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Determination of the π� scattering lengths from the weak decays of �c
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The scattering lengths of the π� systems are key quantities in understanding the structure of the �(1405)
resonance and the subthreshold extrapolation of the K̄N interaction. We demonstrate that the π� scattering
lengths can be extracted from the threshold cusp phenomena in the weak �c → ππ� decays, analogously with
Cabibbo’s method for determination of the ππ scattering length. We show that the substantial cusp effect should
be observed in the spectrum, when the π� interaction in I = 0 is strongly attractive to generate a near-threshold
singularity, such as a bound state or a virtual state.

DOI: 10.1103/PhysRevC.84.035201 PACS number(s): 13.75.Gx, 13.30.Eg, 13.75.Lb, 14.20.Jn

I. INTRODUCTION

The possibility of kaon bound states in nuclei [1,2] has
been intensely discussed recently [3–10] and is one of the
central subjects in forthcoming experiments at Japan Proton
Accelerator Research Complex E15 [11], FOPI at GSI [12],
and AMADEUS at DA�NE [13]. An important theoretical
concept to describe kaonic nuclei is the two-body K̄N -π�

interaction, which closely relates to the description of the
�(1405) resonance in the I = 0 amplitude. Theoretical models
of the K̄N -π� scattering amplitudes have been constrained
by the total cross sections of low-energy K−p scattering
into various final states and the threshold branching ratios
of the K−p channel. Recently, due to intensive experimental
activities, new data of the π� invariant mass distributions are
becoming available, and the analysis of the energy level and
width of the kaonic hydrogen provides precise information
regarding the K−p scattering length [14].

In this way, there are many experimental data around
the K̄N threshold, while the amplitude at far below the
threshold is not well constrained. This means that the K̄N -π�

interaction relevant to the study of the K̄-nucleus systems
with strong binding is achieved only through the subthreshold
extrapolation from the K̄N threshold. For instance, the chiral
unitary model [15–19], a coupled-channels approach with the
low-energy interaction constrained by chiral symmetry, has
revealed an interesting two-pole structure [20]. This indicates
that the nominal �(1405) resonance is not a single state
but a superposition of two states with different properties.
It is shown that this two-pole structure has substantial
influence for the K̄N interaction [21] and the K̄NN -π�N

system [10]. However, it is found that the position of the
lower energy pole is sensitive to the details of the model,
due to the lack of the information of the π� interaction
[22–27].

The scattering length characterizes the property of the
two-body interaction. The attractive/repulsive nature of the
interaction is reflected in the sign of the scattering length.
The magnitude is sensitive to the singularity of the amplitude
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close to the threshold. If there is a bound (virtual) state, the
scattering length becomes large and negative (positive), as is
known for the 3S1 (1S0) NN scattering [28]. In the case of the
K̄N -π� interaction, it is shown that the position of the lower
energy pole of �(1405) is closely related to the π� scattering
length with isospin I = 0 [27]. Therefore, it is highly desirable
to determine the π�(I = 0) scattering length to impose further
constraints on the low-energy K̄N -π� interaction. There are
several ways to extract the hadron scattering length in experi-
ments. The standard method is to measure the energy shift and
the width of the hadronic atom state [14,29–31] or to extrapo-
late the low-energy phase-shift data down to the threshold [32].
Unfortunately, both methods cannot be applied to the π�

case.
Recently, an alternative method to determine hadron scat-

tering lengths was proposed by Cabibbo [33,34], in which
the cusp effect at the π+π− threshold is used to extract
the ππ scattering length in the K+ → π+π0π0 decay. The
structure around the cusp at the π+π− threshold is related
to the scattering amplitude of the π+π− → π0π0 process,
which is nothing but the ππ scattering length (the relationship
between the scattering length and the cusp phenomena in the
ππ spectrum has been discussed also in Ref. [35]). The cusp
effect is indeed observed in the high-statistics experimental
data [36,37] which leads to the determination of the ππ

scattering length.
In this paper, we propose to apply a similar methodology to

the π� scattering lengths by use of the �c → ππ� decays.
This decay process has been measured as the �c peak in the
three-body invariant mass spectrum in Refs. [38–42]. The
branching ratios to the relevant decay channels are reported
as a few percents by the Particle Data Group (PDG) [43], so
the extraction would be feasible at Belle and Babar where a
huge amount of �c is produced.

The contents of this paper are as follows. In Sec. II, we
discuss the general property of the threshold cusp phenomena
in the �c → ππ� process. We introduce an expansion scheme
to extract the scattering length, keeping the value of the
scattering length unspecified. In Sec. III, we present theoretical
estimations of the decay process and show the expected spectra
for several values of the scattering lengths. The last section is
devoted to the summary.
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II. ANALYSIS OF THE CUSP PHENOMENA

Here we analyze the threshold cusp phenomena in the
�c → ππ� decay. We review the general argument of the
determination of the scattering length from the threshold cusp
effect and summarize the possible π� channels in the �c

decay where we have a chance to observe the cusp structure.
We then discuss the method to extract the scattering length with
minimal model assumptions by expanding the amplitude in
terms of the momentum variable. We also present an extension
of the framework to the case with complex amplitudes.

A. �c → ππ� decay and the π� scattering length

Let us consider the weak decay of �c into two pions and
one � baryon. We denote a π� pair in the final state as (π�)l
and concentrate on the threshold energy region of this pair. In
this case, the additional primary pion has a large momentum
because of the large phase space of the decay process, as we
see in Appendix A. Choosing an appropriate charged state for
the (π�)l pair, other charge combinations of the π� state
may be allowed at slightly higher energies than the (π�)l
threshold due to the isospin violation in the particle masses.
We denote the higher energy channel of the π� pair as (π�)h.
The specific charge states of (π�)l and (π�)h will be given in
Sec. II B, in connection with possible experimental observa-
tions.

The dominant part of the �c decay is given by the direct
process:

�c → π (π�)l ,

as shown in Fig. 1(a). In addition, we may have the final-state
interaction term with the intermediate (π�)h state as

�c → π (π�)h → π (π�)l ,

which is depicted in Fig. 1(b). Because of the mass difference,
the (π�)h threshold appears in the mass spectrum of the
(π�)l channel slightly above the (π�)l threshold. The cusp
phenomenon occurs at this higher energy threshold.

It is important to note that the amplitude in Fig. 1(b)
contains the vertex of (π�)h → (π�)l . The threshold cusp
takes place with the vanishing momentum of the (π�)h
state, and it contains the information of the on-shell scat-
tering amplitude of the (π�)h → (π�)l process. Following
Ref. [34], we define the off-diagonal π� scattering length
as (the real part of) the amplitude fh→l at the higher energy

FIG. 1. Decay diagrams for the �c → π (π�)l process: (a) direct
decay and (b) decay through the (π�)h state. Solid circles denote
the weak process of �c → ππ� and the open circle represents the
scattering amplitude of the (π�)h → (π�)l process.

threshold W = Wth:

ah→l ≡ fh→l(W = Wth), (1)

which is reflected in the behavior of the cusp structure. In the
following, we show how to extract the scattering length (1)
along the same line with Ref. [33].

B. Possible decay modes for the scattering length

We first consider the energy levels of the π� channels with
different charge combinations to specify the (π�)l and (π�)h
channels. Since the charge Q = ±2 states have no coupled
channels, they are not relevant in the present discussion. The
threshold energy levels for the Q = 0, +1, and −1 channels
are shown in Fig. 2. Unlike the ππ case where the masses of
π+ and π− are identical, �− is heavier than �+, so the π�

channels show a rich spectrum. Among them, there are about
10-MeV mass differences in the following transitions:

π+�− → π−�+, π+�− → π0�0, π+�0 → π0�+.

We expect to observe the cusp effects by regarding these decays
as (π�)h → (π�)l .

Using the isospin decomposition with the phase convention
given in Eq. (B6), we can express the scattering lengths in
these channels as

a−+ = 1
3a0 − 1

2a1 + 1
6a2 + · · · ,

a00 = 1
3a0 − 1

3a2 + · · · ,
a0+ = − 1

2a1 + 1
2a2 + · · · ,

where the scattering lengths are labeled by the charges of
the final states, aI is the scattering length with isospin I

in the isospin basis, and the ellipses represent the isospin
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FIG. 2. (Color online) Threshold energies of the π� states with
charge Q. The arrows indicate the possible decay modes in which
visible cusp structure may appear.
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TABLE I. Decay branching ratios �i/� from PDG [43].

Mode �c → π (π�)h �c → π (π�)l

a−+ 1.7 ± 0.5% 3.6 ± 1.0%
a00 1.7 ± 0.5% 1.8 ± 0.8%
a0+ 1.8 ± 0.8% Not known

breaking corrections.1 Although we have three equations, they
are not linearly independent if we neglect the isospin breaking
corrections as

a−+ − a00 = a0+ + · · · .
Therefore, even if we extract a−+, a00, and a0+ in experiments,
in order to determine all three aI s, we need one additional
input. We may adopt chiral perturbation theory (ChPT) or the
lattice QCD simulation for the determination of aI=2 where
the interaction is presumably weak and repulsive.

Let us check the decay modes of �c which lead to these
rescattering amplitudes. Since the charge of �c is Q = +1,
the possible decay modes are

a−+ : �c → π+(π+�−) → π+(π−�+), (2)

a00 : �c → π+(π+�−) → π+(π0�0), (3)

a0+ : �c → π0(π+�0) → π0(π0�+). (4)

For later convenience, we refer to these modes as the extracted
scattering lengths, i.e., �c → π+(π+�−) → π+(π−�+) is
called mode a−+. The experimental data [43] of the branching
ratios �i/� for these channels are summarized in Table I.

The mass spectrum is extracted from the �c → π (π�)l
mode, while the �c → π (π�)h mode is used to normalize the
strength of the amplitude, as we will see below. Fortunately,
most decay modes are experimentally observed, with the
branching ratio of the order of several percents. If the precise
measurement of the π� spectrum around the threshold is
performed, it will be feasible to extract the scattering lengths
by the method explained in Sec. II D.

C. Threshold cusp effect

Let us consider the �c decay process in Fig. 1, paying
attention to the imaginary part of the loop function. To
concentrate on the cusp phenomena, in this section, we simply
ignore the diagrams other than those in Fig. 1, assuming that the
other final-state interactions are slowly varying in the relevant
energy region. The decay width of the process �c → π (π�)l
can be calculated as

� =
∫

d�3 �|M|2,

where M is the relativistic scattering amplitude of the process,
d�3 is the three-body phase space, and � denotes the spin
summation. We denote the mass of the �h (πh) by Mh (mh),

1In principle, a1 can be complex, since the π� channel is open at the
π� threshold. However, the transition π�(I = 1) → π� vanishes
at the leading order in chiral perturbation theory. In the following we
assume the imaginary part is negligible.

and the invariant mass of the (π�)l system by W . The mass
spectrum of the decay with respect to W is given by

d�

dW
= ∫

d�̃ �|M|2,

with d�̃ = d�3/dW . Since we are interested in the cusp
structure which arises from the nonanalytic behavior of W ,
we concentrate on the amplitude as a function of W , assuming
that the dependence on the other kinematical variables can
be factorized. Integrating the other variables, we arrive at the
expression

d�

dW
= MlW

16π3M�c

�|M|2
∫

dωl	(1 − A2),

A =
(
M�c

− ωπ − ωl

)2 − M2
l − p2

π − p2
l

2pπpl

,

(5)

ωπ = M2
�c

− W 2 + m2
π

2M�c

,

pπ =
√

ω2
π − m2

π , pl =
√

ω2
l − m2

l ,

where M�c
is the mass of the �c, ωl (ωπ ) and pl (pπ ) are the

energy and momentum of πl (the primary pion), and 	(x) is
the step function.

To appreciate the threshold cusp effect, we focus on the
property of the loop function G(W ) in Fig. 1(b). The loop
function can be written in the spectral representation as

G(W ) = 1

2π

∫ ∞

Wth

dW ′ ρ(W ′)
W − W ′ + iε

+ (subtractions),

where the threshold energy is Wth = Mh + mh and the phase-
space factor ρ(W ) is given by

ρ(W ) = 2Mh

q(W )

4πW
,

with the three-momentum function

q(W ) =
√

[W 2 − (Mh − mh)2]
(
W 2 − W 2

th

)
2W

.

The real part of the loop function G(W ) depends on the
subtractions, but the imaginary part can be determined only
by the kinematics. Since the scattering amplitude with the
diagram in Fig. 1 contains the loop function, we obtain the
condition for the amplitude

Im M(W ) ∝ Im G(W ) = −Mhq(W )

4πW
	(W − Wth). (6)

This means that the imaginary part of the amplitude appears
suddenly at the threshold.

Considering the two diagrams shown in Fig. 1, we can
decompose the �c → π (π�)l amplitude into two parts:

M(W ) = M0(W ) + iM̃1(W )q(W ) for W > Wth,

(7)

with M0(W ) and M̃1(W ) being analytic functions of W at
the threshold Wth. Here we also assume that M0(W ) and
M̃1(W ) have no imaginary part, and the extension to the
complex amplitudes is discussed in Sec. II E. The amplitude
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(7) satisfies the condition (6), because the (π�)h loop is the
only source of the imaginary part in this process. Physically,
the amplitude of the direct process (a) and the real part of the
indirect process (b) are included in M0, and the amplitude
corresponding to the imaginary part of the indirect process
(b) is included in iM̃1q(W ). The function q(W ) can be
analytically continued to W < Wth where it becomes pure
imaginary. For later convenience, we define the dimensionless
quantity

δ ≡
√

[W 2 − (Mh − mh)2]
(
W 2

th − W 2
)

2mhW
= iq(W )

mh

, (8)

so δ is real (imaginary) below (above) the threshold and
δ2 = −|δ|2 for W > Wth.2 The amplitude then can be
rewritten as

M(W ) = M0(W ) + M̃1(W )mhδ. (9)

Because of the property of δ, the second term of
Eq. (9) interferes with the first term below the thresh-
old, while such an interference does not occur above the
threshold.

Using the expression (9) and M∗ = M0 + M̃1mhδ
∗, we

calculate the amplitude square as

|M|2 =
{

(M0)2 + (M̃1mh)2|δ|2 for W > Wth

(M0)2 + 2M0M̃1mhδ + (M̃1mh)2δ2 for W < Wth
. (10)

Note that δ vanishes at the threshold, so the spectrum is
continuous at W = Wth. On the other hand, its derivative with
respect to W is not continuous:

d|M|2
dW

∣∣∣∣
W→Wth−0

− d|M|2
dW

∣∣∣∣
W→Wth+0

∝ −2M0M̃1mhMh

Mh + mh

1

δ
+ O(δ).

This means that the (π�)l spectrum is continuous but not
smooth at the (π�)h threshold. This singular behavior is
called the threshold cusp. Although we have assumed that
M0 is real in the present case, the mechanism of the threshold
cusp is the same even if M0 has an imaginary part, since the
discontinuity is caused by the nonanalytic term δ as a function
of W , as shown in Sec. II E. Thus, the cusp always occurs at
the threshold due to the kinematical condition, but the simple
interference pattern in Eq. (10) is realized only for the real
valued M0 amplitude.

D. Expansion of the amplitude and spectrum

In order to extract the scattering length, it is desirable to
parametrize the amplitudes around the threshold Wth. The aim
of this section is to relate the π� scattering length to the
near-threshold behavior of the spectrum. Since we concentrate
on the energy region around the (π�)h threshold, the variable
δ should be small. As we will see below, the relevant energy
region is |W − Wth| � 10 MeV, where the value of δ is |δ| �
0.37. This means that the O(δ3) error is about 5 % level.

2There is another branch point at W = Mh − mh, but we will not
consider this because the energy region cannot be reached in our
analysis of π� spectrum around the threshold.

Since the M0 amplitude is an analytic function of W , it has
only even powers in the δ expansion:

M0(δ) = M(0)
0 + M(2)

0 δ2 + O(δ4). (11)

The M̃1 part of the amplitude is related to the scattering
length. Identifying this contribution as the imaginary part of
the diagram in Fig. 1(b), we can write the amplitude above the
threshold as

M̃1(W )q = −Mh
0(W )

Mhq

4πW
Mh→l(W )

M̃1(W ) = Mh
0(W )fh→l(W ),

where Mh
0 is the amplitude of the weak �c → π (π�)h decay.

The amplitude Mh→l represents the transition amplitude for
the (π�)h → (π�)l process and fh→l is its nonrelativistic
counterpart. Note that all the final-state interactions via the
strong interaction are implicitly included in fh→l . The Mh

0
amplitude is an analytic function of W so

Mh
0(δ) = Mh(0)

0 + Mh(2)
0 δ2 + O(δ4). (12)

The low-energy behavior of the nonrelativistic scattering
amplitude can be parametrized by the scattering length
ah→l . According to Eq. (1), the scattering length is defined
at the higher energy threshold, so we expand it in terms
of δ as

fh→l(q) =
(

1

ah→l

− iq + · · ·
)−1

= ah→l + a2
h→lmhδ + · · · . (13)

Using Eqs. (12) and (13), we can express M̃1 as

M̃1(δ) = Mh(0)
0 ah→l + Mh(0)

0 mha
2
h→lδ + O(δ2). (14)
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Combining Eqs. (9), (11), and (14), the expansion of M up to
δ2 is given by

M(δ) = M(0)
0 + Mh(0)

0 mhah→lδ

+ (
M(2)

0 + Mh(0)
0 m2

ha
2
h→l

)
δ2 + O(δ3).

The amplitude square is then given by

|M|2 =
{
A + C ′|δ|2 + O(|δ|4) for W > Wth

A + Bδ + Cδ2 + O(δ3) for W < Wth
, (15)

where the coefficients are given by

A = (
M(0)

0

)2
,

B = 2M(0)
0 Mh(0)

0 mhah→l ,

C = 2M(0)
0 M(2)

0 + 2M(0)
0 Mh(0)

0 m2
ha

2
h→l

+ (
Mh(0)

0

)2
m2

ha
2
h→l ,

C ′ = −2M(0)
0 M(2)

0 − 2M(0)
0 Mh(0)

0 m2
ha

2
h→l

+ (
Mh(0)

0

)2
m2

ha
2
h→l .

These coefficients can be extracted using the experimental
spectrum, the three-body phase-space factor, and the fitting
by a polynomial of δ around the threshold Wth. Since the
B coefficient is proportional to the scattering length, we can
extract its absolute value as

|ah→l| = |B|
2mh

√
A

∣∣Mh(0)
0

∣∣ ,

and the sign is given by

ah→l

|ah→l| = M(0)
0∣∣M(0)
0

∣∣ Mh(0)
0∣∣Mh(0)
0

∣∣ B

|B| .

The Mh(0)
0 coefficient can be obtained as the leading contri-

bution for the �c → π (π�)h process around the threshold.
It is also possible to calculate Mh

0 when the information of
the weak process is well under control. If we determine the
relative sign of M(0)

0 and Mh(0)
0 , the sign of the scattering

length ah→l is determined by the sign of the coefficient
B. This information, together with the fitting of the (π�)l
spectrum in the �c → π (π�)l process below and above the
(π�)h threshold by Eq. (15), leads to the determination of the
scattering length ah→l .

E. Extension to the complex amplitude

So far we have assumed that the weak interaction ampli-
tudes M0 and M̃1 are real. This is valid at the leading order,
but several final-state interactions may bring an imaginary part
as we discuss in Appendix A. Here we consider the possible
modification of the formulation by the imaginary part of these
amplitudes.

Since the overall phase of the amplitude does not contribute
to the spectrum, we consider a relative phase between M0 and
M̃1 amplitudes. The imaginary part other than Eq. (6) is a
smooth function of W , so we introduce a constant phase eiθ to
generalize Eq. (9) as

M(W ) = M0(W ) + M̃1(W )eiθmhδ.

with M0 and M̃1 being real. In this case, the amplitude square
is given by

|M|2 =
{

(M0)2 + 2M0M̃1mh|δ| sin θ + (M̃1mh)2|δ|2 for W > Wth

(M0)2 + 2M0M̃1mhδ cos θ + (M̃1mh)2δ2 for W < Wth
.

In this case, the linear |δ| term remains in the spectrum above
threshold.

The expansion of the amplitude square in terms of |δ| is
given by

|M|2 =
{
A + B ′|δ| + C ′|δ|2 + O(|δ|4) for W > Wth

A + Bδ + Cδ2 + O(δ3) for W < Wth
,

where the coefficients are given by

A = (
M(0)

0

)2
,

B = 2M(0)
0 Mh(0)

0 mhah→l cos θ,

B ′ = 2M(0)
0 Mh(0)

0 mhah→l sin θ = B tan θ,

C = 2M(0)
0 M(2)

0 + 2M(0)
0 Mh(0)

0 m2
ha

2
h→l cos θ

+ (
Mh(0)

0

)2
m2

ha
2
h→l ,

C ′ = −2M(0)
0 M(2)

0 − 2M(0)
0 Mh(0)

0 m2
ha

2
h→l cos θ

+ (
Mh(0)

0

)2
m2

ha
2
h→l .

The scattering length is

|ah→l| = |B/ cos θ |
2mh

√
A

∣∣Mh(0)
0

∣∣ ,
ah→l

|ah→l| = M(0)
0∣∣M(0)
0

∣∣ Mh(0)
0∣∣Mh(0)
0

∣∣ B/ cos θ

|B/ cos θ | .

Thus, the scattering length can be extracted in the same way as
before when the relative phase between M0 and M̃1 is under
control. In practice, the relative phase mainly stems from the
final-state interactions of the ππ scattering, which are well
understood by the phase-shift analysis.

Even if the relative phase is not known in advance, the
magnitude of the scattering length can be extracted from the
coefficients of the linear terms:

|ah→l| =
√

B2 + (B ′)2

2mh

√
A

∣∣Mh(0)
0

∣∣ .
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In addition, cos θ can be determined from the δ2 terms if we
neglect the M(2)

0 term:

cos θ = Mh(0)
0

M(0)
0

C − C ′

C + C ′ for M(2)
0 = 0.

In this way, extraction of the scattering length is possible for
the complex amplitudes, when information of the final-state
interaction and/or high-precision data of the decay spectrum
are available.

III. ESTIMATION OF THE MASS DISTRIBUTION

So far we have discussed how to extract the π� scattering
lengths from the observed decay spectrum. In this section, we
present theoretical estimation of the mass spectrum (15), in
order to examine the sensitivity of the cusp effect on the π�

scattering lengths.

A. Input parameters

To evaluate the mass spectrum, we need to determine the
amplitudes for the weak process and the value of the scattering
length. We first consider the weak process of the �c → ππ�.
Since we are not aiming at the construction of the realistic
decay spectrum, we simply approximate the amplitude by the
leading-order constant M0 = M(0)

0 and Mh
0 = Mh(0)

0 , which
would be sufficient for the present purpose. We first put θ = 0
and the effect of the relative phase will be considered in the
end of this section. The magnitude of these amplitudes are
determined by the partial decay widths derived from the central
values of the lifetime of the �c and the branching ratios given
in Table I. The results are summarized in Table II. For the
a0+ mode, the branching ratio to the lower energy channel is
not known and we assume the same strength with the higher
energy channel. In addition, the relative signs of the amplitudes
have been determined by evaluating the quark diagrams of the
weak decay in Appendix B. In the following, we adopt the
central values for the numerical calculation of the spectra.

Next we consider the π� scattering lengths. It is known
that the πN scattering length is well described by the leading-
order term in ChPT, up to 10%. Thus, as a first trial, we may
adopt the leading-order ChPT to estimate the π� scattering
lengths. Higher-order contributions to the scattering lengths
are calculated in the heavy baryon formalism [44] and in the
covariant formalism with the infrared regularization scheme
[45]. With the definition (1), the leading-order term in ChPT

TABLE II. Strengths of the weak interaction vertices.

Mode Mh
0 (10−7 MeV−1) M0 (10−7 MeV−1)

a−+ 1.46 ± 0.43 2.10 ± 0.58
a00 1.46 ± 0.43 −1.49 ± 0.66
a0+ −1.49 ± 0.66 −1.49 ± 0.66a

aAssumed to be the same with Mh
0 .

gives the π� scattering length for the channel h → l as

ah→l = Mh

4π (Mh + mh)

Ch→l(mh + ωl)

4f 2
,

ωl = (Mh + mh)2 − M2
l + m2

l

2(Mh + mh)
= ml + · · · ,

where f = 92.4 MeV is the pion decay constant and the
ellipsis denotes the isospin breaking correction. The coefficient
Ch→l is the group theoretical factor [46,47], which takes
the values 0, 2, and −2 for the a−+, a00, and a0+ modes,
respectively. Thus, the leading-order ChPT predicts

a−+ = 0.00 fm, a00 = 0.23 fm, a0+ = −0.23 fm.

In the isospin basis, the coupling strengths are given by 4,
2, and −2 for I = 0, 1, and 2 channels. The strength C = 2 is
the same with the πN (I = 1/2) channel, so we expect that the
ChPT prediction works well. This is indeed the case for the
I = 2 scattering length, since the lattice QCD simulation by
NPLQCD Collaboration [48] found that aπ+�+ = −0.197 ±
0.017 fm, which is comparable with the leading-order ChPT
prediction of −0.2294 fm. On the other hand, C = 4 in the
I = 0 channel is twice as strong as the πN interaction so the
resummation effect may be important. Indeed, it is found that
the chiral π�(I = 0) interaction generates a resonance state
by the single-channel resummation [21]. The relation between
the pole singularity around the π� threshold and the π�

scattering length is studied in Ref. [27], which shows that the
position and the nature of the pole are sensitive to the value
of the scattering length. Depending on the nature of the lower
pole of �(1405), the typical π�(I = 0) scattering lengths are
found as

aI=0 =

⎧⎪⎨
⎪⎩

1.2 fm: resonance with E = +31 MeV

5.5 fm: virtual state with E = −6 MeV

−2.3 fm: bound state with E = −10 MeV

,

where E denotes (the real part of) the pole singularity measured
from the threshold.3 It can be seen that the scattering length
takes a large value when the pole is located close to the
threshold, and the sign of the scattering length is inverted
when a bound state appears. With these values for the I = 0

3The calculation in Ref. [27] was done in the isospin limit. The
resonance case is estimated by taking an average of two different
solutions, A1 and B E-dep in Ref. [27].

TABLE III. Estimation of the scattering lengths in units of fm.
ChPT stands for the leading-order prediction in chiral perturbation
theory. The other results are obtained in the resummation scheme
for I = 0 amplitude when the pole singularities are developed at the
energies in parenthesis away from the threshold [27].

aI=0 a−+ a00 a0+

ChPT 0.46 0.00 0.23 −0.23
Resonance (+31 MeV) 1.20 0.25 0.48 −0.23
Virtual state ( −6 MeV) 5.50 1.68 1.91 −0.23
Bound state ( −10 MeV) −2.30 −0.92 −0.69 −0.23
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FIG. 3. (Color online) Spectra of the π−�+ channel in the �c →
π+(π−�+) decay with several values of the a−+ scattering length.

scattering length, while the I = 1 and the I = 2 components
are fixed as the values by the leading-order ChPT, we obtain
the scattering lengths by use of Eqs. (2), (3), and (4) as
shown in Table III. Even when aI=0 is as large as 5.50 fm,
the scattering lengths a−+ and a00 are not much enhanced,
because of the 1/3 factor in Eqs. (2) and (3). Note that a0+ does
not depend on the I = 0 amplitude as observed in its isospin
decomposition (4).

B. Examples of π� spectrum

Using the information given in the previous section, we
calculate the (π�)l mass spectrum in the �c → π (π�)l
process by use of Eq. (5). In Fig. 3, we present the mass
spectra of π−�+ channel in the �c → π+(π−�+) mode for
several values of a−+. The dotted lines represent the case when
the scattering length is set to be zero. The spectrum shows the
pure phase-space distribution and no cusp structure appears,
because of the absence of the B term in Eq. (15). In this
mode, a−+ = 0.00 fm also corresponds to the prediction of
the leading-order ChPT, as shown in Table III.

When a finite scattering length is adopted, the cusp structure
appears (the solid lines and the dashed line). The cusp effect is
not very significant for the case with a−+ = 0.25 fm, but clear
structures are visible for a−+ = 1.68 fm and a−+ = −0.92
fm. In addition, the sign of the scattering length is reflected in

the behavior of the lower part of the spectrum in comparison
with the phase-space distribution.

Next, in Fig. 4, we show the spectra of the �c → π+(π0�0)
decay and the �c → π0(π0�+) decay with a00 and a0+,
respectively. Again, the dotted lines represent the case when
the scattering length is set to be zero. We observe that the
prominent cusp structure is seen when the scattering length is
as large as 0.5 fm. Because of the difference of the relative
sign of the M0 and Mh

0 amplitudes, the interference pattern
in the a00 mode is inverted from that in the a−+ mode (see
Table II).

Let us compare three decay modes. In both the a−+ and
a00 modes, the effect of the I = 0 component is reflected in
the cusp structure, so these modes can be used to extract the
isosinglet scattering length. A nice feature of the a−+ mode
is the large branching fraction of the decay (∼3.6%) which
is advantageous for the experimental observation. On the
other hand, the scattering length vanishes in the leading-order
ChPT, and, hence, the expected scattering length a−+ by the
resummation effect is not very large. The a00 mode has a
smaller branching ratio to the final state, but the value of
a00 is in general expected to be larger than a−+ as shown
in Table III, which causes a stronger cusp effect. The a0+
mode is not useful to extract the I = 0 component, and
the expected cusp structure seems to be relatively weak. In
addition, observing two neutral pions in the final state would be
experimentally difficult. Nevertheless, once the precise decay
spectrum is observed, this mode serves as a precise test of the
ChPT prediction for the scattering lengths in I = 1 and I = 2
channels.

In order to estimate the accuracy of the spectrum measure-
ment for the feasible determination of the scattering length, we
consider the deviation of the spectrum from the phase-space
distribution

dev(a) = d�/dW (a) − d�/dW (a = 0)

d�/dW (a = 0)
. (16)

For a given a, the magnitude of this deviation provides
the lower limit of the experimental accuracy to extract the
scattering length. We also note that the deviation is always
zero at the higher energy threshold Wth = Mh + mh, so the
phase-space distribution can be normalized at this point. In
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FIG. 5. (Color online) Deviations from the phase-space distribu-
tion defined in Eq. (16) for the �c → π+(π−�+) decay with several
values of the scattering length a.

Fig. 5, we show the deviation plot for the �c → π+(π−�+)
decay with several values of the scattering length a. We observe
that accuracy of about 20% (10%) is required to determine the
scattering length of |a| = 1 fm (0.5 fm).

We also study the effect of the relative phase between
M0 and M̃1. As discussed in Appendix A, the main source
of the contamination process to the �c → π+(π+�−) →
π+(π−�+) decay is the ππ rescattering. If the primary π+
interacts with the π+ in the intermediate state, the M̃1 has an
imaginary part. This is the ππ scattering in the isospin I = 2
channel. The relevant energy region of the ππ invariant mass
is about 400–800 MeV, and the phase shift of this ππ channel
ranges between −5◦ to −20◦, with almost linear energy
dependence [49]. Although the phase depends on the invariant
mass of the ππ pair, we may represent the ππ rescattering
effect by a single energy-independent relative phase. Thus,
for a rough estimation, we introduce an energy-independent
relative phase θ = −12◦ and calculate the spectrum with the
formulas in Sec. II E. The results are shown in Fig. 6. One
observes that the spectrum is slightly modified from Fig. 3,
especially above the threshold. The existence of the relative
phase affects the interference pattern of the two amplitude,
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FIG. 6. (Color online) Spectra of the π−�+ channel in the �c →
π+(π−�+) decay with several values of the a−+ scattering length
with the relative phase θ = 12◦.

while the cusp structure itself remains, as discussed in
Sec. II E.

IV. SUMMARY

We study the π� mass distribution in the �c → ππ�

decays to extract the π� scattering lengths. The threshold
cusp effect is discussed in detail, and the relation between the
π� scattering length and the mass distribution is derived.
We show that the π� scattering length can be extracted
by the expansion of the observed spectrum around the cusp
structure.

We then evaluate the π� spectrum for several values of the
scattering lengths obtained by chiral perturbation theory and
the resummation technique. It is found that, if the scattering
length is as large as 0.5 fm, a substantial cusp structure will
be observed with about 10% deviation in the experimental
data. This value of the scattering length corresponds to the
case when the I = 0 π� scattering amplitude has a bound
or virtual state about 10 MeV below the threshold. Thus, the
analysis of the cusp structure will give important information
on the π� interaction around the threshold.

Note, however, that we have presented a rough estimation
of the spectrum and there are several other contributions to the
same process which are not included in the present calculation.
A detailed Dalitz analysis of the �c → ππ� process is highly
desired for the calibration of the theoretical model of the weak
process as well as for the investigation of the strong final-state
interactions in the π� channel.

In the �c decay process, it is possible to provide two
constraints on the three different isospin component of the π�

scattering lengths. To complete the determination of all three
isospin components, for instance, we need to determine the
I = 2 component by the lattice QCD simulation [48,50,51].
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APPENDIX A: KINEMATICS OF THE �c → ππ� PROCESS

Here we summarize the kinematics of the �c → ππl�l

process for the assessment of the possible contamination
processes. We consider the threshold energy region of the πl�l

pair. In this appendix, we adopt the isospin averaged masses
for � and π : M� = 1193 MeV and mπ = 138 MeV.

Let us, first, estimate the typical momenta of the three par-
ticles. Consider the extreme case when the relative momentum
of the πl�l system is zero and the invariant mass of the πl�l

pair is given by mπ + M� . In this case, the magnitude of the
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FIG. 7. (Color online) Dalitz plots of the �c → ππl�l decay
with isospin averaged masses M�c

= 2286 MeV, M� = 1193 MeV,
and mπ = 138 MeV. (a) M2

ππl
vs. M2

πl�l
and (b) M2

π�l
vs. M2

πl�l
. The

vertical dashed lines represent the energy (M� + mπ + 20 MeV)2.

three-momentum of the primary π is calculated as

|pπ | ∼ 747 MeV.

This is also the magnitude of the total momentum of the πl�l

pair which goes in the opposite direction to the π momentum.
With the condition of the vanishing relative momentum, the
momenta of πl and �l is given as

|pπl
| = mπ

M� + mπ

|pπ | ∼ 77 MeV,

|p�l
| = M�

M� + mπ

|pπ | ∼ 670 MeV,

where a large fraction of the momentum of the πl�l system is
carried by the �l baryon, because of its heavy mass.

We next show the Dalitz plots of the �c → ππl�l decay
in Fig. 7 [Fig. 7(a): M2

ππl
vs. M2

πl�l
; Fig. 7(b): M2

π�l
vs.

M2
πl�l

]. The relevant kinematical region for the πl�l threshold
production is the left edge of the Dalitz plots in these figures.
For reference, we put vertical dashed lines at the energy
(M� + mπ + 20 MeV)2. Figure 7(b) shows that the invariant

FIG. 8. Decay diagrams for the �c → ππl�l process: (a) ππl

rescattering and (b) π�l rescattering. Solid circles denote the weak
process of �c → ππ� and the open circles represent the rescattering
amplitudes.

mass of the “wrong” π�l pair for this energy region is above
2 GeV, while Fig. 7(a) indicates that the invariant mass of the
ππl pair stays around 600 MeV. This difference is caused by
the different momenta of πl and �l discussed above. Since �l

goes with larger momentum than πl in the opposite direction
to the primary π , the relative momentum of the �lπ pair is
larger than that of the ππl pair. As a consequence, the invariant
mass of the π�l system is very large, while that for the ππl

system is moderate.
Based on the kinematical consideration, we discuss the

possible contamination processes. In addition to the diagrams
in Fig. 1, the rescattering of the other combination of the final
states may occur, as shown in Fig. 8. In Fig. 8(a) the pions
are rescattered, while in Fig. 8(b), the � is rescattered by the
primary pion which is not used to form the mass spectrum.
Since the relevant invariant mass of the π�l pair is above
2 GeV where most of the prominent hyperon resonances do not
contribute, we may ignore the final-state interaction effect of
Fig. 8(b) type. In particular, for the a−+ mode, this corresponds
to the I = 2 π+�+ rescattering, which should be small. On
the other hand, the final-state interaction of Fig. 8(a) may be
important, since the relevant energy region is near the ρ and
σ resonances. Because of the isospin, the ρ (σ ) meson can
contribute to a−+ and a00 modes (a−+ and a0+ modes). The σ

meson is very broad so the energy dependence of the amplitude
is considered to be small. The ρ meson may cause a moderate
energy dependence, but the upper limit of the branching ratio
of the �c → �+ρ0 is given by <1.4% [43]. Therefore, one
may also assume that the effect of the ρ contribution to the
present argument is minor.

We also notice that the diagram in Fig. 8(a) has an imaginary
part. If we replace the final state πl�l by πh�h, it can be
considered as a complex M̃1 amplitude discussed in Sec. II E.
Since the rescattering takes place by the primary π and πl , the
charge combinations are given by

a−+ : π+π+, a00 : π+π+, a0+ : π0π+.

In the a0+ mode, the rescattering is in I = 1, which is found
to be small as <1.4% [43]. In the a−+ mode and the a00 mode,
the rescattering is in I = 2, where the interaction is weakly
repulsive. Thus, the effect of the imaginary part is considered
to be small for the decay channels of Eqs. (2), (3), and (4).
This is indeed seen in the numerical estimation in Fig. 6. In
any event, to construct a reliable model for the �c → ππ�

decay, detailed analysis of the experimental decay process will
be needed.
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(a) (b)

(c) (d)

FIG. 9. Quark diagrams for �c → π+(π−�+) decay.

APPENDIX B: RELATIVE SIGN OF THE WEAK
INTERACTION

Here we present the estimation of the relative sign of the
weak vertices using the quark diagram method [52]. The weak
decay of the c quark in �c occurs through W+ exchange as

c → s + u + d̄, c + d → s + u.

In addition, it is necessary to create q̄q pair(s) from the vacuum
to obtain the ππ� final state.

Let us first consider the decay processes �c → π+(π−�+)
in detail. Four diagrams shown in Fig. 9 can contribute to
this process. As shown in Appendix A, the π+ has a large
momentum. This is favored when the π+ is created by the
weak decay of the c quark. In this viewpoint, the contribution
from Fig. 9(d) is considered to be small. In addition, Figs. 9(b)
and 9(c) can be obtained by Fierz rearrangement from Fig. 9(a)
which introduces a suppression factor, as we will see below.

The matrix element of the weak process [Fig. 9(a)] can be
written as

M(a)
π+(π−�+) ∼ 〈π+(π−�+) |(ūu)[ū�μd][s̄�μc]| �c 〉,

where �μ = γμ(1 − γ5), we insert the operator of the weak
interaction, and the ūu pair is created from the vacuum. The
primary pion π+ has large momentum so it can be factorized

(high momentum)

FIG. 10. Dominant quark diagram for �c → π+(π+�−) decay.

(a) (b)

FIG. 11. Dominant quark diagrams for �c → π+(π 0�0) decay.

as

M(a)
π+(π−�+) ∼ 〈π+ |ū�μd| 0 〉〈π−�+ |(ūu)[s̄�μc]| �c 〉

= ikπ+
μ fπ 〈π−�+ |(ūu)[s̄�μc]| �c 〉,

where kπ+
μ is the momentum of π+ and fπ is the pion decay

constant. The π+ is created by the axial vector component of
the matrix element. Since the π− has a small momentum, we
can apply the soft pion theorem to obtain

M(a)
π+π−�+ ∼ kπ+

μ

〈
�+ |[Q−

5 , (ūu)][s̄�μc]| �c

〉
∼ −kπ+

μ 〈�+ |ūγ5d[s̄�μc]| �c 〉. (B1)

Before addressing the other decay channels, we turn to
Fig. 9(b). This amplitude can be obtained by interchanging
the u quarks in the amplitude [Fig. 9(a)]. Noting that the
relevant terms to create π+ are the pseudoscalar and axial
vector combinations in the Fierz rearrangement,4 we obtain

〈π+π− |(ū1u)(ū2�μdβ)

= 1
3 〈π+π− |{ 1

4 (ū2γνγ5d)(ū1�μγ νγ5u)

− 1
4 (ū2γ5d)(ū1�μγ5u)

}
,

where the suppression factor 1/3 is responsible to obtain the
color singlet pair. Thus, the first term is suppressed by the
factor 1/12 in comparison with the diagram (a). The second
term creates the π+ from the pseudoscalar operator. The matrix
element can be related with that of the axial vector current as

〈π+ |ūγμγ5d| 0 〉 = (mu + md )kπ+
μ

m2
π

〈π+ |ūγ5d| 0 〉

= 1

χ
〈π |ūγ5d| 0 〉.

In the case of the hyperon nonleptonic decay, the enhancement
factor χ is large enough to cancel the suppression factor by
the Fierz rearrangement [52]. In the present case, however, kπ+

μ

is the momentum of the primary pion (|kπ+
i | ∼ 747 MeV and

4Here we assume that ūu creation takes place at the same point with
the weak interaction vertex, which is not always the case in reality.
However, the suppression factor by color and spinor indices as well
as the sign of the amplitude are not modified by the nonlocality of
the operator.
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(high momentum)

FIG. 12. Quark diagram for �c → π 0(π+�0) decay.

kπ+
0 ∼ 760 MeV) so the enhancement factor is

χ = m2
π

(mu + md )kπ+
μ

∼ 2.6,

and the pseudoscalar component is not much enhanced. Thus,
we consider Fig. 9(a), in which π+ is created from the decay
of the W+ boson, provides the main contribution to this weak
process.

Next, we consider the �c → π+(π+�−) process. The
diagram corresponding to Fig. 9(a) is shown in Fig. 10 where
the π+ generated in the W+ decay is regarded as the primary
pion. In this case, the d̄d pair should be created from the
vacuum instead of ūu. Following the same step as before, we
obtain

Mπ+(π+�−) ∼ −kπ+
μ 〈�− |d̄γ5u[s̄�μc]| �c 〉. (B2)

The dominant contributions to the �c → π+(π0�0) process
are shown in Fig. 11. We have two analogous diagrams with ūu

creation [Fig. 11(a)] and with d̄d creation [Fig. 11(b)]. From
these diagrams, we obtain

Mπ+(π0�0) ∼ −kπ+
μ 〈�0 |(ūγ5u − d̄γ5d)[s̄�μc]| �c 〉. (B3)

For the processes �c → π0(π+�0) and �c → π0(π0�+),
in which the π0 is the primary pion, there is no corresponding
diagram to Figs. 10 and 11. Thus, the leading contribution
would be one of the Fierz rearranged diagrams. Here we
estimate the relative sign by taking the graphs in Figs. 12
and 13 which can be written as

Mπ0(π+�0) ∼ 〈π0(π+�0) |(d̄d)[ū�μd][s̄�μc]| �c 〉,
Mπ0(π0�0) ∼ 〈π0(π0�+) |(d̄d)[ū�μd][s̄�μc]| �c 〉.

Utilizing the Fierz transformation and soft pion theorem, we
obtain

Mπ0(π+�0) ∼ − m2
π

12(mu + md )

×〈�0 |[ū�μu − d̄�μd][s̄�μc]| �c 〉, (B4)

(high momentum)

FIG. 13. Quark diagram for �c → π 0(π 0�+) decay.

Mπ0(π0�+) ∼ m2
π

12(mu + md )
〈�+ |ū�μd[s̄�μc]| �c 〉,

(B5)

where we have neglected the relatively small axial vector
components.

In this way, we obtain the main components of the matrix
elements of the weak decay processes. To determine the
relative sign, we rotate the matrix elements in the isospin space.
The phase convention for the isospin state is given by

| �+ 〉 = −| �(I = 1, I3 = 1) 〉,
(B6)

| π+ 〉 = −| π (I = 1, I3 = 1) 〉,
as well as a negative sign for d̄γ5u ∼ π+. For instance, it
follows from Eq. (B1) that

M(a)
π+(π−�+) ∼ −kπ+

μ 〈�+ |ūγ5d[s̄�μc]| �c 〉
→ −kπ+

μ (−〈�− |)(−d̄γ5u)[s̄�μc]| �c 〉
= −kπ+

μ 〈�− |d̄γ5u[s̄�μc]| �c 〉,
where the arrow indicates the isospin rotation. Comparing
this with Eq. (B2) we find that the amplitude of the �c →
π+(π−�+) process has the same sign with that of the �c →
π+(π+�−) process. In the same way, from Eq. (B3) we obtain

Mπ+(π0�0) → +kπ+
μ 〈�− |d̄γ5u[s̄�μc]| �c 〉.

In comparison with Eq. (B2), we find the relative sign of
�c → π+(π−�+) and �c → π0(π0�+) is odd. Finally, from
Eq. (B4) we obtain

Mπ0(π+�0) → + m2
π

12(mu + md )
〈�+ |[ū�μd][s̄�μc]| �c 〉.

When we compare it with Eq. (B5), we find the same sign of
the processes �c → π0(π+�0) and �c → π0(π0�+). In this
way, we determine the relative sign of the weak interaction
vertices in Table II.
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