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Heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) are well described by the (nearly
ideal) hydrodynamics for average events. In the present paper we study initial state fluctuations appearing on
an event-by-event basis and the propagation of perturbations induced by them. We found that (i) fluctuations of
several of the lowest harmonics have comparable magnitudes and (ii) that at least all odd harmonics are correlated
in phase, (iii) thus indicating the local nature of fluctuations. We argue that such local perturbations should be the
source of the “tiny bang,” a pulse of sound propagating from it. We identify its two fundamental scales as (i) the
“sound horizon” (analogous to the absolute ruler in cosmic microwave background and galaxy distributions) and
(ii) the “viscous horizon” separating damped and undamped harmonics. We then qualitatively describe how one
can determine them from the data and thus determine two fundamental parameters of the matter: the (average)
speed of sound and viscosity. The rest of the paper explains how one can study mutual coherence of various
harmonics. For that, one should go beyond the two-particle correlations to three (or more) particles. Mutual
coherence is important for the picture of propagating sound waves.
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I. INTRODUCTION

Starting the introduction, let us note that the issues to be
discussed in this paper are somewhat similar in nature to
current trends in cosmology of the last decade, which made
it a really quantitative science. The sound horizon scale has
been seen on the sky, in correlations of cosmic microwave
background temperatures, and in locations of the galaxies.

Experimental data obtained in heavy-ion collisions at the
BNL Relativistic Heavy Ion Collider (RHIC) have found the
“little bang,” a hydrodynamical explosion driven mostly by
pressure of the new form of matter, the quark-gluon plasma
(QGP). Their experimental data for radial and elliptic flows
have been compiled in the so-called “white papers” of RHIC
experiments [1–4] in 2004 and compared with predictions of
relativistic hydrodynamics. The models which implemented
freezeout via hadronic cascades [5–7], as originally suggested
in [8], were found to be especially successful. Very recent
results from the Large Hadron Collider (LHC) on elliptic flow
[9] also turned out to be in agreement with hydrodynamical
predictions, suggesting that the QGP remains a good liquid
even at LHC (see, e.g., Ref. [10]). Dissipative effects from
the QGP viscosity provide only small corrections at the few-
percent level; see [11–13]. So, by now, we have quantitative
overall description of the “little bang.”

This paper is about small deviations from this average
behavior. Such perturbations of the average explosion can
come from at least two different sources. The one which
we will study in this paper is due to quantum fluctuations
in the wave function of the colliding nuclei, which creates
“bumpy” distributions of matter, for any collision, which one
can decompose into a smooth average plus local perturbations.

The smallness of the perturbation amplitude, with respect
to the local density of ambient matter, would suggest the
appearance of divergent sound waves; see Fig. 1. Similar to
the circles from a stone thrown into a pond, hydrodynamics
tells us that initial perturbations should become moving waves,

with basically nothing left at the original location at later time.
This is the picture we are going to work on in this paper.

Another one, to be studied in subsequent papers of this
series, are created by the energy deposited by jets propagating
through the medium. It has been recently dramatically shown
by the ATLAS Collaboration [14] that even jets with energy
above 100 GeV deposit a large part of their energy, and
sometimes all of it, into the medium. The first ideas were
to look at the resulting perturbations in the form of a Mach
cone [15], driven by the view that the energy is deposited
more or less homogenously along the jet path. However,
more recent developments of the theory, based on anti–de
Sitter-space/conformal-field-theory (AdS/CFT), have lead to
the view that the deposited energy grows rapidly with the
distance traveled by the jet, with significant deposition at the
end point. Thus, one may think of the second kind of “tiny
bangs,” this time occurring in between the beginning and the
end of the “little bang.” Obviously those should lead to sound
circles of smaller absolute and angular sizes.

An alternative idea of randomly fluctuating shapes of the
initially produced fireballs has resulted in an approach in which
different angular harmonics of that distribution are treated
separately. The realization that even central �b = 0 collisions
may have some fluctuating ellipticity has led to the discussion
of elliptic flow event-by-event fluctuations; see Ref. [16] and
many subsequent works. The so-called triangular flow related
to the fluctuations in the third harmonic of the flow has been
recently studied in an important paper by Alver and Roland
[17], with many groups working in this direction now.

The main difference between our approach and that is
that we treat such fluctuations not as independent (Gaussian)
noise in different harmonics but as certain local perturbations,
resulting in certain evolving sound fronts that reach a certain
size, shape, and diffusivity by the moment of freezeout. In other
words, we think that various harmonics are mutually coherent.
One of the main goals of this paper is to explain how this
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FIG. 1. Sketch of the transverse plane of the colliding system:
the two concentric circles are the nuclear radius (inner) and the final
radius of the fireball (outer). The black spot in the upper figure is an
extra density due to initial density fluctuations. The small perturbation
becomes a circle of a sound wave, which will be stopped at freezeout at
the thick circle (distorted by radial flow). The part outside the fireball
does not exist: the corresponding matter will actually be placed near
the edge of the fireball (thick dashed line). The angle between the two
thin lines corresponds to the angle between two peaks in the resulting
angular distribution.

coherence can be tested experimentally. We will also provide
evidence (based on the Glauber model of the perturbations)
that such mutual coherence is present in this model.

(On one hand, one may argue that, as soon as all the
perturbations are small and the equations are linear, it is not
important if one expands in harmonics before or after the
solution of hydro equations. So the solution to hydro that we
will discuss in our next companion paper [18] can be used for
both “noise” and coherent scenarios.)

Let us also briefly recall the history of the theoretical
efforts. The propagation of sound on top of the fireball has
been discussed by J. Casalderrey-Solana and one of us in
Ref. [19]. In that paper the fireball expansion was modelled by
the big-bang-like overall expansion of the space, with the same
Friedman-Robertson-Walker metric as used for cosmology.
The focus of that paper was the effect of time-dependent sound
velocity, especially if the phase transition is first order and
can vanish at some interval of T . The interesting finding was
the creation of the secondary—and convergent—sound waves.

This idea was further discussed in [20] in connection with the
“soft ridge” issue, but with the conclusion that, if the current
lattice data on the speed of sound is correct, the effect of the
reflected wave is too small.

In the same paper [20] it has been found that the usual
(unreflected) sound propagation should produce characteristic
“two-peak events,” with the angle between the peaks reflecting
the sound horizon and numerically being about 1 radian. More
specifically, this angle corresponds to the angle at which two
intersections of the fireball boundary are seen from the fireball
center. The Brazilian group [21] has independently found such
peaks with the same angle, induced by a local perturbation.
Andrade et al. have further pointed out that the two-peak events
lead to a three-peak correlation function, with the side peaks
separated by twice the larger angle ∼2 rad. This observation
explained what has been found earlier, in the average over
many events, in “event-by-event” hydrodynamical studies by
the Brazilian group (see Ref. [22] and references therein) and
Werner et al. [23]. Good agreement between the shapes of the
correlation function in “event-by-event” pictures and single
local perturbation indicate that the former are more or less
linear superpositions of the latter ones.

Completing this introduction, let us note that this paper was
completed and submitted to archive in August 2010, but it was
submitted to Physical Review C in June 2011 together with its
companion paper [18]. During this time there were obviously
many papers devoted to the subject. In particular, Glauber
model predictions for several harmonics εn and their root-
mean-square fluctuations have been calculated independently
several times. The Qin et al. [24] paper is an example, which
also considered the influence of inelasticity fluctuations of the
p + p reaction on the initial density fluctuations. Significant
experimental progress resulted now in measurements of higher
harmonics to n = 9, by all five collaborations at RHIC and
LHC. Yet the main suggestion of this work—the measurements
of the mutual phases of those harmonics—still remains to be
done in the future.

II. SETTING UP THE PROBLEM

A. Main scales of the problem

Before going to specifics, let us formulate the problem in a
more general form. Two generic scales of the hydro approach
are (i) the macroscopic scale R and the microscopic scale l,
being in the relation

l � R, (2.1)

which ensures that macroscopic tools such as thermodynamics
and hydrodynamics should work.

Now let us define two new scales. The first is the sound
horizon

Hs =
∫ τf

τi

dτcs(τ ), (2.2)

where the integral is taken from the formation of the hydro
system to its freezeout time. While in the big bang τf ∼
100 000 years, in the little bang it is only ∼10 fm. It is
important that in both cases, at the freezeout, the collisions
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cannot support pressure any more, yet the sound wave does not
disappear—it just stops—and thus it can be observed. For the
big bang this idea was suggested by Sunyaev and Zeldovich 30
years ago [25], who dubbed the sound horizon the “standard
ruler” of the universe. Its current value, Hs ≈ 150 Mps, as
seen in the galaxy’s distribution and in the Cosmic Microwave
Background (CMB) radiation correlations, is an excellent way
to measure the Hubble constant and the lifetime of the universe.

In the cosmology such scale corresponds to angles of about
1 degree and thus l ∼ 200. In the little bang, we deal with
about 1 radian and m ∼ 3.

The second scale (not important in cosmology), which we
would like to call “the viscous horizon scale” Rv , separates the
wavelengths of the sound which are and are not dissipated by
the viscosity effects. The smooth fireball and fluctuations are
described by

Tμν = T̃μν + δTμν. (2.3)

The textbook dispersion law for the sound, including the
viscosity term, is

ω = csk − i

2

4η

3s

k2

T
. (2.4)

A Fourier transform puts it into momentum form, af-
ter which one can solve the time dependence using the
momentum-dependent dispersion relation as well as the
imaginary part induced by viscosity.

One may add bulk viscosity to this expression as well, but
we keep the shear viscosity for now, assuming it is dominant:

δTμν(t) = e− 2
3

η

s
k2 t
T

+ik(x−tcs )δTμν(0). (2.5)

The first term in the exponent defines the new viscous
survival scale: harmonics with k � kv would be little affected
and, with k � kv , they would be killed. The definition of this
scale is clear from the exponent

kv = 1

Rv

=
√

3T s

2τf η
. (2.6)

While the sound horizon determines the size of the sound
circles at freezeout, the viscous one determines their width.
Note that, while the former increases linearly with time Hs ∼ t ,
this width Rv ∼ √

t . So, although the spheres become more
diffuse, they are also relatively sharper as time goes by.

One may also ask the very good question of how the early
hydrodynamical description of the perturbations may be valid.
We will not go into its discussion here but only state that
the applicability limits of Navier-Stokes hydrodynamics is
not determined by the kv scale, but by the magnitude of the
higher-order terms in gradients, resummed. The last word is
added because of the issue of alternating sign of the series,
which is raised in the “universal resummed hydrodynamics”
paper [26]. For the last works on the subject in the AdS/CFT
context see, for example, Ref. [27], in which the convergence
of a large class of nonequilibrium evolutions to such universal
behavior is indeed demonstrated and its applicability limits are
discussed quantitatively.

How can one experimentally measure the two scales, Hs

and 1/kv , which define the speed of sound and viscosity? One

t=0

t=t
f

FIG. 2. The two upper pictures correspond to initial time t = 0:
the system has an almond shape and contains perturbations (black
spots). The two lower pictures schematically show location and
diffuseness of the sound fronts at the freezeout time tf . The
arrows indicate the angular direction of the maxima in the angular
distributions 2 and 3, respectively.

may change the geometry of the collision (by centrality) and
the size of the nucleus (by changing beam A), but an even better
way is by observing many angular harmonics of the flow. Note
that the amplitudes of the higher harmonics are more damped
by viscosity so, if measured, they would provide a measure of
the viscosity.

For central collisions at RHIC-LHC, the hierarchy relation
between all four of these scales is

R ∼ Hs > Rv > l. (2.7)

As some representative numbers, let us mention 8, 6, 1, 1 fm
(at freezeout), respectively. However for mid-central collisions
the width (the shorter size) of the “almond” Rx becomes
comparable to or smaller than Hs . As a result, one expects
the sound wave to traverse the whole fireball and deposit some
amount of (entropy) density at its opposite side. In this case one
expects three-peak events; see Fig. 2 for explanation. So, one
of our suggestions to experimentalists is to study the centrality
at which certain changes in harmonics amplitudes and phases
may occur.

III. INITIAL STATE FLUCTUATIONS

A. Generalities

Let us start with a comment on what we would call the
“initial state.” This term is currently used in at least three
different settings: (i) The setting of the wave function of the
colliding nuclei, expressed either in terms of the nucleons (their
positions in the transverse plane just prior to the collisions)
or in terms of partonic degrees of freedom (positions and
longitudinal momenta). Another version is the “color glass
condensate” (CGC), which is described as an ensemble of
classical gauge fields. (ii) The state just after the (Lorentz
contracted) nuclei passed each other. It is either the partonic
state, including partons newly produced in a collision, or the
so-called glasma, in the classical field description. (iii) The
setting of the state after approximate equilibration is reached,
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so that the macroscopic (hydrodynamical) description can be
started.

It is the last setting which we mean in this work, as we
would apply hydrodynamics as a tool, translating properties
of the initial conditions into the final state observed in the
experiment. Therefore our “initial state” should correspond to
about one unit of the relaxation time after the actual collision,
or numerically to a proper time of the order of 1/2 fm/c.
Thus the inhomogeneity of the initial wave functions should
already be smoother than at time zero, by this (so far poorly
understood) relaxation process.

As we detail below, this state will be described by some
“average” or zeroth-order shape of the fireball (depending
of course on the impact parameter, the colliding nucleus,
and the collision energy), plus “fluctuations” characterized
in first order by an ensemble of small perturbations of the
average shape described by Fourier coefficients and phases
{εn, ψn}. Generic expressions would include the zeroth-order
ensemble-average deformations 〈εn〉 and deviations which
have no average but fluctuations δε2

n = 〈ε2
n〉 − 〈εn〉2.

The simplest situation, which happens for the second
harmonics and sufficiently peripheral collisions, is that the
average is much larger than the fluctuations: 〈ε2〉 � δε2. If
so, one may assume a Gaussian form of the fluctuations
with the width given by δε2. But in general the situation
is quite different; the odd harmonics are always due to
fluctuations and also, for near-central collisions, for all n both
terms in εn come from fluctuations. Until n < 10 they are
comparable in magnitude εn ∼ 1/10 with wide fluctuations.
(The distributions are obviously non-Gaussian because they
are all positive by definition.) All of those should in principle
be provided by some “initial state models,” of which we select
the Glauber model as the simplest example.

The separation of the initial state fluctuations from all other
fluctuations (e.g., fluctuations during the hydrodynamical evo-
lution, hadronization, and the freezeout) is possible because
of the fundamentally different number of relevant degrees of
freedom defining their magnitude. As we will detail in the
next section, the so-called Glauber fluctuations due to various
number of “wounded” (or participant or interacting) nucleons
are of the order of

εn ∼ 1√
Np

, (3.1)

where the number of the participant nucleons Np ∼ O(100),
being limited from above by the total nucleon number 2A ∼
400.

Further fluctuations are determined similarly, but with the
number of participants Np substituted by the much larger
number of partons involved, or the total multiplicity Nhadrons ∼
104 (for RHIC and LHC it is a factor of 2 different). That is why
one may, to a certain accuracy, ignore all later-time fluctuations
and assume that observable fluctuations in particle spectra
and correlation functions are one-to-one translated from the
initial state ensemble. Thus we use hydrodynamical equations
as a fully deterministic tool, by itself producing no random
numbers at all.

Furthermore, for near-central collisions all δεn are small,
of the order of several percent. So, independently of their

possibly complicated distributions and cross correlations, the
hydrodynamics applied in linear approximation should be a
quite reliable tool. Thus hydro equations can be linearized
and the linear response coefficients δvn/δεn can be calculated.
If so, it does not matter what the actual magnitude of the
deformation δεn is. Also, the linearized perturbations do not
interact with each other.

Although we will focus on these calculations in our next
paper, let us note here two things: One simple fact is that, while
angles ψn of the fireball deformations indicate the maxima
of the distribution (the corners of triangle, square, and other
polygons), hydro flow goes along their sides. Therefore, the
observed flow angles ξn are rotated from the deformation angle
as follows:

ξn = ψn + π

n
. (3.2)

Our second comment is that higher harmonics n oscillate with
time, displaying acoustic sound properties. At freezeout this
leads to their certain signs, and these phases should be added
to this relation as well.

B. Fluctuations in Glauber model: the amplitudes

Our “Glauber model” is a bit different from that used
widely by experimentalists. Both assume that initial state
fluctuations originate from the nuclear wave functions. The
“usual Glauber” uses randomly placed coordinates of the
individual nucleons in the nuclear wave function. However,
the nucleons themselves are complicated objects and their
interactions are also strongly fluctuating. Since there are
studies of that we decided to also include this source of
fluctuations. This changes the numbers a bit, but is found
not to be important for any of the qualitative conclusions to be
reached.

The nucleon fluctuations we included via the fluctuating
NN cross sections are, to a certain degree, known and studied
via diffraction, see [28] for the details and earlier references.
Naively, from the well-known fact of a nucleon being made of
quite a large number of partons one might conclude that those
fluctuations are small [O(1/Npartons)], but this is not the case.
In our simulation we assumed the cross section σNN to be the
random Gaussian variable with the variance

wNN =
〈
σ 2

NN

〉 − 〈σNN 〉2

〈σNN 〉2
≈ 0.25. (3.3)

First, like in [17], we simulate a large ensemble of collisions
and calculate the magnitude of the εn for several of the
lowest harmonics (up to 6). Their definition is via the Fourier
expansion for a single-particle distribution:

f (φ) = 1

2π

(
1 + 2

∑
n

εncos[n(φ − ψn)]

)
, (3.4)

where the εn are the participant anisotropies and the ψn are the
angles between the x axis and the major axis of the participant
distribution.
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The participant anisotropies are calculated from

εn =
√

〈rn cos (nφ)〉2 + 〈rn cos (nφ)〉2

〈rn〉 . (3.5)

This expression is calculated in the center of mass of the
participant nucleons for each event. Therefore, the dipole
moment n = 1 made out of the average coordinates

〈x〉 = 〈r cos (φ)〉 = 0, 〈y〉 = 〈r sin (φ)〉 = 0, (3.6)

are zero by definition.
The two-dimensional (2D) shape of the event can in

principle be expanded in the double Taylor series in x, y or
in a double series over the moments rm cos(nφ), rm sin(nφ)
with integer m, n. An even better definition would be to follow
the customary statistical trick and write the distribution as the
exponent containing the “generating function” of the angular
dependence expanded in harmonics:

P = F1(r) exp(F2), F2 =
∑
n>0

rnεn cos[n(φ − ψn)]. (3.7)

In this way the positivity of the distribution function, as well
as inclusion of trivial higher-order effects, are ensured.

Since the dipole m = n = 1 term is zero by construction,
we define the first odd deformation ε1, ψ1 using the term of
the expansion m = 3, n = 1 which appears together with the
triangular deformation m = n = 3:

ε1 =
√

〈r3 cos (φ)〉2 + 〈r3 cos (φ)〉2

〈r3〉 . (3.8)

The anisotropies calculated in this way are plotted in Fig. 3 for
n = 1, 6. The plot shows that the eccentricity has the largest
value for the well-known elliptic deformation ε2 and a nonzero
value of triangularity ε3, in agreement with the results reported
in [17]. Note that, for the near-central collisions Npart > 300,
the elliptic deformation is no longer dominant, and it is also
due to fluctuations. This conclusion becomes evident as one
looks at the lower plot of Fig. 3 , which shows the variations
of these εn.

One observation coming from these results is that all
other deformations (except for ε1, which is small because the
“true dipole” remains zero) are all comparable, ranging from
O(1/10) for central collisions to 0.3 to 0.5 for most peripheral
ones. While in the central bins these perturbations can be
considered small and treated as Gaussian random variables,
it is clear that, for most peripheral bins (when the number of
participants is smaller), the fluctuations are large and thus must
be non-Gaussian.

Another consequence is that there is absolutely no ground
to single out ε3. In fact, both ε4 and ε5 are larger that ε3, and
ε6 is about of the same order as ε3.

The last point is that their variations (the lower plot)
are all comparable to the magnitude. Yet the definition of
deformations are such that they are always positive, for each
event. This is one more reason why the amplitudes cannot
have a Gaussian distribution, deviating from it at least for the
smallest values.

∋
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∋

∋
∋
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∋
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∋
∋
∋
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∋
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FIG. 3. (Color online) Average anisotropies (a) and their vari-
ations (b) as a function of centrality expressed via the number of
participants Npart.

C. Fluctuations in Glauber model: the angles

The angles ψn are defined by

tan (nψn) = 〈rn sin (nφ)〉
〈rn cos (nφ)〉 , (3.9)

and to calculate ψ1 we use

tan (ψ1) = 〈r3 sin (φ)〉
〈r3 cos (φ)〉 . (3.10)

Using these expressions we obtain the distribution of the ψns
for the first six harmonics as shown in Figs. 4 and 5. In order
to better understand the behavior of these angles we will now
study their correlation.

(Note that our angle definition is different from the one
by Alver-Roland [17]: we do not include the extra phase π/n

between the flow and deformation directions; see below.)
Let us comment on these distributions, starting from the

even ones.
The most obvious one is a distribution of the second

(elliptic) harmonic. As seen in Fig. 4 the angle ψ2 is strongly
peaked at π/2, corresponding to an elongation of the system
in the y direction, as of course one expects from the overlap
“almond” of two nuclei. The distribution of the fourth angle
ψ4 in Fig. 5 shows peaks at angles 0 and π/2, but because of
the quartic symmetry of the fourth harmonic it simply means
that the maxima of the distribution tend to be aligned with the
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FIG. 4. Distribution of angles ψn for first three harmonics. The
centrality bin used is 100 < Npart < 300.

coordinate axes x and y. The distribution of the sixth harmonic
is different; it is peaked at the angle π/6. This means that it has
no maximum in the x direction but rather in y. In conclusion, all
even harmonics are strongly correlated with the reaction plane,
with all of them producing maxima along the y (out-of-plane)
direction.

The distribution of the angle ψ1 is nonzero at all angles,
which means it is not very strongly correlated with the reaction
plane. It has two maxima, in the ±y directions, to be called
“tip” fluctuations. Although the contribution from angles 0, π ,
or x directions is about twice smaller, it also makes an
important contribution. We will call them “waist” fluctuations.
Note that, while the area of the “waist” is larger than that of
the “tips,” its contribution is smaller.

The distribution over ψ3, ψ5 in these figures looks com-
pletely uncorrelated with the reaction plane. (This fact has
also been noticed in Ref. [17] and by others.) However,

0.0 0.5 1.0 1.5
0

200

400

600

800

1000

ψ4 rad

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

100

200

300

400

ψ5 rad

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

ψ6 rad

FIG. 5. Distribution of ψn for the harmonics 4 to 6. The centrality
bin used is 100 < Npart < 300.

further scrutiny shows that they are in fact well correlated
with ψ1; see Fig. 6 (in which we included points repeated by
periodicity). The distribution can be crudely characterized by
some “bumps” plus “stripes” connecting them.

The interpretation of the “bumps” is that all of them
correspond to events with additional “hot spots” at the “tips” of
the almond. It is a very natural place for maximal fluctuations,
for two reasons: First, this is where the participant density in
both nuclei is near zero. Second, because of the factor r3 they
have larger weight than all other places.

There are two kinds of “stripes,” those with positive and
negative slope in Fig. 6. The latter ones simply follow from
the ψ1 distribution, while the former one is indeed a nontrivial
correlation between the angles whose origin we cannot explain.
We will continue to discuss its manifestation a bit later. The
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FIG. 6. Scatter plot of the ψ3 vs ψ3 − ψ1 (above), and of the ψ5

vs ψ5 − ψ1 (below), for 100 < Npart < 300.

correlation of ψ5 with ψ1 is very similar. The “bumps” at
ψ5 − ψ1 ≈ 0 again mean the ±y direction or the “tips.” The
plot has similar “stripes.”

Getting a bit ahead of ourselves, let us study the “resonant”
combinations of angles as well as angles and amplitudes. As we
explain below, those particular combinations of the amplitudes
and phases of two harmonics are〈

εn1εn2 cos
(
n1ψn1 − n2ψn2

)〉
, (3.11)

especially in the case when n1, n2 differ by two units. We have
studied two first examples of the kind, with odd harmonics 1,
3, and 5.

One interesting distribution, shown in Fig. 7, is that over
the cos term itself for the particular combination of phases 1
to 3. It consists of two clearly different parts: a very narrow
peak near −1 and wide flat distributions between −1 and
1. This plot demonstrates a qualitative feature of the phase
distribution which was pointed out above. One explanation of
the peak near −1 (the angle combination is π ) comes from
the fluctuations at the “tips” of the almond, when both ψ1 and
ψ3 are strongly correlated close to π/2. However, the second
interesting correlation seen as “positive slope lines” in Fig. 6(a)
because, for them, ψ1 − 3ψ3 = π as well. A similar situation
happens for other odd harmonics.

1.0 0.5 0.0 0.5 1.0
0

1000

2000

3000

4000

5000

cos 1 3 3ψ ψ

FIG. 7. Scatter plot of cos(3ψ3 − ψ1).

The average value of the combinations (3.11) for harmonics
1 to 3 and 3 to 5 as a function of centrality are shown in Fig. 8.
All values are negative, as the sign is dominated by a peak in
the cosine near −1: the other component more or less averages
out. We thus conclude that experimental measurements of
the amplitude of such correlations, with the magnitude and
the sign, will be especially sensitive to the “almond tip”
fluctuations.
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FIG. 8. (Color online) Correlators 〈ε1ε3 cos(ψ1 − 3ψ3)〉 (top) and
〈ε3ε5 cos(3ψ3 − 5ψ5)〉 (bottom) as a function of the number of
participants. The error bars are omitted since they are smaller than
the dots.
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To summarize the observed pattern, we have found that all
odd angles are well correlated with each other, forming the
“stripes” and “bumps” shown in Fig. 6. The fluctuations and
correlations seem to be stronger from the “tips” of the almond.

D. Comments on other initial state fluctuations

So far the only source of fluctuations included has been
(i) the coordinate part of the nuclear wave function prescribing
the nucleon positions in the transverse plane and (ii) the event-
by-event fluctuations of the NN cross section. We found that
the former effect dominates and the latter only provides small
corrections.

While other sources of fluctuations clearly are a subject for
future studies, we still provide some comments on those.

One important type of “initial state” fluctuation is of course
hard parton scattering events, resulting in jet production. The
rate of those depend very strongly on the exact definition of
the cutoff beyond which the momentum transfer involved is
characterized as “hard.” There are vastly different opinions
on where this boundary is theoretically, and experimentally it
depends on whether such events are triggered by single large-
pt hadrons or by some jet-finding algorithms. Jet production
and quenching is of course of high interest, but those should
be studied only in a small fraction of all collisions selected by
separate triggers. For global fluctuations those can safely be
ignored, as the probability of “hard” events is smaller than that
of the fluctuations we study.

In the Glauber approach that we used, the local den-
sity of matter produced is assumed to be simply pro-
portional to the local density of all participant nucleons,
Np(A1) + Np(A2). However, when this density is high
enough, it has been argued that the so-called saturation
phenomenon should take place, because of parton absorb-
tion processes in the wave function. Other expressions
for local matter density have been proposed, for exam-
ple, ∼min(Np) ln[max(Np)/ min(Np)] by Kharzeev et al.,
where min and max refer to the smaller and the larger of
the two, respectively. Those are typically the amplitudes of the
fluctuations.

A well-known approach to their description is the so-called
glasma, which calculates those color fields from random color
charges of the leading (larger x) partons of the two colliding
nuclei. Asymptotically (in a very large nuclei or at very high
energy) McLerran and Venugopalan [29] argued that, at a
particular location in the transverse plane, the color charges
of partons must be uncorrelated because they come from
different nucleons. Therefore, it is usually assumed that their
color charges fluctuate as random variables. If so, the resulting
fluctuations are small, as the total number of partons is very
large.

The application of such ideas usually keeps the average
values of those, such as A1/3 or so. The point of our comment
is a warning that such simplified ideas cannot be used for
determining the fluctuations. It has been known for a long
time that, while at very small x, the partons (mostly gluons)
become numerous; they are still very tightly correlated in
the transverse plane. The size of the “gluonic spot” in the

nucleon has been known for a long time from diffractive form
factors and, in more recent form, from Hadron-Electron Ring
Accelerator (HERA) photon diffraction into J/ψ . This spot
is small and therefore bright. As documented, for example, in
Ref. [30] (their Fig. 23), the gluon density at the center of the
nucleon is about as high as in the center of Ca40. Therefore,
a large number of gluons does not yet imply that all of them
merge in the transverse plane into a more-or-less homogeneous
distribution; the positions of the incoming nucleons still remain
the dominant source of the initial state fluctuations.

As the “gluonic spots” from single nucleons remain the
source of initial state fluctuations, one may ask if numerous
partons coming from it may be correlated in their quantum
numbers, forming specific large-amplitude color fields. One
particular kind of such field got special attention; namely,
the topologically nontrivial gluonic configurations called the
QCD sphalerons [31]. They are gluonic field configurations
which originate from excitations of the topologically nontrivial
vacuum fields (instantons). While they rapidly explode into
a multiple gluon state, they strongly violate CP and chiral
symmetries locally, producing in particular ±2Nf (≈6) units
of chirality per sphaleron.

As pointed out in Ref. [32], such strong local CP violation
induces special event-by-event fluctuations in the CP-odd ob-
servables; for example, they should induce charge asymmetry
along the magnetic field. Clearly those should be looked at in
special studies.

Other coherent color field configurations which deserve to
be specially studied are (color-electric) flux tubes. In pp colli-
sions the view that a field created by longitudinally separated
charges makes a flux tube is a consequence of confinement, and
thus must happen in vacuum. Many popular event generators
are based on the Lund model, cleverly parameterizing flux
tube production and decay. In AA low-energy collisions many
flux tubes are produced, and their possible fluctuations into the
so-called color ropes have been studied, initiated by Ref. [33].
If two elementary color charges can be combined, they may
either cancel each other or produce higher representations of
the SU(3) group, in which case the rope energy (and entropy,
after its decay) is proportional to its flux squared. Further
applications of these ideas for strangeness production in AA

collisions can be found in Ref. [34].
Studies of flux tubes lay dormant until the recent discovery

of the so called hard ridge1 by the STAR Collaboration
at RHIC. One possible origin of it [20] is a hydro-carried
longitudinal flux tube, created at the hard collision point. This
explanation may work provided the flux tubes survive as such
until freezeout. As was argued in that paper this indeed should
happen at the periphery of the fireball, where matter is not far
from the deconfinement transition, forming a kind of “dual
corona” of the QGP fireball, similar to a solar corona full of
flux tubes.

1Note that “hard ridge” should not be confused with “soft ridge.”
The latter, as discussed in this and other papers, is naturally explained
as a combined effect of “harmonic flows” induced by Glauber
fluctuations. Hard ridge, associated with the azimuthal direction of the
hard trigger particle, does not yet have a widely accepted explanation.
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IV. HARMONICS AND THEIR RELATIVE PHASES
EXTRACTED FROM CORRELATIONS

A. Central collisions: two- versus many-particle correlators

Let us for simplicity start with idealized central collisions. If
the impact parameter is negligible, one may think of the overall
system as completely symmetric in the azimuthal angle φ.

A particular event has a certain perturbation which breaks
this symmetry. Its (two-dimensional) distribution over trans-
verse momenta of the secondaries can be decomposed into
a Taylor series of the momenta px, py or into the angular
harmonics

dN

dp2
t dφ

= f (pt )

{
1 +

∑
n>0

[2an cos(nφ) + 2bn sin(nφ)]

}
,

an = 〈cos(nφ)〉, bn = 〈sin(nφ)〉. (4.1)

Note that, instead of the curly brackets, one can also use the
exponent of the sum, which will include trivial higher-order
effects and enforces positivity of the distribution. But we would
assume all vn to be very small, for simplicity.

Instead of using the a, b pair, one may also introduce the
moduli and the phases, writing them as 2vn cos[n(φ − ξn)]
with positive vn. In order to simplify subsequent formulas, we
however prefer to write it using the complex exponent:

dN

dp2
t dφ

= f (pt )

(∑
n

vne
inφ−inξn

)
, (4.2)

where the sum goes over all integer n, positive and negative,
with v0 = 1 and v−n = vn.

Before going any further, let us give an example of such
decomposition for shapes we are interested in. We already
mentioned that the sound circles from point perturbations lead
to a two-maximum distribution, with an angle of about 1 rad.
To make the points, we select the angle between the peaks to
be exactly 2π/3, put them at certain positions, and give an
arbitrary width for plotting convenience. The result is shown
in Fig. 9(a) as a (black) solid curve.

We then do the Fourier decomposition and find that, for
symmetry reasons, all coefficients of sinusoidal waves are
zero: bn = 0. To understand the relative magnitude of the
harmonics one can plot the Fourier “power spectrum” of the
squares a2

n versus n; see Fig. 9(b). (This is the information
which is included in the two-particle correlation function; see
below.) The first lesson is that “triangular” harmonics 3, 6,
9, . . . of the type 3k, k integer, are significantly enhanced
relative to other ones. The reason for this becomes apparent if
one compares the sum of such modes (the red dashed curve)
and the rest of harmonics (the blue dash-dotted curve) with
the original shape. “Triangular” harmonics get a coherent
enhancement from the three-horn distribution they describe,
while the main role of the rest of the harmonics is to cancel
this nonexisting third horn and nonexisting negative region
in between the horns. This interpretation is confirmed by the
signs of the harmonics an: all “triangular” ones are positive
and all others are negative. So, if one would like to reconstruct
the distribution from its Fourier series, one may, for example,
find the amplitudes from the power spectrum and the relative
signs (phases) of the harmonics.
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FIG. 9. (Color online) (Upper panel) Two-peaked solid (black)
curve is the example of single-particle angular distribution to be
discussed. The (red) dashed curve is the sum of the 3, 6, and 9
harmonics, while the (blue) dash-dot curve is the contribution of
all other harmonics with n < 10. (Lower panel) The corresponding
“power spectrum” of the harmonics: a2

n versus n.

At the end of Sec. III we suggested that sufficiently
peripheral collisions would result in three-peak distributions,
as the sound wave will be able to cross the fireball along
its shortest direction. If this happens, and the amplitude of all
three would be the same, then the magnitude of “nontriangular”
harmonics (other than 3, 6, 9, . . . ) drops further, as there is no
need to cancel the nonexisting peak.

But why not observe the two-peak event shapes themselves?
The reason is that there are multiple perturbations in any event,
with random position in the transverse plane. The contribution
of an individual fluctuation is very small, so that they can only
be studied by finding statistically significant correlations of the
particles. Remember that there is ∼109 samples of available
events with ∼103 particles per events. Two-particle correlators
use up to ∼106 pairs of those in an event.

Say, if the elementary perturbation is local (δ function
like in the transverse plane), then its angular position in the
transverse plane is the only meaningful azimuthal orientation.
The perturbations have random positions in the transverse
plane, which we express as

ξn = ξp + ξ̃n, (4.3)

where the tilde indicates the angle relative to the perturbation
and ξp is the random phase due to location of the perturbation.
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As ξp is a random variable, all observables should be averaged
over it.

What we want to show is that the way the correlations
work out is quite different for (i) the two-body and (ii) the
many-body (three or more) correlation functions. Indeed, in
order to get the two-body correlation function one has to take
a the square of the single-body distribution (4.2):∑

n1,n2

vn1vn2 exp
[
in1φ1 + in2φ2 − in1ξ̃n1 − in2ξ̃n2

− i(n1 + n2)ξp

]
,

and average it over ξp randomly distributed over the circle. As
a result, in the double sum above only the terms satisfying

n1 + n2 = 0 (4.4)

survive. The double sum collapses into a single sum with the
squared amplitude ε2

n. Second, the sum becomes a function
of the angular difference between the angles, φ = φ1 − φ2,
as expected from the symmetry. And, last but not least, all
the phases ξn disappear. Therefore, two-particle correlators
carry the same information as the “power spectrum” of the
harmonics (we used the above for the example).

These facts are of course well known. The harmonics of the
two-body correlator are

C2(φ) =
〈

d2N

dφ1dφ2

〉∣∣∣∣
ξp

, (4.5)

cn =
∫

d(φ)C2(φ) cos(nφ)∫
d(φ)C2

= 〈
v2

n

〉
, (4.6)

or squared amplitudes of the original harmonics, averaged over
the events.

This is, for example, how Alver and Roland [17] and others
have obtained their estimates for the “triangular” flow.

However, the situation is different for many-body (three
or more) correlation functions. Indeed, if the single-body
distribution (4.2) is cubed (or raised to higher power), one
finds a triple sum in which random phases appear as exp[i(n1 +
n2 + n3)ψp], leading now to the “triangular” condition2

n1 + n2 + n3 = 0. (4.7)

Eliminating one of them (e.g., n3) one finds the double sum∑
n1,n2

vn1vn2vn1+n2 exp
{
i
[
n1(φ1 − φ3) + n2(φ2 − φ3)

− n1
(
ξ̃n1 − ξ̃n1+n2

) − n2
(
ξ̃n1 − ξ̃n1+n2

)]}
,

in which the relative phases of different harmonics are still
present. Therefore one is still able to measure the relative phase

2Long after this paper had been posted we learned that a similar
condition was proposed to be used to look for non-Gaussianity of
the fluctuations of Cosmic Microwave Background (CMB) radiation.
Our integers conjugated to azimuthal angle are then promoted to 2D
angular momenta li on the sky, and so the condition means that three
vectors can make a closed triangle. Thus the “triangular” name. To
our knowledge, non-Gaussianity of the big bang has not yet been
observed.

of harmonics experimentally by focusing on the corresponding
combinations:〈

vn1vn2vn3 cos
(
n1ξn1 + n2ξn2 + n3ξn3

)〉
, (4.8)

in which three integers must satisfy the condition (4.7).
Obviously the number of solutions to condition (4.7) is larger
than the number of harmonics, so all phases can be found.
Experimentally, the price to pay is related to the smallness of
the harmonics, which in such observables appear in the third
(or higher) power. This makes it more difficult to measure, as
the values extracted should be larger than the statistical noise.

It is at this point instructive to get back to our example
of the two-peak distribution introduced above and see what
those combinations of phase are in this case. One interesting
solution to the condition (4.7) is 1 + 2 = 3, which relates
“enhanced” third harmonic with “subleading” 1 and 2. The sign
of this average is defined by cos(ξ1 + 2ξ2 − 3ξ3) and since,
in our example ξ1 = ξ2 = π and ξ3 = 0, this combination of
phases leads to cos(ξ1 + 2ξ2 − 3ξ3) = −1. But if one wants
to measure the “enhanced” harmonics themselves, like in
3 + 3 = 6, 6 + 3 = 9, etc., the corresponding cosine would
be close to 1 instead. Proceeding in this way one should be able
to find such signs and conclude if the two-peak distributions
are or are not close to reality.

Although hydro calculations is a subject of another paper,
let us briefly discuss how comparison to theory should be
done, assuming that the corresponding averages for some
set of n1, n2, n3 are experimentally measured. There are two
steps to be done: First, using the (linearized) hydro one can
approximate flow harmonics by the product of the initial
deformations and the linear response terms〈

vn1vn2vn3 cos
(
n1ξn1 + n2ξn2 + n3ξn3

)〉
=

(
vn1

εn1

)(
vn2

εn2

)(
vn3

εn3

)
× 〈

εn1εn2εn3 cos
(
n1ξn1 + n2ξn2 + n3ξn3

)〉
. (4.9)

Second, one should change the flow angles we call ξn to the
deformation angles ψn. One simple step is to phase shift [by
(3.2)] the angle between flow and initial deformation. Note,
however, that in each of the three terms, ni in numerator and
denominator cancel, leaving only 3π or simply the total sign
change:

cos
(
n1ξn1 + n2ξn2 + n3ξn3

)=− cos
(
n1ψn1 +n2ψn2 +n3ψn3

)
.

(4.10)

The last step is to check for the direction (sign) of the flow. As
we will see in Ref. [18], flow direction at freezeout oscillates
as a function of n, so this sign should also be included in
the phase. The resulting correlation of the amplitudes and
orientations of the initial state fluctuations can be calculated
from the initial state model, as we have done above for the first
three harmonics resonance 1 + 2 = 3 as well as 3 + 2 = 5.

In fact it is not necessary to take Fourier moments of the
correlation functions—it is sufficient to plot the correlation
functions themselves. (This is especially useful if the experi-
mental angular coverage in azimuth is incomplete.)
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Defining the three-particle correlator as for the two-particle
one, with the averaging over the perturbation angle

C3(φ1, φ2, φ3) =
〈

d2N

dφ1dφ2dφ3

〉
ψp

, (4.11)

one finds it, for central collisions, to be a function of the two
angle differences, say φ1 − φ3 and φ2 − φ3. The correspond-
ing 2D plots for the two- and three-peak distributions look
quite different and should be relatively easy to separate.

B. Mid-central collisions and two-body correlators
relative to event plane

A nonzero impact parameter violates axial symmetry and
creates “directed flows,” for example, the famous elliptic flow
with 〈v2〉 
= 0. By mid-central collisions we mean a centrality
region in which 〈ε2〉 is large itself and is also large compared
to its fluctuations (recall that it is not so for central and very
peripheral collisions). For example, ε2 is 0.5 (0.3) for Np =
100 (200) participants, with δε2 ≈ 0.1. Furthermore, as seen
in Fig. 4(b), its angle ψ2 is very much directed at ±π/2 (the
tips of the almond) and therefore [using Eq. (3.2) for n = 2]
the flow angle is peaked “in-plane,” and ξ2 = 0, π , as indeed
is observed.

If so, for one of the harmonics being the second (e.g., n3 =
±2) one can approximate a product of three deformations as
follows:

〈
vn1vn2vn3 cos

(
n1ξn1 + n2ξn2 + n3ξn3

)〉
≈

(
vn1

εn1

)(
vn2

εn2

)(
v2

ε2

)
〈ε2〉

〈
εn1εn2 cos

(
n1ξn1 + n2ξn2

)〉
,

(4.12)

by factoring out large and nonfluctuating 〈ε2〉 from the two
other harmonics which are small and fluctuating. Note that
the resonance condition now means n1 ± 2 = n2, and that,
by putting ξ2 = 0, we have selected a frame in which the
(experimentally determined reaction plane) is the x axis.

Basically the lesson here is that, for mid-central collisions,
the “reaction plane” plays the same role as the third body, so we
are reduced to two small fluctuating and correlated harmonics.
The simplest nontrivial example of the resonance condition
of this kind is 3 − 1 − 2 = 0 (recently studied by Teaney and
Yan [35]), while the next is 5 − 3 − 2 = 0.

We had already calculated the combinations of two fluc-
tuating harmonics with the appropriate cosines above, for
these two cases, in the Glauber model. They are by no means
small. For example, for the centrality bin with [100. . . 300]
participants, they are

〈ε1ε3 cos (3ψ3 − ψ1)〉 ∼ −0.015, (4.13)

〈ε3ε5 cos (3ψ3 − 5ψ5)〉 ∼ −0.05, (4.14)

and therefore we expect it to be observable, with about as large
statistics as needed for the usual quadratic fluctuations.

V. SUMMARY

In this work we have (i) discussed the setting, identifying
the main scales of the problem. Then (ii) we studied in
detail the initial state fluctuations originating from nucleon
positions, emphasizing existence of the nontrivial phase rela-
tions between different harmonics. Finally, (iii) we discussed
correlation functions of two and many hadrons and pointed
out the principal difference between them, with the latter
allowing us to measure experimentally the relative phases of
these harmonics.

Let us now recapitulate the lessons from this study in a bit
more detail.

Unfortunately, the perturbations we speak about are too
small to be measured directly on an event-by-event basis and
should be instead reconstructed from the statistically obtained
correlation functions. One good thing coming from it is that
many independent fluctuations from local perturbations in a
single event and in the ensemble are treated by correlation
functions, in which all trivial uncorrelated effects are statisti-
cally subtracted and absent.

Traditionally, the initial state perturbations and final state
corrections to collective flow are considered in a form of
their angular harmonics, which we call εn and vn, respectively.
Their relation is calculated by the hydrodynamics—the details
of which (in the linearized form) is the subject of our
companion paper [18].

Most papers on the subject consider εn and vn as inde-
pendent random variables, which are incoherent fluctuations,
added in quadratures and ignore their phases ξn and ψn,
respectively. We, however, pointed out that, while this can be
done for the two-particle correlations, it is not so in general.
Correlators of many-particle (three and more) correlations
include those phases (as do two-body correlations) relative
to event plane for mid-central collisions. Many different
“triplets” n1, n2, n3 related by the “triangular condition”
between them can be measured, providing experimental
opportunity to find out if and how the perturbations are
correlated. This needs to be done to refine models of the initial
state. The magnitude of a few such terms we have estimated
in the Glauber model, and they are comparable in magnitude
to the terms already studied. We also presented theoretical toy
models, in which phases between harmonics are especially
simple.

Coherence in phases of the deformations imply interfer-
ences between the harmonics of the flow. Only by adding
them together can one follow how small “hot” (or “cold”)
spots created by quantum fluctuations of interacting nucleons
propagate away from the point of origin. Only in this way
can one understand the role played by the “hydrodynamical
causality,” insisting that a large part of the fireball should
remain completely unaffected by the perturbation since the
signal cannot possibly reach it before the freezeout. Only
a complete Green function, collecting all hydro harmonics,
describes these shapes of propagating waves, as we detail in
Ref. [18].

There are two basic scales defining those perturbations:
the sound horizon Hs (2.2) and the “the viscous horizon
scale” Rv (2.6). The former gives the size of the perturbation,
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stemming from a local perturbation; the latter gives its width.
We have, for example, argued that, by changing the centrality
of the collisions, one can change the relation between the
(smaller) fireball size and the sound horizon: this should
dramatically change the shape of the event (see Fig. 4 for
explanation).

It is an important objective of the experimental heavy-ion
program in general to measure these two scales, extracting
experimental values of the speed of sound and viscosity.
One specific idea proposed in this work is that, by changing
centrality, one can locate the transition when Hs and the
smaller size of the overlap region are equal, observing the
change of shape of the underlying event, from those with

two peaks to three-peaks ones. If found, it would be a very
spectacular confirmation of the view that sound waves can
travel large distances ∼R during heavy-ion collisions. It will
also put to rest various models which assume significantly
shorter freezeout time than that predicted by hydrodynamics.
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