should
integrate dσ i

γ d/d p2d�1 over the azimuthal angle ϕ1 in the
π−p1 pair, since the differential cross section on the neutron
in the unpolarized case has no azimuthal dependence; thus
the cross sections dσ i

γ d/d p2d�1 turn out to be a function
of three variables, i.e., p2, θ2, and θ1 (or cos θ2 and cos θ1).
Thus, applying Eqs. (23) to extract the differential cross section
dσγn/d�1 on the neutron, one needs data on the deuteron cross
section dσγd/d p2d�1 binned in the variables p2, θ2, and θ1,
i.e., in three-dimensional form.

Since the FSI effects are large at small angles θ1, the range
of small angles is better to be excluded from the γ d-data
analysis when extracting the cross sections on the neutron. We
address these details in our next publication, where we plan to
analyze γ d →π−pp data from the JLab experiment in a wide
range of the photon energies [24,25].
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APPENDIX: DEUTERON WAVE FUNCTION. AMPLITUDES
OF THE TWO-PARTICLE SUB-PROCESSES FOR

γ d → π N N

1. Invariant amplitudes and phase space

We use standard definitions and the cross section of the
process a + b→1 +· · ·+n reads

σn = InJ
−1

∫
|M|2dτn,

(A1)

dτn = (2π )4δ(4)(Pi − Pf )
n∏

i=1

d3 pi

(2π )32Ei

.

Here M is the invariant amplitude; dτn is the element of the
final n-particle phase space; Pi(Pf ) is the total initial (final)
four-momentum; Ei and pi are the total energy and three-
momentum of the ith final particle; J = 4Eamb = 4qab

√
s is

the flux factor, where Ea (mb) is the total laboratory energy
(mass) of the particle a(b), qab is the initial relative momen-
tum, and

√
s is the total CM energy; and In ≡ 1/n1! · · · nk! is

the identity factor, where ni is the number of particles of the
ith type (n1+· · ·+nk =n).

2. Deuteron vertex and wave function

The deuteron vertex �̂d , used in Eq. (3), can be written in
the form

�̂d (p) = g1

2m2
(εp) + g2

m
�ε,

g1 = −3m2

p2

√
m (p2+α2)w(p), (A2)

g2 = √
m (p2+α2)[

√
2 u(p)+w(p)].

Here ε is the deuteron polarization four-vector; p = | p| the
relative three-momentum of the nucleons; u(p) and w(p)
are S- and D-wave parts of the deuteron wave function,
respectively; and α2 = mεd , where εd is the deuteron binding
energy. The DWF in p representation reads

〈m1, τ1,m2, τ2| �̂d ( p)| md〉 = ϕ+
1 �̂d ( p) ϕc

2,

�̂d ( p) = u(p)Ŝu + w(p)Ŝw, Ŝu = (σε)√
2

, (A3)

Ŝw = 1

2
[(σε) − 3(nε)(σ n)].

Here, n = p/p; ε is the deuteron polarization three-vector for
a given spin state md ; mi and τi are spin and isospin states
of the ith nucleon, and ϕi is its spinor and isospinor; ϕc

i =
τ2σ2ϕ

∗
i , where σ2 and τ2 are spin and isospin Pauli matrices.

We use the normalization
1

2

∫
d p

∑
m1,τ1, m2,τ2

|〈m1, τ1,m2, τ2| �̂d ( p)| md〉|2

=
∫

d p [u2(p) + w2(p)] = (2π )3.

For the DWF of the CD-Bonn potential, the functions u(p)
and w(p) were parameterized [29] in the form

u(p) =
∑

i

ci

p2 + m2
i

, w(p) =
∑

i

di

p2 + m2
i

,

(A4)∑
i

ci =
∑

i

di =
∑

i

dim
2
i =

∑
i

di

m2
i

=0.

The parameters ci , di , and mi are given in the Tables 11 (full
model) and 13 (energy-independent model) of Ref. [29].

3. Invariant γ N →π N amplitudes

The general expression for the γN →πN amplitude MγN

can be written as

MγN = ū(p2)M̂γNu(p1), M̂γN = i

4∑
i=1

Aiγ5�i, (A5)

where u(p1,2) are the nucleon Dirac spinors (ūu = 2m), Ai are
the invariant amplitudes, and �i are the 4 × 4 matrices. �i’s
can be taken in the form

�1 = q/e/, �2 = (ep)(qk) − (pq)(ek),

�3 = q/(ek) − e/(qk), �4 = q/(ep) − e/(pq), p = p1 + p2.
(A6)

Here e is the photon polarization four-vector; q, k, and p1,2 are
four-momenta of the photon, pion, and nucleons, respectively.
One can write the amplitude MγN (A5) in the CM frame as

MγN = 8πW ϕ+
2 F̂ ϕ1, F̂ = iêF1 + n̂2[σ (n1 × e)]F2

+ in̂1(n2e)F3 + in̂2(n2e)F4. (A7)

Here, e is the photon polarization three-vector; q∗(k∗) are the
photon (pion) CM 3 momenta; W is the total CM energy; Fi =
Fi(W, z) are the CGLN [32] amplitudes, z= cos θ ; ϕi are the
Pauli spinors; n1 = q∗/q∗, n2 = k∗/k∗, q∗ = |q∗|, k∗ = |k∗|;
and “hat” means the product with σ , i.e., ê = (σ e), etc. For
unpolarized nucleons dσ/d�(γN →πN ) = k∗

2q∗ T r{F̂ F̂+}.
Equating Eqs. (A5) with Eqs. (A7), one finds the relations
between Ai’s and Fi’s, i.e.,

A1 = F̃1 + F̃2

2W
, F̃1 = 8πW

N1N2
F1, F̃2 = 8πWN1N2

|q||k| F2,

A2 = F̃3 − F̃4

2W
, F̃3 = 8πWN1

|q||k|W+ N2
F3, F̃4 = 8πWN2

|k|2W− N1
F4, (A8)

A3 = A4 + A34, A4 = F̃2+ W+ A1− (kq)A34

W+ W−
, A34 = W+ F̃3 + W− F̃4

2W
,
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where W± = W ± m, N1,2 = √
E1,2+ m, and E1,2 are total

CM energies of the nucleons.
The isospin structure of the amplitudes Ai(γN →πaN ) and

contributions to the different charge channels read

Ai = A
(+)
i δa3 + A

(−)
i

1
2 [τa, τ3] + A

(0)
i τa ,

Ai(γp→π0p) = A
(+)
i + A

(0)
i , Ai(γp→π+n) =

√
2
(
A

(0)
i + A

(−)
i

)
, (A9)

Ai(γ n→π0n) = A
(+)
i − A

(0)
i , Ai(γ n→π−p) =

√
2
(
A

(0)
i − A

(−)
i

)
.

The amplitudes Ai(γN →πN ) can be obtained from the CGLN [32] amplitudes Fi(γN →πN ) through Eqs. (A8). We use the
GW pion photoproduction amplitudes Fi [26].

4. Matrix elements for γ N →π N

The matrix element 〈m2| M̂γn| λ,m1〉 in an arbitrary frame can be written in the form

〈m2| M̂γn| λ,m1〉 = N1N2〈m2|L + i(Kσ )| m1〉 (Ni =
√

Ei + m). (A10)

Making use of Eqs. (A5)–(A6), we obtain

L = A1(e[q ×(x1−x2)]) − (er)(q[x1× x2]) + [A1q0 − (qr)](e[x1× x2]),

K = [A1c1 + (qr)c3]e + (eS)q + (eS2)x1 + (eS1)x2 + A2c2(x2− x1),

x1,2 = p1,2/(E1,2+ m),
(A11)

S = A1(x1+x2) + c3r, S1,2 = [(qr) − A1q0]x1,2 + [(qx1,2) − q0]r,

c1 = q0(1 + x1x2), c2 = 2[(qp1)(ek) − (qk)(e p1)], c3 = 1 − (x1x2),

r = A3k + A4(p1+ p2), r = A3k + A4( p1+ p2).

Here, Ai are the amplitudes in Eqs. (A5); e = e(λ) is the photon
three-vector, specified by spin state λ; and q, k, p1,2(q, k, p1,2)
are the four(three)-momenta, defined in Appendix A 3. We
fix two possible photon states (λ = 1, 2) by definition e

(λ)
i =

δiλ, where e
(λ)
i is the ith component of e(λ) (Oz ‖ q). Thus

(e(1)e(2)) = 0 and (e(λ)q) = 0.

5. Invariant N N → N N amplitudes

The NN scattering matrix depends on five independent spin
amplitudes, and different choices can be found in Refs. [40,41].
In the NN rest frame, the N ′

1N
′
2 →N1N2 matrix element can be

written in the form 〈m∗
1,m

∗
2| M̂NN | m∗

1
′,m∗

2
′〉 = 8πW 〈F̂NN 〉,

where W is the NN effective mass, and

〈F̂NN 〉 =
4∑

i=1

fi(ϕ
+
1 Q̂iϕ

′
1)(ϕ+

2 Q̂iϕ
′
2)

+ f5[(ϕ+
1 n̂ϕ1)(ϕ+

2 ϕ′
2) + (ϕ+

1 ϕ1)(ϕ+
2 n̂ϕ′

2)], (A12)

where ϕ′
1,2 (ϕ1,2) are the Pauli spinors of the initial (final)

nucleons, specified by spin states m∗′
1,2 (m∗

1,2). Here we use the

formalism of Ref. [41], where f1, . . . f5 are the independent
spin amplitudes; Q1, . . . Q4 are the 2 × 2 matrices, and

Q1 = I, Q2 = n̂, Q3 = m̂, Q4 = l̂, n = [ p∗′× p∗]

| p∗′× p∗| ,

m = p∗− p∗′

| p∗− p∗′| , l = p∗+ p∗′

| p∗+ p∗′| ; (A13)

p∗′ = p∗
1
′− p∗

2
′ ( p∗ = p∗

1− p∗
2) is the initial (final) relative

momentum.
To apply Eq. (A12) for calculation of the matrix elements

〈m1,m2| M̂NN | m′
1,m

′
2〉 in Eq. (6), one should transform the

NN amplitude from the deuteron rest frame to the NN rest
frame. The possible way is to transform the nucleon Dirac
spinors to the NN rest frame, and find the corresponding
unitary transformation of spinors in Eq. (A12), i.e.,

ϕ → Ûϕ, Û = N−1(L + i Kσ ), N =
√

|L|2 + |K |2,
(A14)

where ϕ is any of ϕ1,2 or ϕ′
1,2. The result is

L = a0 + bx, K = a + b0x + [b × x], x = p
E + m

,

a0 = c1c2, a = (−s1s2, c1s2, s1c2), b0 = −xNNs1c2, b = −xNN (c1s2, s1s2, c1c2), (A15)

s1 = sin
ϕNN

2
, c1 = cos

ϕNN

2
, s2 = sin

θNN

2
, c2 = sin

θNN

2
, xNN = | p|

ENN + W
.
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Here E and p are the total energy and three-momentum of a
given nucleon in the deuteron rest frame, i.e., p = p1,2, p′

1,2
[Fig. 1(b)]; ENN , pNN , θNN , and ϕNN are the total energy,
three-momentum, polar and azimuthal angles of the outgoing
NN system in the deuteron rest frame, respectively. Finally,
for the NN matrix elements in Eq. (6), we obtain

〈m1,m2| M̂NN | m′
1,m

′
2〉 = 8πW 〈F̂NN 〉,

(A16)

〈F̂NN 〉 =
4∑

i=1

fi 〈m1| Û+
1 Q̂iÛ

′
1| m′

1〉〈m2| Û+
2 Q̂iÛ

′
2| m′

2〉

+f5 [〈m1| Û+
1 n̂Û ′

1| m′
1〉〈m2| Û+

2 Û ′
2| m′

2〉
+〈m1| Û+

1 Û ′
1| m′

1〉〈m2| Û+
2 n̂Û ′

2| m′
2〉].

One can rewrite the products ÛQ̂Û ′ in the form ÛQ̂Û ′ =
V0 + iVσ , making use of Eqs. (A13)–(A15), and calculate
the factors 〈mi | . . . | m′

i〉 in Eqs. (A16) (we omit the details).
The Hoshizaki [41] amplitudes f1, . . . f5 can be expressed
through the helicity amplitudes H1, · · · H5 (the relations of
H ’s to other representations [40,41] can be found, for example,
in Ref. [42]), and we use the results of GW NN partial-wave
analysis [27].

6. Invariant π N → π N amplitudes

Calculating the πN →πN matrix elements in arbi-
trary frame, we start from the invariant amplitude and

write

MπN = ū2(A + Bp/)u1 = ϕ+
2 �̂ϕ1. (A17)

Here, u1,2(ϕ1,2) are Dirac (Pauli) spinors; A and B are
the invariant amplitudes; p = (p0, p) = p1,2+ k1,2 is the
total four-momentum; p1,2 = (E1,2, p1,2) (k1,2) are the four-
momenta of the initial and final nucleons (pions); and �̂ is
2 × 2 matrix. Making use of Eq. (A17), we obtain

�̂ = N (L + i Kσ ), N =
√

(E1+ m)(E2+ m),

L = A + Bp0− B[ p (x1+x2)] + (Bp0− A)(x1x2),
(A18)

K = B[ p ×(x2−x1)] + (Bp0− A) [ x1×x2],

x1,2 = p1,2/(E1,2+ m).

The matrix elements can be obtained from Eqs. (A18), i.e.,
〈m2|M̂πN | m1〉 = 〈m2|�̂| m1〉.

In the πN rest frame, �̂ = 8πW [F + iG([n1×n2]σ )],
where F (G) is the standard nonflip (spin-flip) amplitude, W

is the effective πN mass, and n1,2 = p∗
1,2/| p∗

1,2|, p∗
1,2 are the

nucleon CM three-momenta. Applying Eq. (A17), one can
relate the amplitudes A and B to F and G, i.e.,

A = 4πW

(
F + Gz

E+
+ G

E−

)
, B = 4π

(
F + Gz

E+
− G

E−

)
,

E± = E ± m, (A19)

where E is the nucleon total CM energy, and z is the cosine of
CM scattering angle. We use the amplitudes F and G, based
on the results of GW πN partial-wave analysis [28].
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