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Novel source of nonlocality in the optical model
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In this work we fit neutron-12C elastic scattering angular distributions in the energy range 12 to 20 MeV, by
adding a velocity-dependent term to the optical potential. This term introduces a wave function gradient, whose
coefficient is real and position-dependent, and which represents a nonlocality. We pay special attention to the
prominent backscattering minima, which depend sensitively on the incident energies and which are a tell-tale of
nonlocalities. Reasonable fits to the analyzing power data are also obtained as a by-product. All our potentials
have the form of conventional Woods-Saxon shapes or their derivatives. The number of our parameters (12)
is smaller than the number for other local optical potentials, and they vary monotically with energy, while the
strengths of the real and imaginary parts of the central potential are nearly constants. Our nonlocality is in contrast
to other forms of nonlocalities introduced previously.
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I. INTRODUCTION

Since its inception in 1954 [1], the nuclear optical model
has undergone many improvements and refinements. Two
main theoretical approaches emerged. One, the microscopic
nonrelativistic approach, which consists in folding a two-
body nucleon-nucleon g matrix into the nucleon distributions
contained in the target nucleus [2], and iteratively includes
the many-body aspects of the nucleus [3]. The other approach
makes use of the Dirac equation to describe the wave function
of the incident nucleon and is of a more phenomenological
nature [4]. Both approaches provide almost equally good
descriptions of the nucleon scattering cross sections and
polarizations in a range of energies, as demonstrated recently
for a representative number of target nuclei [5]. The Dirac
approach automatically introduces a nonlocality through the
Darwin term but does not allow for the Pauli exclusion
principle, while the nonrelativistic approach does include the
latter [5]. It is also found that the Dirac approach requires
a much smaller energy dependence of the Dirac optical
potentials than the corresponding nonrelativistic potentials,
which suggests that this difference is related to the nonlocality
present in the Dirac procedure [6,7].

There should be at least two sources of nonlocality in the
conventional, nonrelativistic optical model: the first is due
to the Pauli exclusion principle. This nonlocality is usually
taken into account by writing the overall wave function as
a Hartree-Fock determinant, and it leads to an additional
integral term in the Schrödinger equation. Other methods also
exist [8]. The second is a “Feshbach nonlocality,” which is
due to the coupling of the inelastic excitations to the ground
state in the elastic channel during the scattering process.
Since the form of this nonlocality is difficult to quantify,
it usually is ignored, or taken into account by numerically
coupling a few inelastic channels to the elastic channel [9].
Another method, proposed by Perey and Buck [10], is to
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assume an “ad hoc” nonlocality expression in terms of a
combination of exponential functions of position and obtain
the local equivalent potential in the Schrödinger equation.
The Perey-Buck nonlocality is found to provide an energy
dependence of the central local equivalent optical potential that
is in agreement with the phenomenological energy dependence
and leads to Perey damping factors that are roughly similar
to the ones in the Dirac optical model approach [7]. Other
forms of nonlocalities have also been explored, notable among
them being a parity-dependent term in the optical model
[11,12], which led to a tentative justification in terms of the
Feshbach channel coupling effect [13,14]. In a recent work, a
nonlocal optical potential that has the Perey-Buck type spatial
dependence was employed in the calculations of three-body
direct nuclear reactions. An important nonlocality effect has
been found for some transfer reactions [15].

It is important to understand the presence of nonlocalities,
because the corresponding local representation of the optical
model leads to a phase equivalent wave function that is larger
in magnitude than the corresponding nonlocal wave function
(the Perey damping factor), and hence leads to discrepancies
in the distorted wave approximation calculations (DWBA) of
inelastic or rearrangement processes, which in turn lead to
errors in obtaining the shell-model occupation numbers of the
target nucleus.

The purpose of this paper is to introduce yet another
nonlocality term into the optical potential that is expressed
by the presence of a derivative term in the Schrödinger
equation. The coefficient is a position-dependent effective
mass of the nucleon embedded in the nuclear medium,
resulting from the interaction with the other nucleons. The
concept of an effective mass is relevant to the nuclear many
body problem in connection with the energy-density functional
approach. Here, the nonlocal terms are usually interpreted as
a three-dimensional position-dependent effective mass [16].
By considering the most general kinetic energy operator for
a particle with a spatially variable mass [17], the Schrödinger
equation can be recast in a form that describes a constant
mass moving in a velocity-dependent potential [18]. Our
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preliminary justifications for this nonlocality is based on the
excellent fits to low-energy N -12C elastic scattering data which
we achieve. In particular, the fits reproduce very well the
pronounced minima corresponding to large angle backward
scattering, which are usually associated with nonlocalities [4].
Even though we did not include the analyzing power in the
search for parameters in the fit to the elastic cross sections,
we also obtained reasonably good fits to the experimental
analyzing powers, a result that supports the presence of
our velocity dependent term. It must be stressed, however,
that our velocity-dependent term is not similar [19] to the
velocity-dependent Darwin term that occurs in the Dirac-based
formulation [20], because the Darwin term is complex, while
our effective mass is real. Further, the Darwin term is closely
coupled to the spin orbit potential in the Dirac formulation,
while our spin orbit term is completely independent of the
velocity term [19]. In a future investigation [19] we will study
the physical origin of our nonlocality, in particular, whether
it approximately simulates the effect of channel coupling to
excited states, or whether it simulates exchange effects, or
introduces a new type of nonlocality. In future works, we also
plan to investigate the possibility of obtaining the gradient
term, which we suggested to be the source of nonlocality,
using the s- and p-wave nucleon-nucleon potential.

Velocity-dependent potentials have long been used in
nuclear and atomic physics. For example, such a potential was
introduced to explain the predominantly p-wave nature of the
pion-nucleon scattering [21]. In addition, a model assuming
a velocity-dependent nucleon-nucleon interaction reproduced
the 1S, 1D, and 1G singlet-even phase shifts required for the
description of nucleon-nucleon scattering cross sections [22].
In the field of atomic physics the scattering of electrons from
atomic oxygen and neon was studied in the frame work of
an analytic velocity-dependent potential [23]. In addition, the
effective mass formulation has been introduced into condensed
matter physics to describe the dynamics of electrons in
semiconductor hetrostructures such as compositionally graded
crystals [24] and quantum dots [25]. Further, scattering of
electrons on disordered double-barrier hetrostructures has
been considered in Ref. [26]. Finally, one of us presented
perturbation formalisms that account for the effect of a small
perturbing velocity-dependent potential on the bound-state
energies and the scattering phase shifts. [27,28].

II. THE VELOCITY-DEPENDENT TERM

In this section we shall briefly outline the effective mass
formalism that leads to a velocity-dependent term. As men-
tioned above, the most general kinetic energy term used to
describe a spatially variable mass m(r) is given as [17]

T = −h̄2

4
[mδ(r) ∇ mβ(r) ∇ mγ (r)

+mγ (r) ∇ mβ(r) ∇ mδ(r)]. (1)

Since the mass depends on position, it no longer commutes
with the momentum operator and the ambiguity parameters
obey the constraint δ + β + γ = −1 [17]. Interesting works
were carried out to determine a unique set of ambiguity

parameters. For example, by considering the one-dimensional
Schrödinger equation for a spatially variable mass m(x) it
was suggested that there is a privileged ordering, namely, δ =
0, β = −1, which was obtained by demanding [m(x)]−1∂/∂x

be continuous at the point of discontinuity of m(x) [29]. For
this set of parameters, the potential functions for the one-
and three-dimensional Schrödinger equations were obtained
in addition to explicit expressions for the bound-state energy
spectrum and the corresponding wave functions [30]. In addi-
tion, the formalism of supersymmetric quantum mechanics is
extended to the one-dimensional Schrödinger equation with a
spatially variable mass [31].

Using the above form of T and choosing the same
set of parameters (δ = 0, β = −1), the corresponding radial
Schrödinger equation reads

− h̄2

2m

{
d2

dr2
− m′

m

[
d

dr
− 1

r

]
− l(l + 1)

r2

}
v(k, r)

= [E − V (r)] v(k, r), (2)

where m ≡ m(r) and v(k, r) = rR(r) is the reduced wave
function and the prime denotes a derivative with respect to
r . By making the substitution

1

m
= 1 − ρ(r)

m0
, (3)

where ρ(r) is some isotropic function of the radial variable r

and m0 is a constant mass, Eq. (2) reduces to

(1 − ρ)v′′(r) −
[
v′(r) − v(r)

r

]
ρ ′ − (1 − ρ)

l(l + 1)

r2
v(r)

= 2m0

h̄2 [V (r) − E] v(r), (4)

where the dependencies of the reduced wave function on k and
ρ(r) on r have been suppressed for clarity of presentation. This
is exactly the same equation one obtains when starting from
the usual Schrödinger equation but with a velocity-dependent
potential of the form:

V̂ (r, p) = V (r) + h̄2

2m0
∇ · ρ(r)∇

= V (r) + h̄2

2m0
[ρ(r)∇2 + ∇ρ(r) · ∇]. (5)

The second term on the right-hand side results in a kinetic
energy term that combines with the corresponding term in the
Schrödinger equation. The third term, however, is proportional
to the gradient of ρ(r) in addition to the gradient of the
wave function. Once more, it is worth mentioning that the
gradient terms are not identical to those obtained when
the Dirac formalism is extended to the nonrelativistic regime.

III. VELOCITY-DEPENDENT OPTICAL POTENTIAL

One of the nonlocalities that we propose to be present in
the optical model is due to the change in mass of the nucleon
arising from its interactions with other nucleons inside the
nucleus. Our aim in this work is to determine to what extent the
inclusion of an “ad hoc” velocity-dependent term can simulate
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such a nonlocality. For this purpose we shall introduce a
gradient part resulting in a velocity-dependent optical potential
of the form given in Eq. (5) with the conventional optical model
part given by

V (r) = −V0f (r, x0) + 4iawW
df (r, xw)

dr

+ 20

(
h̄

μc

)2

(Vso + iWso)
1

r

df (r, xso)

dr
�σ · �I , (6)

where μ is a constant neutron-nucleus reduced mass. For the
gradient term we define

ρ(r) = ρ0 aρ

df (r, xρ)

dr
, (7)

where x0 stands for (r0, a0) and so on for the rest of the terms.
The function f (r, rj , aj ) is of a Woods-Saxon form, namely,

f (r, rj , aj ) = 1

1 + exp[(r − rjA1/3)/aj ]
, (8)

where A is the mass number of the target nucleus. Clearly, ρ(r)
is a surface term, which may be interpreted as the gradient of
the mass density of the target nucleus [21]. In view of this, one
would expect the effect of including this term to be important
closer to the nuclear surface rather than deep in the interior of
the target nucleus. In fact our best fits are obtained with the
peak of ρ(r) close to the nuclear surface.

In an attempt to reduce the number of fit parameters we
have used the same geometry parameters for the real and
imaginary parts of the spin-orbit term. Our model has 12 fit
parameters compared to the conventional optical potentials,
which have a number of fit parameters ranging from 9 to
20. For example, in a previous work [33], the conventional
optical potential with 9 fit parameters was used to fit the
neutron-nucleus elastic angular distribution data for 1-p shell
nuclei ranging from 6Li to 13C. The bombarding neutron
energies fell in the range 7–15 MeV, which does not include
the pronounced large-angle backward scattering minima at
18 and 20 MeV. Further, as the authors stated, the emphasis
was put on reproducing the overall behavior of the angular
distributions and not the exact details as the low-energy region
is endowed with resonances. A more recent work presented
new global and local optical potentials for neutrons and protons
with incident energies ranging from 1 keV to 200 MeV for
nuclei in the mass range 24 � A � 209 [34]. Each of the local
optical potentials included 20 fit parameters and resulted in
excellent fits to the experimental data. The strength of the
central real potential showed the largest variation as a function
of the incident energy. Furthermore, energy-dependent global
Dirac optical potentials also resulted in excellent fits to proton
elastic scattering data corresponding to incident energies in the
range 20–1040 MeV for a number of light and heavy nuclei.
The number of optical potential parameters is about 24 and the
data sets were restricted to observables at angles less than 90
degrees so as to avoid the effect of nonlocalities, which were
believed to be important at large back scattering angles [4,14].

IV. VELOCITY-DEPENDENT OPTICAL POTENTIAL FITS

As mentioned in the introduction there are sources of
nonlocalities in the nonrelativistic optical potential, such as
exchange processes, and coupling of the inelastic excitations
to the ground state of the elastic channel. In this work
we introduce yet another source of nonlocality presumably
resulting from the change in mass of the incident nucleon due
to its interactions with the other nucleons inside the nucleus,
and we ignore the other two. In order to simulate such a
“medium” nonlocality, we have added a velocity-dependent
term to the optical potential. This introduces a wave-function
gradient term whose coefficient is real and position-dependent.
As outlined in Sec. II, the Schrödinger equation describing a
spatially variable mass can be made identical to a Schrödinger
equation describing the dynamics of a constant mass moving in
a velocity-dependent potential of the form given in Eq. (5). Our
aim is to test the ability of such a velocity-dependent optical
potential to simulate the effective mass nonlocality especially
in the backward (large angle) scattering region, which has long
been associated with nonlocalities [4,14].

Using the proposed velocity-dependent optical potential
(VDOP) with V (r) and ρ(r) given by Eqs. (6) and (7),
respectively, we searched for sets of parameters that fit the
N -12C angular distribution elastic scattering data in the low-
energy 12–18 MeV range. Lower energies were not considered
in order to avoid resonance effects. The source of the data
is the Evaluated Nuclear Data File [32]. The data showed
pronounced large-angle, backward scattering minima that are
very sensitive to energy changes, thus signifying sources of
nonlocalities. We varied the parameters until a best fit to the
elastic angular distributions are obtained. The fits are shown
in Figs. 1 and 2 and our best-fit parameters are presented in
Tables I and II. Clearly, the VDOP has reproduced well the
experimental data, most notably the pronounced large-angle,
backscattering minima at 18 and 20 MeV. The quality of the
fits at the large back-angle minima is found to be sensitive
to both the spin-orbit and to the velocity-dependent terms.
Further, the peak of the spin-orbit term monotically moved
into the nuclear interior as the incident energy increased. As
shown in Fig. 3, at 12-MeV incident energy, the peak of ρ(r) is
at the outer edge of the real central potential. However, as the
energy increased the peak moved into the nuclear interior but
remained within the region of the diffused edge of the central
potential. This supports the hypothesis that ρ(r) is related to
the gradient of the target’s mass density [21]. The strengths of
the real and imaginary potentials V0 and W were nearly stable
as a function of incident energy, especially for E � 16 MeV.

For a perfect theory, one would expect the fit parameters to
have a smooth variation with energy. By inspecting Tables I and
II, it can be seen that our parameters generally vary smoothly
with energy. However, some of the parameters at E = 16 MeV
are quite different form the corresponding ones at neighboring
higher and lower energies. This may be due to the fact that there
are several energy-dependent additional effects in the nucleon-
nucleus elastic scattering process that are still explicitly left out
at the present stage. One is the exchange effect, and the other is
a channel-coupling effect. The latter involves a Feschbach-like
polarization potential that is known to be angular momentum
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FIG. 1. (Color online) The velocity-dependent optical potential
fits for N -12C elastic scattering at 12 (a), 14 (b), and 16 (c), all in
units of MeV. The model parameters are given in Tables I and II. The
data is obtained from Ref. [32].

and energy-dependent and is nonlocal. In a future work, it is
our hope to take such effects into account by re-expressing both
effects in terms of gradient terms, thus modifying our proposed
velocity-dependent optical potential. This is expected to result
in an even smoother variation of our parameters with energy.

Although we did not include the polarization data in the
fitting procedure, our model makes reasonable theoretical
predictions for the analyzing power Ay(θ ) as can be seen in
Fig. 4. At the energies of 11.9 and 13.9 MeV, the experimental
results are given in Ref. [35] and at 14.2 MeV they are given
by Ref. [36]. Since the evaluated nuclear data file did not
have angular distributions data of Ay(θ ) at the aforemen-
tioned elastic scattering energies, we calculated the predicted
polarization asymmetry corresponding to 11.9 MeV using
our fit parameter values for the elastic angular distribution
obtained at 12 MeV. For the remaining 13.9 and 14.2 MeV
energies, we used our parameter values obtained for the fit
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FIG. 2. (Color online) The velocity-dependent optical potential
fits for N -12C elastic scattering at 18 (a) and 20 (b) in units of
MeV. The pronounced minima at large backward scattering angles
are evident. The model parameters are given in Tables I and II. The
data is obtained from Ref. [32].

to the elastic angular distribution at 14.0 MeV. We expect
that our theoretical predictions for the analyzing power can
be improved by including other sources of nonlocalities, such
as exchange effects and coupling of the ground-state elastic
channel to inelastic excitations.

We have also fitted the 14 MeV angular distribution elastic
scattering data using a conventional optical potential model
by setting the gradient term ρ(r) to zero. This energy was
chosen as analyzing power data are available at 13.9 and
14.2 MeV, which provide more physical constrains on the

TABLE I. Velocity-dependent optical model fit parameters for the
N -12C angular distribution elastic scattering. The potential terms are
given by Eqs. (6) and (7).

Elab U0 r0 a0 W rw aw

MeV MeV fm fm Mev fm fm

12 44.5 1.30 0.45 6.2 1.34 0.39
14 44.7 1.31 0.46 5.7 1.30 0.45
16 40.1 1.39 0.37 6.3 1.47 0.23
18 40.1 1.31 0.56 6.6 1.32 0.40
20 39 1.35 0.51 6.5 1.36 0.47

034618-4



NOVEL SOURCE OF NONLOCALITY IN THE OPTICAL MODEL PHYSICAL REVIEW C 84, 034618 (2011)

TABLE II. Velocity-dependent optical model fit parameters for
the N -12C angular distribution elastic scattering. The potential terms
are given by Eqs. (6) and (7).

Elab Vso rso aso ρ0 rρ aρ

MeV MeV fm fm − fm fm

12 16.99 + 2.80 i 1.15 0.08 −1.82 1.80 0.12
14 11.59 + 3.67 i 1.03 0.11 −1.71 1.50 0.13
16 24.72 + 4.83 i 1.00 0.11 −1.46 1.30 0.15
18 23.56 + 15.45 i 0.81 0.15 −2.27 1.33 0.15
20 17.19 + 21.25 i 0.80 0.19 −2.05 1.20 0.15

values of the potential parameters. The corresponding fit to
the elastic angular distribution is shown in Fig. 5. Clearly, the
overall behavior of the differential cross section is reproduced
but the fine details are less well described compared to the
VDOP fit at the same energy as shown in Fig. 1(b). In addition,
fits to the data became harder to achieve as the incident energy
increased. In particular, the large-angle backward scattering
minima at 18 and 20 MeV and the details of the differential
cross sections were much less well reproduced compared to the
corresponding VDOP fits. Further, the theoretical prediction
for the analyzing power, Ay(θ ), presented in Fig. 6 still needs to
be improved, as was the case for the VDOP, but agreement with
experimental data around 60◦ is clearly better for the prediction
of the proposed velocity-dependent optical potential.

V. DISCUSSION AND CONCLUSION

In a previous work, Cooper and Mackintosh [11] showed
that good fits to low-energy scattering of either protons
or neutrons from 12C or 16O out to 180◦ could not be
accomplished using only local optical potentials. They intro-
duced a nonlocality by means of parity-dependent potentials,
which contained factors (−)L, where L is the orbital angular
momentum of the projectile relative to the target nucleus.
In this work, we introduce a different type of nonlocality

1 2 3 4 5

2.0

1.5

1.0

0.5

0

0.5

r fm

P
ot

en
ti

al
s

FIG. 3. (Color online) The potential parts of the proposed
velocity-dependent optical model at a neutron incident energy of
12 MeV. Central real part (dash-dotted), central imaginary part
(dotted), real part of the spin-orbit term (dashed), and, ρ(r), the
velocity-dependent term (solid).
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FIG. 4. (Color online) The velocity-dependent optical potential
predictions for the analyzing power at different incident neutron
energies. The experimental data for 11.9 (a) and 13.9 (b) MeV
energies are taken from Ref. [35], while for the 14.2 MeV (c) the
data is taken from Ref. [36].
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FIG. 5. (Color online) The conventional optical model [ρ(r) = 0]
fit to the data at 14 MeV incident neutron energy.
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FIG. 6. (Color online) The conventional optical model [ρ(r) = 0]
prediction for the analyzing power at 13.9 MeV.

in the form of a derivative term. This nonlocality, described
by a position-dependent effective mass, which multiplies the
first-order derivative term of the scattering wave function, is
presumed to be a consequence of the static interaction of
the incident nucleon with the other nucleons in the nuclear
medium. Its physical origin will be the object of a separate
investigation [19]. One argument justifying the introduction of
our velocity-dependent term is that the magnitude of the central
part of the optical potential depends much less on energy than
for fits using only local potentials. Another argument is that we
obtain excellent fits to the pronounced minima, especially at
18 and 20 MeV, in the angular distribution of the elastic cross
section at large angles, shown in Fig. 2, that can otherwise not
be fitted well [11,14]. Furthermore, our predicted analyzing
powers have trends that are in agreement with experiment.

The proposed velocity-dependent potential has a total
number of 12 fit parameters given in Tables I and II. This
is compared to conventional optical models where the typical
number of fit parameters ranges between 9 and 20 [33,34].
In this work, the details of the differential cross-section fits
were sensitive to both the spin-orbit and velocity-dependent
terms, in particular to their strengths and radii. The best
fits, shown in Figs. 1 and 2, were obtained with the peak
of ρ(r) located within the region of the diffused nuclear
surface. This supports the hypothesis that ρ(r) may be
viewed as the gradient of the nuclear mass density [21].
By inspecting Tables I and II, it is clear that the radius of
the spin-orbit term decreased monotonically as the incident
energy increased. In addition, the fit values for the strengths
of the real and imaginary parts V0 and W showed only a
small energy dependence. The theoretical predictions of our
model for the analyzing power given in Fig. 4 can probably
be improved by including other sources of nonlocalities such
as exchange processes and channel coupling to inelastic
excitations.

In summary, we have introduced into the optical model
potential a nonlocality that is normally not used to describe
nucleon-nucleus elastic scattering. It is in the form of a
derivative term, multiplied by a function that depends on a
position-dependent effective mass. Our excellent fits to the
elastic angular distribution, especially at large angles, justify
engaging in an exploration of how our nonlocality is related
to the conventional nonlocalities due to exchange effects and
coupling to inelastic channels, or whether our nonlocality is
indeed related to a change of effective mass of the projectile in
the medium of the target nucleus, and hence represents a new
effect.
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