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Fission-fragment mass distributions from strongly damped shape evolution
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Random walks on five-dimensional potential-energy surfaces were recently found to yield fission-fragment
mass distributions that are in remarkable agreement with experimental data. Within the framework of the
Smoluchowski equation of motion, which is appropriate for highly dissipative evolutions, we discuss the physical
justification for that treatment and investigate the sensitivity of the resulting mass yields to a variety of model
ingredients, including in particular the dimensionality and discretization of the shape space and the structure
of the dissipation tensor. The mass yields are found to be relatively robust, suggesting that the simple random
walk presents a useful calculational tool. Quantitatively refined results can be obtained by including physically
plausible forms of the dissipation, which amounts to simulating the Brownian shape motion in an anisotropic
medium.
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I. INTRODUCTION

A recent study performed random walks on five-
dimensional (5D) potential-energy surfaces and extracted
fission-fragment mass distributions that are in remarkable
agreement with experimental data [1]. The striking simplicity
of the calculation, its unprecedented predictive power, and the
availability of tabulated potential-energy surfaces for essen-
tially all nuclei of potential interest [2] raise the prospect that
the method may provide a quantitatively useful calculational
tool for obtaining approximate fission mass yields for a large
region of the nuclear chart.

However, before such applications can be made with any
confidence, a number of issues need to be clarified, in particular
why such a simple, and somewhat arbitrary, treatment can yield
such apparently good results. Because of the potential utility
of the treatment, we address these issues below.

As discussed already in the pioneering papers by Meitner
and Frisch [3] and Bohr and Wheeler [4,5] in 1939, nuclear
fission can be viewed qualitatively as an evolution of the
nuclear shape from that of a single compound nucleus to two
receding fragments. The character of the shape dynamics is
still not well established but, as a step away from a purely
statistical approach toward a full dynamical treatment, it is
interesting to explore scenarios in which the shape evolution
is strongly dissipative.

Early studies of fission dynamics with the so-called one-
body dissipation suggested that the nuclear shape motion is
strongly damped [6,7] and it was advocated that a reasonable
starting point for determining the average evolution would
be to balance the conservative force provided by the potential
energy with just the friction force resulting from the dissipative
coupling between the deforming nuclear surface and the
nucleon gas [7,8]. A simple feature of strongly damped motion
is that the inertial forces are relatively unimportant so it is less
crucial to know the inertial-mass tensor for the shape motion.

The earliest numerical studies of dissipation in fission
dynamics were focused on the damping effect on the mean
motion only, using various physical models for dissipation,

including inertial effects, and using macroscopic potentials
[6,7,9,10]. Consideration of the stochastic force in fission
dynamics began as early as 1940, when Kramers considered
the average delay in establishing a stationary flow rate over
a one-dimensional barrier, thus inferring an increase of the
fission lifetime due to dissipation [11]. Further approximate
treatments of the Fokker-Planck equation in one or two
dimensions began around 1980 [12–16]. These calculations
often retained the assumption of a constant inertia and dissi-
pation, with very simplified potentials. About a decade later,
numerical investigations of Langevin equations for dynamics
including inertia, damping, and Markovian stochastic forces
were begun by several groups; reviews of such work were
given in Refs. [17,18]. These types of simulations continue
[19–21]. They employ two or three shape degrees of freedom,
macroscopic potential energies, fluid dynamic inertias, and
more recent calculations usually use some form of one-body
dissipation. Because of the use of macroscopic energies, they
are often explicitly characterized as applying to systems with
significant excitation energy.

In contrast, the present investigation focuses on systems
having relatively low excitation energy, such as those pro-
duced by thermal neutrons, where it is essential to include
microscopic (shell) effects in the potential energy. For 5254
even-even nuclei with 170 � A � 330, such potential ener-
gies have been calculated with the macroscopic-microscopic
method on a five-dimensional lattice of 5 315 625 shapes [2].
These potential-energy surfaces are the most comprehensive
currently available and form the basis for our present studies.

II. FORMAL FRAMEWORK

We picture the nuclear fission process as an evolution of
the nuclear shape from a relatively compact mononucleus to
a dinuclear configuration. The nuclear shape is described by
a set of parameters, χ = {χi}, whose time development is the
result of a complicated interplay between a variety of effects,
as we now discuss.
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Most basic, and also most easy to understand, is the
potential energy associated with a given shape, U (χ), for
which a number of relatively mature models have been
developed. We employ potential-energy surfaces that have
been calculated with the macroscopic-microscopic method
in which the potential energy is the sum of shape-dependent
macroscopic (liquid-drop-type) terms and a microscopic cor-
rection that reflects the structure of the single-particle levels
in the effective potential associated with the specified nuclear
shape [22]. The potential energy provides the driving force,
Fpot(χ), which has the components F

pot
i = −∂U/∂χi .

The driving force seeks to change the nuclear shape and
the associated matter rearrangement gives rise to a collective
kinetic energy. Furthermore, the shape degrees of freedom
are coupled dissipatively to the internal nuclear degrees of
freedom and, as a result, the shape evolution is both damped
and diffusive. The nuclear shape dynamics should therefore
be treated by transport methods that allow for the stochastic
elements of the dynamics. Stochastic transport approaches to
nuclear dynamics have been reviewed in Refs. [17,18].

The Lagrangian associated with the shape degrees of
freedom has a standard form,

L(χ̇ ,χ ) = 1
2

∑
ij

χ̇i Mij (χ ) χ̇j − U (χ), (1)

and the (generalized) momentum can be obtained as π ≡
∂L/∂χ̇ , with the components being πi = ∑

j Mij χ̇j . The
inertial-mass tensor M(χ ) is not as well understood as the
potential energy and cannot yet be calculated with comparable
accuracy. In the present investigation, the inertia is ignored
because it is expected to play a relatively minor role if the
dissipation is strong (see below).

To a first approximation, the average effect of the coupling
between the shape and the residual system is a simple friction
described by a Rayleigh dissipation function,

F(χ̇ ,χ ) = 1
2

∑
ij χ̇i γij (χ ) χ̇j = 1

2Q̇, (2)

which is equal to half the average rate at which energy is being
transferred to the internal degrees of freedom. The dissipation
tensor γ (χ ) governs the associated friction force Ffric(χ), with
F fric

i = −∂F/∂χ̇i = −∑
j γij χ̇j . We shall invoke the simple

wall formula [7] to obtain estimates of γ (χ) (see Sec. III).
The average shape evolution χ̄(t) is then governed by the

Lagrange-Rayleigh equation,

d

dt
π̄ = ∂L

∂χ
− ∂F

∂χ̇
, (3)

where the derivatives should be evaluated along the mean
trajectory. When the damping is strong, the resulting motion
is slow. In that scenario, the acceleration terms as well as
terms of second order in the velocities may be neglected.
The corresponding creeping evolution is then determined by
the demand that the friction force exactly counterbalance the
driving force, i.e., Fpot + Ffric .= 0. This equation can then be
solved for the average velocity χ̇ , χ̇ i

.= ∑
j μijF

pot
j , where

the mobility tensor μ is the inverse of the dissipation tensor γ .
Because the dissipation rate Q̇ is always positive, the tensor
γ is positive definite; so its inverse μ always exists and its
eigenvalues are positive.

The friction force represents the average of the interactions
of the shape with the internal degrees of freedom. As is
common, we shall assume that the remaining interaction is
stochastic and the associated force is denoted by Fran(t). (Its
time dependence is indicated explicitly because it is expected
to vary rapidly on the time scale of the shape evolution.)
By definition, it vanishes on the average, 〈Fran(t)〉 = 0,
and we assume that its time dependence is Markovian, so
〈F ran

i (t)F ran
j (t ′)〉 = 2T γij δ(t − t ′), where T (χ) is the shape-

dependent nuclear temperature (see below).
The actual shape evolution is thus both damped and diffu-

sive and the trajectory χ(t) is governed by the Smoluchowski
equation of motion in which the driving force from the
potential is counterbalanced by the full dissipative force, i.e.,
Fpot + Ffric + Fran .= 0. This condition immediately yields
the instantaneous velocity,

χ̇(t)
.= μ · (Fpot + Fran(t)). (4)

We assume that the nuclear shape evolution is described by
this equation and it is thus akin to Brownian motion. The net
displacement accumulated in the course of a brief time interval
�t is then

δχ =
∫ �t

0
χ̇(t) dt = μ ·

[
Fpot�t +

∫ �t

0
Fran(t) dt

]
, (5)

where we have chosen �t to be so small that both the driving
force and the mobility tensor can be considered as constant.
The first term in the above expression (5) is deterministic
and represents the average displacement, corresponding to the
mean trajectory provided by the Lagrange-Rayleigh equation
(3), whereas the second term is stochastic and arises from the
inherent thermal fluctuations that give the evolution a diffusive
character.

Because of the diffusive nature of the dynamics, it is
appropriate to describe the system by a probability density
P (χ ; t). The average shape is then described by

χ̄ (t) =
∫

dχ χP (χ ; t), (6)

while the fluctuations around the average are characterized by
the correlation tensor σ (t) having the elements

σij (t) =
∫

dχ (χi − χ̄i(t)) (χj − χ̄j (t)) P (χ ; t). (7)

When starting from a given shape specified by χ0, we
have P (χ ; t = 0) = δ(χ − χ0) and the distribution then shifts
and broadens in the course of time. In the Fokker-Planck
approximation, this evolution is described by

∂

∂t
P =

⎡
⎣−

∑
i

∂

∂χi

Vi +
∑
ij

∂

∂χi

∂

∂χj

Dij

⎤
⎦ P (χ ; t), (8)

where V(χ ) is the drift coefficient (vector) and D(χ) is the
diffusion coefficient (tensor). These transport coefficients are
simply related to the early evolution of an initially narrowly
defined distribution, namely,

d

dt
χ̄ = V = μ · Fpot,

d

dt
σ = 2D = 2μT . (9)
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The drift rate ˙̄χ follows immediately from (5) and the diffusion
rate σ̇ is also readily obtained because the covariance matrix
for the changes in χ is given by

〈δχδχ〉 =
∫ �t

0

∫ �t

0
〈χ̇ (t) χ̇(t ′)〉 dt dt ′ (10)

=
∫ �t

0

∫ �t

0
μ·〈Fran(t) Fran(t ′)〉·μ dt dt ′ (11)

=
∫ �t

0

∫ �t

0
2T γ δ(t − t ′) dt dt ′ = 2T μ�t. (12)

We note that VT = D · Fpot in accordance with the
fluctuation-dissipation (Einstein) relation [23].

The nuclear shape, being a macroscopic entity, is treated as
a classical variable. But it is in contact with the microscopic
degrees of freedom which are quantal in nature. Therefore,
one should generally use the appropriate quantal form of the
Einstein relation. However, in the present case, because we are
considering the strongly damped limit, the surface motion is
very slow and the relation reverts to its simple classical form
[see Eq. (9)]. For the specific dissipative mechanism consid-
ered here, i.e., the one-body wall dissipation (see Sec. III), the
energy dissipated in an elementary process (the reflection of
a nucleon off the moving surface) is given by ω ≈ −mVF ṅ,
where m is the nucleon mass and VF is its Fermi speed, while
ṅ is the surface velocity. The temperature T in the Einstein
relation should then be replaced by T ∗ = 1

2ω coth(ω/2T ). But
ṅ is very small in the considered overdamped limit, |ω| � T ,
so T ∗ ≈ T and the classical form is appropriate. This is in
contrast to the situation in damped nuclear collisions where
the relative nuclear speed is not negligible and the operating
one-body window dissipation is characterized by the quantal
form of the Einstein relation, as is directly reflected in the
strong dependence of the variance of the fragment mass
distribution on the dissipated energy [24,25].

A. Direct simulation

One way to proceed is to solve the Fokker-Planck transport
equation (8), which is a partial differential equation for a time-
dependent function of N variables (in our case, N = 5; see
below). This is a formidable task and we instead perform
direct Monte Carlo simulations of the Smoluchowski equation
of motion (4) to generate suitably large samples of individual
stochastic shape evolutions.

For this purpose, it is convenient to write the mobility tensor
explicitly in terms of its eigenvectors, {χ̃ (n)}, normalized such
that χ̃ (n) · χ̃ (n) is the eigenvalue μn (which is always positive,
as explained above),

μij =
∑

n

χ̃
(n)
i χ̃

(n)
j . (13)

Assuming now that the current shape is characterized by
the value χ , we wish to propagate the shape forward to
a slightly later time, t + �t . The average shape change is
readily obtained from Eq. (5) as δχ = μ · Fpot�t . The random
contribution to the shape change is most easily sampled in
the eigenframe of the mobility tensor because the increments

in each principal direction may be sampled separately. By
invoking the eigenrepresentation of μ (13), we may then obtain
the total increment in χ accumulated in the course of the small
time interval �t ,

δχ =
∑

n

χ̃ (n)[�t χ̃ (n) · Fpot +
√

2T �t ξn], (14)

where {ξn} are random numbers sampled from a standard
normal distribution having zero mean and unit variance.
This propagation procedure is easily implemented, once the
mobility tensor μ has been diagonalized. The average of the
accumulated change is then

δχ̄i = �t
∑

n

χ̃
(n)
i χ̃ (n) · Fpot, (15)

because 〈ξn〉 = 0, and the accumulated correlation σij becomes

σij = 2T �t
∑

n

χ̃
(n)
i χ̃

(n)
j , (16)

because 〈ξnξn′ 〉 = δnn′ . Both are proportional to �t .
It is an important feature of the propagation scheme (14) that

when the time interval �t is sufficiently small, the generated
ensemble of dynamical histories remains unaffected by a
subdivision of the time interval, so the numerical solution
of the transport problem is robust. To see this, imagine that
the time interval used in Eq. (14) is subdivided into a number
of shorter intervals, {�t (m)}, with

∑
m �t (m) = �t . If μ, F,

and T remain unchanged during �t , the resulting combined
change in χ becomes δχ = ∑

m δχ (m), with

δχ (m) =
∑

n

χ̃ (n)
[
�t (m) χ̃ (n) · Fpot +

√
2T �t (m) ξ (m)

n

]
. (17)

Recalling that 〈ξ (m)
n 〉 vanishes, we see that the combined

average change remains the same as before,

∑
m

〈δχ (m)〉 =
∑

n

χ̃ (n)

(∑
m

�t (m)

)
χ̃ (n) · Fpot, (18)

as does the accumulated covariance σij ,〈(∑
m

δχ
(m)
i

)(∑
m

δχ
(m)
j

)〉
= 2T

(∑
m

�t (m)

)∑
n

χ̃
(n)
i χ̃

(n)
j ,

(19)

because 〈ξ (m)
n ξ

(m′)
n′ 〉 =δmm′δnn′ . Thus the diffusion process

is robust under changes in the employed time interval �t ,
as it should be. Of course, this invariance pertains to the
distribution of dynamical histories, P (χ ; t), whereas any
individual trajectory does change when �t is changed.

A related invariance holds when the overall magnitude of
the dissipation tensor γ is changed: If the elements γij (χ) are
all increased by the common factor N (χ), then the local time
evolution proceeds at a rate that is N (χ) times slower, but the
resulting distribution of shape trajectories, P (χ ; t), remains
the same. This convenient feature allows us to arbitrarily
rescale the friction locally to facilitate the numerical treatment,
because we are not here interested in the actual time evolution
but merely in the final distribution of mass divisions. Such local
rescaling of the dissipation tensor is equivalent to adjusting
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the local clock rate, which will obviously not affect the
outcome of the process but merely change how much time is
spent at various locations. For convenience, we shall therefore
assume that the eigenvalues γn(χ) are one on average, for each
particular shape χ .

B. Discrete random walk

It is instructive to consider the simple situation when the
mobility tensor is aligned with the lattice, i.e., μ is diagonal,
μij = μiδij . The transport process then reduces to a standard
random walk, i.e., Eq. (14) reduces to

δχi = μiFi�t +
√

2T μi�t ξi . (20)

If the potential energy U is known for any value of the shape
parameter χ , then the local force F can be obtained as the
corresponding gradient, F

pot
i = −∂U/∂χi , and the transport

process (20) can be readily simulated to yield an ensemble of
evolutions. Because each increment δχi is a real number (i.e.,
not necessarily an integer), each evolution is represented by a
sequence of shapes whose coordinates {χi} may take on any
fractional value within the considered parameter domain.

However, the potential energy employed [2] is available
only on a discrete lattice whose 5 315 625 sites are labeled
by the integers {I, J,K,L,M}, corresponding to integer
values of the shape coordinates, {χ1, . . . , χ5}. By performing
a pentalinear interpolation (see Appendix A), we may obtain
an approximate representation of the potential energy for
arbitrary (fractional) values of the shape coordinates, U (χ),
and the above continuous transport process (20) may then be
simulated.

A simpler but approximate treatment of the above continu-
ous transport problem consists of performing a random walk
on the discrete lattice, i.e., the shape parameters {χi} take on
only integer values. This can be conveniently accomplished
by means of the standard Metropolis sampling procedure (see
below), as was originally done in Ref. [1]. The quality of
this approximation depends on the lattice spacing, and if the
spacing is reduced, then the discrete random walk becomes a
better approximation to the continuous transport process.

To understand how the continuous random walk (20)
can be approximated by a Metropolis procedure, we first
note that when the mobility tensor is diagonal, each lattice
direction i is an eigendirection and can, therefore, be sampled
independently. In the discrete treatment, the step size in the
direction i is fixed by the lattice spacing �i , and we need to
know the probabilities for taking a forward or backward step
during a brief time interval �t , P

(i)
± = ν

(i)
± �t . The associated

Fokker-Planck transport coefficients, which express the rate at
which the mean location changes and half the rate at which
the variance in the location grows, are therefore given by

Vi = (ν(i)
+ − ν

(i)
− )�i = μiFi, (21)

Di = 1
2 (ν(i)

+ + ν
(i)
− )�2

i = μiT , (22)

where Fi is the force in the lattice direction i, and μi = 1/γi

is the mobility in that direction; they are independent of the
lattice spacing �i . These relations can be readily solved for

the rates

ν
(i)
± = μi

�2
i

[
T ± 1

2
Fi�i

]
≈ μi

�2
i

[
T ∓ 1

2
�Ui

]
, (23)

where �Ui ≡ −Fi�i is the change in the potential associated
with an increase of χi by �i . It then follows that P

(i)
+ /P

(i)
− ≈

exp(−�Ui/T ), which is precisely what characterizes the
Metropolis procedure, as we now show.

In the Metropolis procedure [26], a proposed step is always
accepted if the associated energy change �U is negative,
whereas it is accepted only with the probability exp(−�U/T )
otherwise. The probabilities for accepting the reverse step
are then exp(�U/T ) or unity, respectively. So the ratio
between the forward and backward acceptance probabilities
is P+/P− = exp(−�U/T ). Thus a continuous random walk
of the type (20) can be treated approximately by means of a
discrete random walk based on the Metropolis procedure.

The treatment reported in Ref. [1] employed such a discrete
random walk on the 5D lattice of potential energies. A bias
potential of the form Vbias(Q2) = V0Q

2
0/Q

2
2 was added to

disfavor compact shapes and thus help to guide the walk toward
the scission region, thereby speeding up the calculation; the
strength used was checked to be sufficiently small so that no
further reduction would affect the mass yields. Thus the only
physical parameter was the critical neck radius c0 at which it
was assumed that no further change in mass asymmetry would
occur; typically, the calculated mass yields were relatively
insensitive to c0 in the range of 2–3 fm, and c0 = 2.5 fm was
adopted as the standard value in Ref. [1].

We are now in a position to ascertain the inaccuracies that
are inherent in such an approach due to the specific lattice
employed in Ref. [2]. We first examine the effect of the finite
magnitude of the lattice spacing by comparing the results of the
Metropolis walk with those of the corresponding continuous
process. This is illustrated in Fig. 1 for two typical cases (the
others considered show comparable effects). The continuous
process and its discrete approximation tend to yield rather
similar results for the fragment mass distribution. But there are
some noticeable differences in the region of the asymmetric
peak for the thorium isotopes considered. Such discrepancies
suggest that the results are quite sensitive to the underlying
potential energy surface in that particular region of the shape
space (cf. the effect of modifying the Wigner term discussed
in Sec. IV C), which is a feature that might help to achieve a
better understanding of the potential energy.

Second, we address the important role played by the relative
size of the site spacings in the different lattice directions.
The Metropolis walks carried out in Ref. [1] treated all the
five lattice directions equally, which amounts to implicitly
assuming that the underlying mobility tensor is isotropic, i.e.,
the mobilities are the same in all of the lattice directions,
μ ∼ I . Each lattice direction has then an even chance for
being considered as a candidate for the next Metropolis step.
However, as the above analysis brings out, a change in the
lattice spacing in one direction modifies the effective mobility
in that particular direction: with an increased density of lattice
sites, it takes a larger number of elementary Metropolis
steps to go a given distance. Therefore, if the density of
lattice sites is increased by a factor of N in the direction i,
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FIG. 1. (Color online) The effect of the discretization of the shape
space on the calculated fragment charge distribution is illustrated by
comparing the results of the Metropolis walk introduced in Ref. [1]
with those of the corresponding continuous process; the experimental
data [27,28] are also shown. Throughout, as in Ref. [1], the calculated
mass yields Y (Af ) have been transformed to charge yields by a simple
scaling, Y (Zf ) = (A0/Z0)Y (Af ), where Z0 and A0 are the charge and
mass numbers of the fissioning nucleus. The odd-even staggering
seen in the data is due to pairing and this effect is not present in the
potential-energy surfaces because existing pairing models treat the
fissioning nucleus as a single system, even near scission.

then the corresponding mobility coefficient is decreased by
the factor N2, μi → μi/N

2. Conversely, to ensure that the
evolution of the transport process remains unaffected by the
increased density of lattice sites, the likelihood that the affected
direction is being considered as a candidate for the next step
must be increased by that factor. For example, if the density
of lattice sites in a particular direction is doubled, N = 2,
then the likelihood for considering that direction should be
increased from 1

5 to 22/(4 + 4) = 1
2 to achieve the same

evolution.
These features are illustrated in Fig. 2 for the same two

cases that were shown in Fig. 1. We consider the effect
of changing the lattice spacing in the I direction, which
corresponds to the overall elongation as quantified by the
quadrupole moment Q2. When the lattice spacing in the I

direction is decreased by a factor of three and the Metropolis
walk is repeated with no other change, then the resulting
fragment mass distribution is affected quantitatively, becoming
noticeably narrower. However, as suggested by the analysis
above, when the corresponding mobility is also increased by a
factor of nine (by favoring the consideration of the I direction
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FIG. 2. (Color online) The effect of changing the lattice spacing
for the Metropolis walk: The standard lattice [2] is modified in the
Q2 direction by introducing two additional lattice sites between
the original lattice sites, thus tripling the density of lattice sites in
that direction; subsequently, the likelihood for considering the Q2

direction as a candidate for the next step is enhanced by a factor of
nine (solid curve), which is seen to compensate exactly for the reduced
lattice spacing. Also shown are the experimental data [27,28].

correspondingly), the mass distribution reverts to its original
form.

The relative lattice spacings are thus intimately related to
the anisotropy of the effective mobility tensor. This basic
feature makes the Metropolis walks performed in Ref. [1]
seem somewhat arbitrary, because a different choice of lattice
spacing, without any compensating change in the mobility
coefficient, would generally lead to a different final result. It
is therefore important to employ a mobility tensor based on a
physically plausible form of the dissipation and to investigate
the sensitivity of the calculated mass distributions to that
specific structure. We now turn to this central issue.

III. INCLUSION OF DISSIPATION

As discussed above, the simple random walk introduced
in Ref. [1] is most easily justified if the dissipation tensor
is isotropic in the employed lattice variables. Since such an
idealized scenario is not likely to be realistic, we wish to study
the effect of using a more plausible dissipation tensor, which
is generally anisotropic and has a structure that varies from
one shape to another.

034613-5
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The potential energy of deformation, U (χ), was calculated
[2] on a lattice of shapes introduced by Nix [29,30]. As
described in Appendix B, each shape is composed of three
smoothly joined quadratic surfaces. These 3QS shapes are
characterized by the parameters q = {qμ}. While these are,
in principle, known functions of the lattice shape variables
χ = {χi}, they are readily available only at the discrete lattice
sites χ = (I, J,K,L,M).

The dissipation tensor can be determined from the rate of
energy dissipation Q̇, which is a positive definite quadratic
form in the shape velocities,

Q̇ =
∑
ij

χ̇i γij (χ) χ̇j =
∑
μν

q̇μgμν(q)q̇ν . (24)

The first form expresses Q̇ in terms of the lattice variables
{χi}, while the second form uses the 3QS parameters {qμ} so
gμν(q) is the friction tensor with respect to these variables (see
Appendix B). Once gμν(q) has been calculated (see below),
we may obtain the required dissipation tensor γ (χ) by the
appropriate transformation,

γij (χ) =
∑
μν

∂qμ

∂χi

gμν(q)
∂qν

∂χj

. (25)

We wish to determine γ (χ) at the various lattice sites, at which
the parameters {χi} have integer values and we approximate the
derivatives ∂qν/∂χn in terms of differences between the values
of qν at the neighboring sites. Although this is a relatively
rough approximation because the dependence of q on χ is
generally not linear, it will suffice for our present explorative
purposes.

In order to calculate gμν(q), we thus need to know
the dissipation rate Q̇(q, q̇). For that we employ the “wall
formula” for the one-body dissipation mechanism [7]. The
underlying mechanism is the reflection of individual nucleons
off of the moving surface, which generates a dissipative force
that is rather strong due to the nucleonic Fermi motion.
Because the individual nucleons reach the moving surface
at random times, and from random directions, the associated
force on the surface is stochastic, in accordance with the
fluctuation-dissipation theorem [23]. While this idealization
may not give a quantitative account of the actual dissipation
rate in a real fissioning nucleus, it does serve well as a means
to provide us with a mobility tensor that has a quasirealistic
structure.

In its simplest form, the one-body dissipation rate in a
deforming nucleus is given by the simple wall formula, Q̇ =
mρ0v̄

∮
ṅ(a)2d2a, where m, ρ0, and v̄ are the nucleonic mass,

density, and mean speed in the interior, respectively, while
ṅ(a) is the normal surface velocity at the location a [7,31]. It
is elementary to show [6] that the elements of the associated
dissipation tensor are given by

gμν = π

2
ρ0v̄

∫
∂ρ2(z)

∂qμ

∂ρ2(z)

∂qν

[
ρ2 + 1

4

(
∂ρ2

∂z

)2
]− 1

2

dz, (26)

where ρ(z; q) is the transverse extension of the nucleus at the
position z along the symmetry axis, for the specified values
of the 3QS parameters q. The required quantities, namely,

ρ2(z) and its derivatives with respect to both z and the shape
variables {qν}, can be expressed analytically for the 3QS shape
family [29] and so it is possible to calculate the elements of g
for each specified shape.

However, as explained in Appendix B, certain elements of
the dissipation tensor g may occasionally tend to zero (this
happens when one of the three quadratic surfaces covers a
negligible z interval so that this shrinking section ceases to
contribute to the dissipation). Of course, the corresponding
derivatives ∂qμ/∂χi diverge at the same time so the resulting
elements of γ remain well behaved. But, because it is
impractical, for the time being, to calculate those derivatives
with high accuracy, the calculation of γ is correspondingly
inaccurate, with some eigenvalues occasionally becoming
unrealistically small.

Fortunately, our main purpose is merely to study the
sensitivity of the calculated fragment mass distributions to the
structure of the dissipation tensor, and we therefore perform
the following isotropization procedure. If γ is the original
tensor, calculated as described above but renormalized so that
its five eigenvalues {γn} are one on average, i.e.,

∑
n γn = 5,

then we define a more isotropic tensor γ̃ by modifying the
eigenvalues,

γ̃ (f )
n ≡ γn + f

1 + f
, (27)

where the isotropization coefficient f is a positive number.
We see that the original friction tensor is recovered when f

tends to zero, while it approaches isotropy when f grows large.
The corresponding modified mobility tensor μ̃(f ) is then the
inverse of γ̃ (f ).

The sensitivity of the calculated charge yields to the degree
of structure in the mobility tensor is illustrated in Figs. 3
and 4 for the cases presented in Ref. [1]. In addition to the
experimental data, which are shown for reference, each plot
shows the result of three different mobility scenarios: the
idealized scenario (labeled f 1) where the mobility tensor
is isotropic, an intermediate scenario (f = 1) in which the
dissipation tensor is the average of the one calculated with
the wall formula as described above and the corresponding
directional average, and a more structured scenario (f = 0.2)
in which the isotropic admixture is only 20 %.

For the three neutron-induced cases, 239Pu(n,f) and
235,233U(n,f), the change in Y (Zf) is very small as one form
of the mobility tensor is replaced by another, with the most
noticeable change being a slight narrowing of the asymmetric
peaks for 233U(n,f). The photon-induced reactions, which
are all calculated for E∗ = 11 MeV, display a somewhat
larger sensitivity. Generally, as the idealized isotropic mobility
tensor grows more anisotropic, there is a tendency for the
symmetric yield component to become more prominent, but
the quantitative effect is relatively modest. It is particularly
noteworthy that the evolution from a symmetric yield for 222Th
to a mixed but predominantly asymmetric yield for 228Th
remains present in all the scenarios. When comparing with
these data, it should be kept in mind that they represent a range
of excitations (E∗ ≈ 8–14 MeV) and also are contaminated by
second- and third-chance fission.
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FIG. 3. (Color online) The charge yields for neutron-induced
fission of 240Pu and 236,234U calculated with increasingly isotropic
mobility tensors, as obtained by using Eq. (27) with f = 0.2, 1, ∞
(the latter is fully isotropic and has been indicated as f  1), together
with the experimental data [27,35]. Those in the top three panels are
for (nth,f) reactions [27], while the data in the bottom panel is for (γ ,f)
reactions leading to E∗ ≈ 8–14 MeV; they include contamination
from multichance fission [28].

IV. DISCUSSION

We now discuss a number of interesting aspects that can be
elucidated with the present treatment.

The choice of shape degrees of freedom made in Ref. [2],
and of the specific 5D shape lattice used for the calculations
of the potential energy, was guided in large part by physical
intuition (using the somewhat vague but reasonable criterion
that the typical energy change between neighboring sites
should be of comparable magnitude). Our present studies
suggest that this lattice of nuclear shapes was indeed well
chosen, because the simple Metropolis walks provide mass
yields that are changed only moderately when a more refined
treatment is made. Because the actual mobility tensor is not
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FIG. 4. (Color online) The charge yield for thorium isotopes
calculated with increasingly isotropic mobility tensors, as obtained
by using Eq. (27) with f = 0.2, 1, ∞ (the latter being fully isotropic),
together with the experimental data obtained with (γ ,f) reactions
leading to E∗ ≈ 8–14 MeV; they include contamination from
multichance fission [28].

yet well known, it would seem prudent to employ a range of
mobility scenarios. The spread among the results might then be
taken as a rough indication of the uncertainty in the prediction.

Furthermore, on the basis of our studies, it appears that
the Metropolis walk, which is significantly faster than the
Smoluchowski simulation (by one to two orders of magnitude),
offers a very quick and easy means for obtaining practically
useful fission-fragment mass distributions.

A. Shape family

We start by illustrating the importance of employing a
shape family that has a sufficient degree of flexibility. For
that purpose, we construct three-dimensional potential-energy
surfaces by minimizing the full five-dimensional 3QS surfaces
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FIG. 5. (Color online) Charge yields resulting from Metropolis
walks on the 5D potential-energy surfaces associated with the 3QS
shape family, together with the corresponding results obtained with
3D surfaces generated by minimizing the 5D surfaces with respect to
the individual fragment deformations, εf1 and εf2. Also shown are the
experimental data [27,28].

with respect to the deformations of the two spheroids, εf1 and
εf2 (corresponding to the lattice indices K and L). Thus the
shapes in the lower-dimensional space are characterized by
only their overall elongation (represented by the lattice index
I ), their constriction (represented by the lattice index J ), and
the degree of reflection asymmetry (represented by the lattice
index M).

Figures 5 and 6 show the resulting charge distributions for
the cases presented in Ref. [1], together with the experimental
data and our standard results based on the full 5D 3QS
shape family. We see that although the 3D calculations
occasionally reproduce the qualitative appearance of Y (Zf)
reasonably well, the reproduction of the experimental data is
generally far inferior to the results obtained with the 5D shape
family.
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FIG. 6. (Color online) Similar to Fig. 5, but for fission of the
isotopes 222,224,226,228Th; the data are from Ref. [28].

These examples demonstrate that it is important to employ a
sufficiently rich family of shapes when seeking to describe the
shape evolution during nuclear fission. To obtain a reasonably
flexible family of shapes, at least five shape degrees of
freedom appear to be required, namely, overall elongation,
constriction, reflection asymmetry, and deformations of the
individual prefragments.

B. Saddle shape

Because our calculational method emulates the actual
equilibration process, it is possible to gain insight into the
shape evolution during fission. A particularly instructive case
is presented by 222Th: Our calculations yield a symmetric mass
distribution, in agreement with the experimental data, even
though they are based on a potential-energy surface whose
fission saddle point corresponds to a nuclear shape that is
reflection asymmetric.
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FIG. 7. (Color online) Three shapes relevant for fission of 222Th:
the outer potential-energy minimum (which is reflection symmetric)
where the fission isomeric state resides (top), the outer saddle which is
asymmetric (middle), and the most probable fragment division which
is symmetric (bottom).

The most relevant shapes are shown in Fig. 7. As the
shape evolves from that of the ground state, it tends to
pass nearby the second (isomeric) minimum and the nucleus
will typically remain trapped in that minimum for quite
some time before escaping, either back to the ground-state
region or toward scission. (For that reason, we usually start
our calculations at the second minimum, which reduces the
required computational effort very significantly; we have of
course checked that this does not alter the results.) As the figure
shows, the outer minimum of 222Th is reflection symmetric,
while the outer saddle lies in a region of significant asymmetry.
Nevertheless, the shapes evolve in such a manner that the final
fragment mass distribution is centered around symmetry.

More detailed insight into this evolution can be obtained
by considering the charge-asymmetry distribution at specified
values of the lattice index I , which is a measure of the overall
quadrupole moment of the fissioning shape, P (Zf ; I ). This
conditional distribution is shown in Fig. 8 for increasing
elongations, starting at the value associated with the second
saddle point, Isaddle = 20. Because it is energetically favorable
for the system to traverse the barrier with an asymmetry close
to that of the saddle shape, P (Zf ; Isaddle) is concentrated around
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FIG. 8. (Color online) The evolution of the mass-asymmetry
distribution from the region of the second saddle (I = 20) toward
scission is illustrated by the charge distribution P (Zf ; I ) for increas-
ing values of I (the lattice index giving the quadrupole moment Q2 of
the nuclear shape), as obtained for an ensemble of 10 000 Metropolis
walks.

that asymmetry. However, beyond the saddle, the preferred
asymmetry tends to become smaller (I = 24) and the asym-
metry eventually becomes peaked at symmetry (I = 28). As
the shape evolves further toward scission (I = 32), P (Zf ; I )
develops a minor asymmetric component that presumably
reflects the detailed (and possibly inaccurate) structure of
the potential-energy surface in the scission region (see the
discussion of the Wigner term in Sec. IV C).

This result invalidates the commonly made assumption
(see, e.g., Refs. [32–35]) that the character of the mass
distribution, whether symmetric or asymmetric, is determined
by the character of the saddle shape. In contrast, analyses
of the type illustrated in Fig. 8 suggest that the structure
of the potential-energy landscape in the entire region between
the isomeric minimum and scission plays a role in determining
the fragment mass distribution. Obviously, any plausible
model of the mass yields must take this into account.

C. Wigner term

The generality of our treatment makes it possible to exploit
the remaining differences between calculated results and
experimental data to gain novel insight into aspects of the
fission process that would not otherwise be readily accessible.
As an example, we consider the shape dependence of the
Wigner term in the macroscopic nuclear energy [36–41].

As mentioned above, the potential energies of Ref. [22]
were calculated as the sum of a macroscopic term and a
microscopic (shell) correction, both being shape dependent.
The macroscopic nuclear energy contains the so-called Wigner
term proportional to |N − Z|. Its presence is clearly visible in
the systematics of nuclear masses, which exhibit a V shape
near isosymmetry, but its microscopic origin is still not well
understood, so it is normally modeled as a phenomenological
macroscopic term. In commonly employed models for nuclear
masses [42,43], the Wigner term is usually introduced without
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a shape dependence. However, such an ansatz presents a
significant (but often ignored) problem in fission where a
single nucleus is transformed into two separate nuclei, with
each having its own Wigner term. (It is evident from the
phenomenological form of the term [38,39] that each fragment
must give a Wigner contribution similar to that of the original
nucleus.) Thus the Wigner term must double in magnitude
during the evolution from a single compound system to two
separated fragments, so, consequently, it must depend on the
nuclear shape.

The calculations of fission barriers in, for example,
Refs. [2,36,38] have since 1989 employed a postulated shape
dependence that relates the increase of the Wigner term to
the decrease in the amount of communication between the
two fragments due to the shrinking of the neck. The resulting
Wigner term changes gradually as the nuclear shape evolves
and affects the potential-energy landscape correspondingly (an
illustrative figure was given in Ref. [36]). However, it may
be argued that the change in the character of the fissioning
system from mononuclear to dinuclear occurs more abruptly
than implied by the currently prescribed shape dependence.
To elucidate the importance of the shape dependence of the
Wigner term, we have considered an alternate form in which
the term is kept constant up to the scission configuration, i.e.,
until the neck radius has shrunk below the specified critical
value c0.

In Fig. 9, we illustrate how such a modification of the cal-
culated potential-energy surface affects the calculated charge
distribution of 226Th, for which the impact is particularly
noticeable. There are two significant differences between the
results of the two sets of calculations. One is a change in the
relative importance of symmetric and asymmetric fission, with
the constant Wigner term leading to more asymmetric yield.
The other is a shift in the location of the asymmetric yield
peaks, from being several units on the outside of the observed
values toward a better agreement with the data. Both effects
depend significantly on the structure of the mobility tensor
and could, in principle, be of help in discriminating between
different models of the dissipation.

D. Level density

The microscopic part of the potential energy, δUsh(χ), is due
to the deformation-dependent variations in the single-particle
level densities in the effective field of the fissioning nucleus.
This structure also affects the dependence of the nuclear
temperature T on the excitation energy E∗. Because a change
of the local temperature affects the local diffusion rate but not
the drift rate, a change in T (E∗; χ ) may influence the evolution
of the shape distribution P (χ ).

In order to explore the importance of this effect, we replace
the standard Fermi-gas level-density parameter ãA ≡ A/e0 in
the formula E∗ = aAT 2 by a “shell-corrected” generalization
suggested by Ignatyuk [44],

aA(E∗; χ ) = ãA

[
1 + (1 − e−E∗/Edamp )

δUsh(χ)

E∗

]
, (28)
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FIG. 9. (Color online) The sensitivity of the charge yields to
the shape dependence of the Wigner term is illustrated for 226Th,
using either the standard potential-energy surface [2], in which the
Wigner term changes gradually as the shape evolves, or a modified
energy surface obtained with a Wigner term that remains constant
until scission occurs; the three panels show results calculated with
increasingly isotropic mobility tensors as obtained by using Eq. (27)
with f = 0.2, 1, ∞; the experimental data are also shown [28].

where Edamp characterizes the gradual dissolution of the
shell effects as the excitation energy is increased. We shall
use e0 = 8 MeV and Edamp = 18.5 MeV. At low excitation,
E∗ → 0, aA tends to ã[1 + δUsh/Edamp], while it approaches
ãA monotonically as E∗ is increased (when E∗  Edamp, the
exponential is close to zero and also δUsh/E

∗ < Edamp/E
∗ �

1, since |δUsh| < Edamp).
We have examined the effect of replacing the macroscopic

formula aA = A/e0 by the above microscopic expression (28).
On the whole, the calculated mass yields are remarkably
unaffected by this change, probably because each random
walk visits quite a large number of lattice sites, so the
shell effet, which tends to fluctuate, largely averages out.
The most noticeable effect occurs for the 234U(γ ,f) reaction,
where the use of the microscopic expression leads to more
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FIG. 10. (Color online) The charge yield for the 234U(γ ,f) reac-
tion extracted from Metropolis walks using either the macroscopic
expression for the level density, aA = ãA ≡ A/e0, with the standard
value e0 = 8 MeV and also e0 = 10 MeV, or the microscopic
expression (28); the experimental data are included [28].

yield in the symmetric region (where our standard calculation
underpredicts the yield). This case is shown in Fig. 10, where
we have also included the result of using the macroscopic
formula with a larger value of e0. Due to the relation E∗ =
aAT 2, this change causes the local temperature to increase and,
as a result, the symmetric yield is increased. As it turns out, the
effect of making this increase in e0 in the macroscopic formula
is practically identical to the effect of replacing amacro by amicro.

We wish to point out that our present studies do not
consider the effect of pairing, which may be included in a
simple approximate manner by backshifting the excitation
energy E∗(χ) by the pairing gap �(χ) when calculating
the local temperature T (χ ). Such an undertaking would
require knowledge of the shape-dependent pairing gap, �(χ).
While this quantity was of course calculated at each lattice site
when the potential-energy surfaces were generated [2], it was
not tabulated separately, so it is not presently available. We
must therefore leave this interesting issue for future study.

E. Scission model

As already recognized in the very earliest discussions
of fission theory [4,5], induced fission involves, as an
intermediate stage, the formation of a compound nucleus
in which the excitation energy is distributed among the
various degrees of freedom in a statistical manner. However,
the compound equilibrium is established only among those
relatively compact shapes that are situated inside of the fission
barrier, and the ensemble experiences a continual leakage as
some nuclei accidentally acquire a shape far enough beyond
the saddle point that they then undergo an irreversible evolution
toward scission. (Elementary phase-space estimates of the
leakage rate form the basis for the familiar transition-state
theory of fission.) Thus the resulting fission-fragment mass
distribution bears no particular relationship to the distribution
of the asymmetric modes of the compound-nuclear shapes.

Furthermore, because of the nonequilibrium nature of the
post-barrier evolution, there is no reason to expect that the
resulting mass distribution should have a statistical form.
Nevertheless, a variety of statistical scission models have been
studied. Indeed, models based on such considerations were
among the earliest developed [45,46] and, for each specific
case, the details can often be adjusted to yield reasonable
agreement with observed mass distributions. We wish to
illustrate the importance of the prescission shape evolution by
comparing our transport results with what a purely statistical
population of the scission shapes would yield.

The quality of scission model results relies on the specific
definition of the scission configurations (in our present 5D
shape space, these generally form a four-dimensional hyper-
surface), and they tend to be rather sensitive to the parameters
involved. Furthermore, such a scission hypersurface may con-
tain some configurations that are energetically favorable but
not dynamically reachable due to the presence of intermediate
ridges in the potential-energy landscape; purely statistical
considerations might then be qualitatively wrong. Such is
presumably the case, for example, in the recently reported
fission of 180Hg for which symmetric splits are strongly favored
by the energetics in the exit channel (and were thus widely
expected), but are most likely prevented dynamically by the
presence of a potential-energy ridge so that the fragment mass
distribution becomes asymmetric [47].

We wish to here bring out the contrast between the
considerable sensitivity of such scission-model results and
the remarkable robustness of the transport results when
the definition of the scission criterion is modified. For this
purpose, we define a four-dimensional scission hypersurface
as consisting of those shapes {χ̃} for which the neck radius
equals a specified value, c(χ̃ ) = csc, and we then assume
that these scission configurations are populated in proportion
to their statistical weight, W (χ̃) ∼ exp[−U (χ̃)/T (χ̃)]. As
in the transport calculations, we use the shape-dependent
temperature, which ensures that the statistical weight
drops rapidly to zero at the boundary of the energetically
accessible region of shapes, namely, those for which
U (χ) − Ugs � E∗.

For four representative cases, Fig. 11 shows the re-
sults of such scission-model calculations obtained for csc =
2.5, 2.0, 1.5 fm. In all cases, as csc is decreased through this
range, the character of the fragment mass distribution changes
qualitatively, from symmetric to asymmetric; the same is true
for the cases not shown. (We note that the particular value
csc = 2.0 fm happens to yield a quite reasonable reproduction
of the various data sets, but the large sensitivity of P (Af ) to
csc suggests that no significance should be ascribed to this.)

For comparison, Fig. 12 shows the corresponding results
obtained with the simple Metropolis walk introduced in
Ref. [1], for the same values for the critical neck radius c0. The
extracted fragment mass distributions are remarkably robust
against the changes in c0. These results demonstrate that it is
not primarily the energetics in the scission region that deter-
mines the mass split, but rather the broader potential-energy
landscape encountered by the shape during its prescission
evolution.
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FIG. 11. (Color online) Results of our scission model (see
text) for 240Pu and 222,224,228Th for the scission neck radii csc =
2.5, 2.0, 1.5 fm, together with the corresponding experimental data
[27,28].

When comparing Figs. 11 and 12, it is important to
appreciate the different meanings of c0 and csc. The former is
that value of the neck radius at which the transport calculation
is terminated; since the mass asymmetry cannot change
very rapidly when the neck is so small, the extracted mass
distribution is not very sensitive to the specific value used (and
the employed values are not indicative of where the system
actually scissions, but rather of where the mass asymmetry
is effectively frozen in). By contrast, csc is that value of the
neck radius for which the statistical weights are calculated; as
demonstrated, the relative values of these weights are rather
sensitive to the specified value of csc.

V. CONCLUDING REMARKS

Generally, calculations of the type discussed here pertain
to the idealized limit of strongly damped motion where the
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FIG. 12. (Color online) Results of the Metropolis walk [1] for
the cases shown in Fig. 11, obtained with the same values of the
critical neck radius c0, together with the corresponding experimental
data [27,28].

inertia plays no role. The evolution of the nuclear shape is then
akin to Brownian motion. Whether in fact the shape evolution
during fission has such a character is still an open question, but
we believe that this simple limit provides a useful reference
scenario.

In a first exploration of this physical picture, it was
recently shown that simple random walks on five-dimensional
potential-energy surfaces lead to remarkably good agreement
with experimental data on fission-fragment mass distributions
[1]. We have examined this method in depth, studying the
importance of a number of effects that could be expected to
influence the results.

First we generalized the discrete random walk on the
fixed lattice sites where the potential energy is available to
a continuous diffusion process, thus enabling an assessment
of the importance of the finite lattice spacing. We found that
there is typically little difference between the results of the two
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treatments, although we observed some deviations in certain
limited regions.

Such a simple random walk, whether discrete or continuous,
is physically reasonable only if the dissipation tensor happens
to be isotropic in the particular shape variables employed,
which is generally not expected to be the case. This important
feature was illustrated by studying the effect of inserting
additional sites between the standard lattice sites, which
reduces the mobility in the affected direction.

The main objective of the present study is therefore to
elucidate how the results of the idealized treatment may change
when a more realistic dissipation tensor is employed. For
this purpose, we adopted the dissipation tensor suggested by
the simple one-body dissipation wall formula and introduced
an isotropization procedure, which allowed us to examine a
continuum of scenarios ranging from perfect isotropy (cor-
responding to the idealized random walks discussed above)
to the relatively large degree of anisotropy displayed by
the calculated friction tensors. Generally, we found that the
resulting fragment mass distributions are rather insensitive to
the degree of anisotropy, except, in certain cases only, for
rather extreme anisotropies that are probably unrealistic and
may arise from certain numerical problems.

We then examined a number of additional relevant aspects.
First we demonstrated the importance of using a sufficiently
rich family of shapes by comparing results based on the full
5D potential-energy surfaces with analogous calculations in
a reduced 3D deformation space obtained by constrained
minimization. The importance of using sufficiently flexible
shapes was borne out in particular by the isotope 222Th whose
mass yield is symmetric even though the outer saddle shape is
asymmetric.

As an example of the potential of the present method for
elucidating novel aspects of nuclear properties, we examined
the sensitivity of the calculated mass distribution to the
character of the deformation dependence of the Wigner term
in the macroscopic energy functional. Specifically, it was
demonstrated for 226Th that when the previously employed,
rather gradual shape dependence is replaced by a more
abrupt transition from the mononucleus to the dinucleus, the
symmetric component of Y (Zf) is reduced and its asymmetric
peaks move toward better agreement with the experimental
data.

We also examined the effect of taking account of the
deformation-dependent bunchings in the single-particle level
densities which affect the energy dependence of the tempera-
ture for a given shape and thus the local diffusion rate relative
to the drift. The calculated mass yields are relatively unaffected
by this refinement, except for a favorable shift in the amount
of nearly symmetric mass splits, but it should be kept in mind
that the effect of the (presently unavailable) shape-dependent
paring gap is still left for future study.

Finally, the importance of the prefission shape evolution
was brought out by comparisons of the robust transport results
with the parameter-sensitive mass distributions arising from a
statistical population of the scission configurations.

For some of the cases considered here, most notably
239Pu(n, f), the calculations reproduce the experimentally
observed yields very well and are rather robust with respect

to model variations, such as changes in the mobility tensor.
Hence, for the comparisons with data to be informative, it
appears to be important to examine also cases that exhibit
larger sensitivity, such as the thorium isotopes.

The formal framework for the present treatment is consid-
erably simpler than that used in a conventional Langevin-type
dynamical treatment. Accordingly, the information that can be
extracted is correspondingly reduced. The key assumption of
strong dissipation allows us to neglect the inertial masses and
this in turn reduces the equation of motion from second to first
order in time. The resulting transport equation pertains to the
limit of creeping motion and thus provides only the path of
the fissioning nucleus in the shape space, rather than its full
temporal evolution. While this limited information suffices
for the extraction of the fragment masses, it is unsuitable for
obtaining kinetic energies.

In conclusion, our studies suggest that the simple Metropo-
lis walk [1] on the previously calculated potential-energy
lattice [2] indeed presents a useful calculational tool for
obtaining the approximate form of fission-fragment mass
distributions for a large range of nuclei. For more accurate
results, it is necessary to invoke also the dissipative features
of the shape evolution as represented by the shape-dependent
mobility tensor. The shape evolution then resembles Brownian
motion in an anisotropic (and nonuniform) medium. However,
because the dissipation mechanism is not yet as well under-
stood as the potential energy, we propose to make a series
of calculations with mobility tensors that display different
degrees of anisotropy and then use the ensuing spread in the
results as an indication of the uncertainty of the predicted mass
yield. The results obtained in this manner are often remarkably
robust. Consequently, the method may be of practical use for
calculating fission-fragment mass distributions for any of the
thousands of nuclei for which the required 5D potential-energy
surface is already available.
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APPENDIX A: LATTICE INTERPOLATION

The nuclear shapes are characterized by the five shape
parameters {χn} = (χ1, χ2, χ3, χ4, χ5), which are collectively
denoted by χ . But the potential energy of deformation, U (χ),
is known only on a five-dimensional Cartesian lattice on
which the shape parameters take on the integer values X =

034613-13
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{Xn} = (I, J,K,L,M), whose ranges are given in Ref. [2].
(We use X to denote a capital χ .) We describe here how
the potential energy for arbitrary χ values can be obtained
by pentalinear interpolation, i.e., an interpolation scheme that
yields a function U ({χn}) that is linear in each of the five
variables χn inside each elementary hypercube. [The resulting
function is identical to the Taylor expansion around the “lower-
left” hypercube corner, X = (I−, J−,K−, L−,M−), keeping
only terms of first order in each variable and approximating
all derivatives by the corresponding central differences.]

We assume that the given shape parameter χ lies within
the domain covered by the lattice and start by identifying the
surrounding elementary hypercube. Its 32 corners are given
by the indices (I±, J±,K±, L±,M±), where X−

n = [χn] (i.e.,
the integer part of χn) and X+

n = X−
n + 1, so X−

n � χn < X+
n

for n = 1, . . . , 5. In a single dimension, the interpolated value
would be

U (χ ) = U (X−)(X+ − χ ) + U (X+)(χ − X−), (A1)

so we may readily generalize to five dimensions,

U (χ) =
∑
ijklm

ijklm U (I−i, J−j, K−k, L−l,M−m)

×(I i − χ1)(J j − χ2)(Kk− χ3)(Ll− χ4)(Mm− χ5),

(A2)

where the summation indices each take on the values ∓1. It is
easy to verify that this is indeed correct: Within the local hyper-
cube (within which χ is located), the above expression is linear
in each of the five χ variables and it yields the correct matching,
because when χ coincides with a lattice site, χ = X =
(I, J,K,L,M), then I− = I, · · · ,M− = M , so X−

n − χn = 0
and X+

n − χn = 1, so only the term with i = +1, . . . , m = +1
contributes, yielding U (χ) = U (I, J,K,L,M).

The driving force F = −∇U (χ) can be obtained by taking
the derivative of the above expression (A2). Thus,

F1(χ) = −
∑
ijklm

ijklm U (I−i, J−j, K−k, L−l,M−m)

×(J j − χ2)(Kk− χ3)(Ll− χ4)(Mm− χ5), (A3)

and analogously for the other four directions. Thus, within the
local hypercube, the force component Fn does not depend on

χn, as is consistent with the fact that the potential is locally
linear in χn.

A similar scheme is used to calculate other quantities
for arbitrary shapes, such as the neck radius c(χ) and the
dissipation tensor γ (χ).

APPENDIX B: 3QS SHAPE FAMILY

The three-quadratic-surface shape family introduced by Nix
[30] consists of axially symmetric shapes for which the square
of the local radial distance ρ(z) to the surface is given by three
smoothly joined quadratic surfaces,

ρ2(z) =

⎧⎪⎨
⎪⎩

a2
1 − (

a2
1/c

2
1

)
(z − �1)2, �1 − c1 � z � z1,

a2
3 − (

a2
3/c

2
3

)
(z − �3)2, z1 � z � z2,

a2
2 − (

a2
2/c

2
2

)
(z − �2)2, z2 � z � �2 + c2.

(B1)

Thus nine numbers are required to specify the nuclear surface.
Two of these are eliminated due to the continuity of ρ(z) and its
derivative at z1 and z2, and the length parameter u = [ 1

2 (a2
1 +

a2
2)]1/2 governs the overall scale. The remaining six numbers

are then determined by six dimensionless shape parameters
{qν},

σ1 = �2 − �1

u
, σ2 = a2

3

c2
3

, σ3 = 1

2

(
a2

1

c2
1

+ a2
2

c2
2

)
, (B2)

α1 = �1 + �2

u
, α2 = a2

1 − a2
2

u2
, α3 = a2

1

c2
1

− a2
2

c2
2

. (B3)

Furthermore, if the shapes are required to have a given
center of mass, then the parameter α1 is determined once the
other five have been specified. All the shapes in the IJKLM

lattice have their center of mass at the origin, which effectively
reduces the six-dimensional {qν} space to the five-dimensional
shape space covered by the IJKLM lattice.

For the evaluation of the dissipation tensor γμν , we need
the derivatives ∂ρ2/∂qν as well as ∂ρ2/∂z which, though
somewhat involved, can be expressed analytically [29].

The 3QS family includes shapes for which one of the three
segments covers only a negligible z interval. The contribution
from such a segment to the dissipation rate is then also
negligible and, as a result, so are the associated elements
of the dissipation tensor. These singularities are numerically
inconvenient and must be addressed.
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