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Unified description of nuclear stopping in central heavy-ion collisions from 10A MeV to 1.2A GeV
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A detailed analysis of the wide excitation function of nuclear stopping has been conducted within a transport
model, isospin-dependent quantum molecular dynamics model, and an overall good agreement with the INDRA
and FOPI Collaborations’ experimental data has been achieved. It is found that the mean value of isotropy in
central heavy-ion collision (HIC) reaches a minimum near-Fermi energy and approaches a maximum at around
300–400A MeV. This suggests that, in statistical average, the equilibration is far from being reached, even in
central HIC especially near Fermi energy. A hierarchy in the stopping of fragments, which favors heavy fragments
to penetrate, provides a robust restriction on the global trend of nuclear stopping and could serve as a probe for
nuclear equations of state.
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I. INTRODUCTION

The equation of state (EOS) of nuclear matter and its
transport mechanisms are the focus of heavy-ion collisions
(HICs) during the past three decades [1–8]. Before the
early 1980s, hydrodynamics approaches based on the local
equilibration postulate were provided to extract the EOS
information from experimental observables [9]. The discovery
of collective flow seems to confirm these approaches and their
corresponding equilibration conditions. With the development
of microscopic transport theories, it is found that the local
equilibration postulate is not indispensable. Actually, near
Fermi energy, both statistical and dynamical models which
are based on very different, even contradictory mechanisms
can predict the same multifragmentation phenomenon [10].

During the central HIC process, nuclear stopping governs
most of the dissipated energy and constrains the different
reaction mechanisms at different incident energies. It can
provide information on the EOS, nucleon-nucleon (N-N)
cross section, and the degree of equilibrium reached in HIC
[11–20]. Recently, the INDRA and ALADIN Collaborations
investigated event-by-event nuclear stopping in central HICs
at intermediate energies by a 4π multidetector [12]. In the
experiment [12] a striking minimal stopping at 40A MeV
(Fermi energy) for a Xe + Sn system was observed. These
experimental results have the potential to provide important
information about the properties of the nuclear matter and to
discover critical clues for the entire dynamical process during
HIC. In a previous comparison between experimental results
and an isospin-dependent quantum molecular dynamics model
(IQMD) simulation [13], a significant difference between
them was observed. In the experiment [12], below 70A MeV
the authors show experimental data far below the IQMD
simulation results and argue that the IQMD model overpredicts
nuclear stopping power at low energy. However, before
comparing the experimental results quantitatively with those
of the transport model, two important ingredients should be
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carefully considered. One is the difference between nucleon
phase space (the momentum and positions ensemble of all
nucleons) and fragment phase space (the momentum and
positions ensemble of all fragments) in IQMD, and the other
is the criterion of centrality in the experiment. After these two
elements are factored in, we find that the nuclear stopping
could serve as a potential probe for determining the nuclear
EOS.

This article is organized as follows: After introducing some
details on the IQMD model in Sec. II, two relevant factors are
reconsidered in Sec. III: one is the difference between nucleon
phase space and fragment phase space, and the other is the
mixing of impact parameter. Then we compare the simulation
results of IQMD with the INDRA Collaboration’s experiments
near Fermi energy as well as the FOPI Collaboration’s at higher
energy in Sec. IV. A summary and conclusions are given in
Sec. V.

II. ISOSPIN-DEPENDENT QUANTUM MOLECULAR
DYNAMICS MODEL

The quantum molecular dynamics (QMD) [21] model is an
n-body theory to predict the behavior of HIC at intermediate
energies on an event-by-event basis. The IQMD [22,23] model,
as inherited from the QMD model, considers various aspects
of the isospin effects: the differing density distributions for
neutrons and protons, the asymmetry potential term in a
mean field, the experimental cross section for nucleon-nucleon
interaction (σnp ≈ 3σpp, σpp = σnn), and Pauli blocking for
neutrons and protons separately. As in QMD, each nucleon
wave function is represented as a Gaussian form in IQMD,
which is defined as

φi(�r, t) = 1

(2πL)3/4 exp

(
− [�r − �ri(t)]

2

4L

)
exp

(
− i�r · �pi(t)

h̄

)
.

(1)

Here L is the width parameter for the Gaussian wave packet,
which is found to be dependent on the size of the reacting
system, to constrain the stability of the system. We use
L = 2.16 fm2 for the Xe + Sn system. The �ri(t) and �pi(t)
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are the position and momentum coordinates of the nucleon.
By performing the variation method, equations of the time
evolution of the mean position �ri(t) and momentum �pi(t) are
found to be well-known Hamilton equations of motion,

�̇pi = −∂〈H 〉
∂�ri

and �̇ri = ∂〈H 〉
∂ �pi

, (2)

where 〈H 〉 is the Hamiltonian of the system. So now the
problem is to calculate the Hamiltonian of the system.

After applying the Wigner transformation to the single-
nucleon wave function, one can get the Wigner distribution
function to describe a single nucleon density in phase space,
defined as

fi(�r, �p, t) = 1

π3h̄3 e−[�r−�ri (t)]2 1
2L e−[ �p− �pi (t)]2 2L

h̄2 , (3)

and the total density of the system is the sum over all the
nucleons.

Then we can get the total Hamiltonian in the IQMD model

〈H 〉 = 〈T 〉 + 〈V 〉, (4)

where the mean-field part is

〈V 〉 = 1

2

∑
i

∑
j �=i

∫
fi(�r, �p, t)

×V ijfj (�r ′, �p ′, t) d�r d�r ′d �p d �p ′. (5)

In the QMD model, the two-body potential interaction contains
the Coulomb interaction and the real part of the G matrix.
The later one can be divided into three parts: the contact
Skyrme-type interaction, a finite-range Yukawa potential,
and a momentum-dependent interaction (subscript mdi) part.
Mathematically, the two-body potential interaction can be
written as

V ij = Gij + V
ij

Coul

= V
ij

Skyrme + V
ij

Yuk + V
ij

mdi + V
ij

Coul

= t1δ(�xi − �xj ) + t2δ(�xi − �xj )ργ−1(�xi)

+ t3
exp{−|�xi − �xj |/μ}

|�xi − �xj |/μ

+ t4ln2[1 + t5( �pi − �pj )2]δ(�xi − �xj ) + ZiZje
2

|�xi − �xj | , (6)

where Z is the charge of the baryon, and t1... t5 and μ are
the parameters to fit the real part of the G matrix and the
properties of nuclei. For the IQMD model, one additional part,
the symmetry potential V

ij
sym, is added to take into account the

isospin effects. The total potential in IQMD is then written as

V ij = V
ij

Skyrme + V
ij

Yuk + V
ij

mdi + V
ij

Coul + V ij
sym, (7)

where the symmetry potential is

V ij
sym = t6

1

ρ0
T3iT3j δ(�ri − �rj ), (8)

with t6 = 100 MeV for fitting the Bethe-Weizsäcker mass
formula, T3 is the isospin third projection, and ρ0 is the nuclear
saturation density (0.16 fm−3).

We focus on the Skyrme potential and the momentum-
dependent potential, due to their special connection to nuclear
EOS.

One can fulfill the calculation for the Skyrme potential
and momentum dependence in Eq. (5) by introducing the
interaction density,

ρi
int(�ri) = 1

(4πL)3/2

∑
j �=i

e−( �ri− �rj )2/(4L). (9)

The momentum-dependent potential, which may be optional
in QMD and IQMD, is parameterized with the experimental
data and can be written as

Umdi = δln2[ε (
 �p)2 + 1]

(
ρint

ρ0

)
, (10)

where δ = 1.57 MeV and ε = 500 (GeV/c)−2 are taken from
the measured energy dependence of the proton-nucleus optical
potential [24] and ρint = ∑

ρi
int(�ri).

The Skyrme potential is

USkyrme = α

[
ρint

ρ0

]
+ β

[
ρint

ρ0

]γ

, (11)

where α, β, and γ are the Skyrme parameters, which connect
tightly with the EOS of bulk nuclear matter. After fitting
the minimum binding energy and the compressibility at the
saturation density, one can get the parameters. The nuclear
compressibility, which is the second derivative of the energy
at the minimum with respect to the density, is expressed as

κ = 9ρ2 ∂2

∂ρ2

(
E

A

)
, (12)

where κ = 200 MeV means soft EOS, while κ = 380 MeV is
for hard EOS. See Table I for the Skyrme sets of parameters
for different EOS.

The other terms can be also calculated by applying the
convolution of the interaction with the Wigner distribution
function. After all the potential terms are determined, one can
solve the equations of motion of the baryons. For the mesons,
only Coulomb force is considered.

For the collisions, IQMD uses the experimental cross
section which shows the isospin effects and nuclear medium
effect [22]. To consider the fermion property, Pauli blocking
is also adopted after the collisions.

IQMD treats the many-body state explicitly, contains
correlation effects to all orders, and deals with fragmentation

TABLE I. Parameter sets for the nuclear equation of state used
in the QMD model. S and H refer to the soft (compressibility
κ =200 MeV) and hard equations of state (compressibility κ =
380 MeV), and M refers to the inclusion of momentum-dependent
interaction. The results are taken from [22].

α (MeV) β (MeV) γ δ (MeV) ε
(

c2

GeV2

)

S −356 303 1.17 — —
SM −390 320 1.14 1.57 500
H −124 71 2.00 — —
HM −130 59 2.09 1.57 500
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and fluctuation of HICs naturally. To recognize fragments
produced in HICs, a simple coalescence rule is used with
the criteria 
r = 3.5 fm and 
p = 300 MeV/c between
two considered nucleons. Thus, nucleons dominated in Fermi
motion will be constrained in the fragments.

III. DIFFERENCE BETWEEN NUCLEON PHASE SPACE
AND FRAGMENT PHASE SPACE AND IMPACT

PARAMETER MIXING

To describe nuclear stopping power, the ratio of transverse
to parallel quantities is used in the experiment [12]. One
definition is the energy-based isotropy ratio RE ,

RE =
∑

Eti

2
∑

Eli

, (13)

where Eti(Eli) is the transverse (parallel) kinetic energy in
center of mass system (c.m.) the sum runs over all products
event by event. One can expect RE = 1 for isotropy or full
stopping, RE < 1 for partial transparency, and RE > 1 for
superstopping. Another definition is Rp,

Rp = 2
∑ |pti |

π
∑ |pli | , (14)

where momenta are used instead of energies. However, they
are actually the different forms of physics realization of the
classical Maxwell distribution assumption.

At low energy, two-body collision between nucleons is
greatly suppressed by Pauli blocking and the mean field
governs the HIC process. At the freeze-out stage, the motion
of a large portion of nucleons is limited in certain fragments,
in which Fermi motion dominates over the others, while at
higher energy, two-body collision plays the dominant role
and most of the nucleons suffer violent collisions and get
excited to become free. In this case, the fragment phase space
tends to get closer to the nucleon phase space. In previous
IQMD simulation by Liu et al. [13], the nuclear stopping was
investigated from nucleon phase space at intermediate energy,
where the isotropic Fermi motion still plays a large role. In
comparison with the experimental data of the stopping, the
fragment phase space should be applied at intermediate energy
within the IQMD model rather than nucleon phase space.

In Fig. 1 we show the results of stopping, defined as
the ratio of transverse momenta to parallel momenta Rp, in
nucleon phase space and fragment phase space, respectively.
The scaled impact parameter bred < 0.1 (bred = b/bmax) is
adopted, with bmax = 1.12(A1/3

P + A
1/3
T ) fm, where AP and AT

are the mass of projectile and target, respectively. Apparently,
stopping calculated in nucleon phase space almost reaches
the saturated value, just like Liu’s situation [13]. While in
the case of fragment phase space, stopping is far below the
saturated value and gets closer to the experimental value.
This underlies that, at low incident energy, nuclear stopping
obtained from fragment phase space is more sensitive as
compared to the nucleon phase space and tends to fill the
gap between theory and experimentation. At higher incident
energy (above 100A MeV), the difference between stopping
presented in nucleon phase space and fragment space in IQMD

 (MeV/nucleon)beamE
50 100 150

P
R

0.6

0.8

1

1.2
IQMD Nucleon Phase Space

IQMD Fragment Phase Space

INDRA experiment

FIG. 1. (Color online) Comparison between experimental stop-
ping values [12] (black points) and predictions of IQMD calculation
in nucleon phase space (red open circles) and fragment phase space
(blue up triangles) for central 129Xe + 120Sn collision. The two lines
are for guiding the eyes. IQMD adopts the hard EOS and bred < 0.1.

tends to be smaller. However, a minimum stopping with value
0.70 at about 55A MeV is shown in IQMD, compared with
a value of 0.68 at 40A MeV in experiments. This difference
may come from the different criteria of centrality between the
IQMD and experiment.

To avoid autocorrelations, total charged particle multiplicity
(Nch) in the experiment [12] is chosen as the criterion of the
centrality. However, the largest Nch does not mean the highest
centrality, due to event-by-event fluctuation. On one hand,
Nch gets saturated at a certain centrality and then central
and near-central HIC provide similar Nch values. On the
other hand, due to the dynamical fluctuation, Nch at certain
centralities presents a broad distribution. Thus, the HIC at
different centralities may very likely share the same Nch. Hence
if Nch is adopted for the criterion of the centrality, it is expected
that the impact parameters will suffer a great mixing and cover
a wide range, which will decrease the stopping power and
increase the fluctuation of the HIC system greatly.

We now use the IQMD model to elucidate the impact
parameter mixing situation. In the experiment [12], a typical
cross section of 50 mb for the most total charged particle
multiplicity is taken for all HIC systems. Within the IQMD
model, we calculate the mean Nch and its width at head-on
collision (bred = 0). Then a low limit is set as the mean
Nch with its half-width off. In Fig. 2(a), the IQMD model
reproduces well the experimental results of the INDRA and
ALADIN Collaborations [12], except giving a little higher
Nch. (Note that the experimental filter is not used in the present
calculation.) The red dashed line at Nch = 44 is the low limit
for central collision in the IQMD, which is comparable with
Nch = 36 in the experiment. In Fig. 2(b), a mean value of
stopping (RE) at around 0.6 − 0.7 is observed in the exact
central collision, which has a decreasing trend with the increase
of impact parameter. When the cut Nch = 44 is applied, there
is a broad distribution of impact parameter in Fig. 2(d), and
a lower mean value of stopping at about 0.56 with a width
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FIG. 2. (Color online) IQMD simulation with the hard EOS for
129Xe + 119Sn collisions at 50A MeV. (a) Bidimensional correlation
plot between the mean value of stopping and the total charged
particle multiplicity, same as Fig. 1(b) in Ref. [12]. (b) Bidimensional
correlation plot between the mean value of stopping and impact
parameter. (c) Distribution of RE for central collisions. (d) Same
as (b), but with central collision cut.

of about 0.42 in Fig. 2(c), which is comparable with a mean
value of 0.56 with a width of 0.47 in the experiment [12]. In
this context, a better criterion of centrality should be provided
to reduce the probability of impact parameter mixing at low
energies.

IV. RESULTS AND DISCUSSION

Taking the above two key ingredients into account, we can
compare the experimental results with those of the IQMD
quantitatively. To have a broad view of the nuclear stopping, a
systematic simulation of 129Xe + 120Sn is made in very central
HIC (bred < 0.15) from 10A MeV to 1.2A GeV to cover most
of the intermediate energy range, where our results can be
compared with the recent INDRA and FOPI data [11,17].

It should be noted that related but different definitions of
stopping are adopted by the INDRA [12] and FOPI [11,17,19]
Collaborations, respectively. The event-by-event stopping
(event level), defined as the ratio of transverse to parallel
kinetic energies, was adopted by the INDRA and ALADIN
Collaborations (i.e., RE). The ratio of the variances of the
transverse to those of the longitudinal rapidity distribution of
fragments (fragment level) is taken in the case of the FOPI
experiment:

vartl = (
yt )2

(
yl)2
. (15)

Despite this, they both still show the global stopping power
of central HIC. When a full stopping stage (likely to be in
equilibration) is reached, both RE and vartl are required with
a unit value.

Now we compare our results with the INDRA experiment.
The central (bred < 0.15) collision of 129Xe +120Sn, at incident
energy 50A MeV, is taken as an example. The time evolution

t(fm/c)
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E
R

0

0.2

0.4

0.6

0.8

1

1.2

1.4
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<0.15
red

Sn@50AMeV, b120Xe+129

INDRA

FIG. 3. (Color online) Energy-based stopping values evolution
with time for 129Xe + 120Sn at 50A MeV and bred < 0.15 in IQMD
(open symbols) and experimental data (solid line) [12]. Circles,
squares, up-triangles, and down-triangles represent our calculations
with the hard (H), the soft (S), the hard with MDI (HM), and the soft
with MDI (SM) for EOS, respectively. The horizontal line represents
the measured result by the INDRA Collaboration (not for the time
evolution).

of the stopping (defined in RE) for various EOS are shown
in Fig. 3. The stopping for different EOS presents the same
trend. The stopping rises at the early compression stage, drops
down at the following expansion stage, and becomes stable
after the system reaches the freeze-out. This is consistent
with the results from works of [13] and [14], which are in
nucleon phase space. However, the stopping power shows EOS
dependence. The hard EOS shows higher stopping than the
soft EOS, during the whole time evolution. This is because the
hard EOS nuclear matter is harder to compress than the soft
one. When compressed from the longitudinal direction, the
hard EOS nuclear matter will squeeze out more than the soft
one through transverse expansion. The momentum-dependent
force decreases the stopping power of the system, which may
result from its repulsive nature and an increase in the mean-free
path [24]. At this incident energy, the INDRA experimental
result seems to support the soft EOS.

Here the time adopted in IQMD for the freeze-out stage
is 200 fm/c. For the case of low incident energy, the heavy
fragments may still stay at an excited state, which would the
de-excite themselves by emissing free nucleons, light charged
particle (LCP), and γ rays at the later stage. Based on this
consideration, some hybrid models, a dynamical one followed
by a statistical one, come into the play, such as AMD +
GEMINI [25–27] and HIPSE + SIMON [28], etc. They do
fit the experimental fragment distribution very well. At the
same time, the de-excitation procedure may also extend both
the transverse and longitudinal width of rapidity of the final
fragments, which smears the original stopping at the fragment
level. Especially, the big fragments at high excitation stages
will also emit free nucleons or LCPs, which will increase
the isotropy of the system. This might be very serious for
the lower-energy (�40A MeV) case because more heavy
fragments are left. As a compensation, the freeze-out time
is delayed from 200 to 300 fm/c (or even later), but no great
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FIG. 4. (Color online) Stopping and its width as a function of
incident energy with different EOS for central 129Xe + 120Sn collision
in IQMD (open symbols) and experimental data (solid circles) [12].
(a) Bidimensional plots show the distribution of RE . (b) The mean
value of stopping. (c) The width of stopping. (Note the widths of
experiment have been scaled by a factor of 0.75.) Circles, squares,
up-triangles, and down-triangles represent our calculations with the
hard (H), the soft (S), the hard with MDI (HM), and the soft with
MDI (SM) for EOS, respectively.

changes happen, except the intermediate mass fragment (IMF)
raises their stopping values a little higher. For higher energy
(�100A MeV), since very few heavy fragments exist, it is
not necessary to evolute the system with such a long time or
de-excite the system with a statistical process [29].

Figure 4 shows the excitation function of the mean value
of RE and its width σRE

for 129Xe +120Sn by using different
EOSs. In Fig. 4(a), the soft EOS with the compressibility
of κ = 200 MeV is taken to show the distribution of RE

with incident energies. In Figs. 4(b) and 4(c), the mean RE

and its width σRE
show the same trends, consistent with

the experimental results [12]. Scaled by 0.75, the width of
stopping in the experiment of INDRA is compared with the
simulation results. The broader widths in experiment could
come from the impact parameter mixing, as we have discussed
in Sec. II. For all of the considered energy range, the hard
EOS with κ = 380 MeV shows stronger stopping than the
soft EOS. The EOS with momentum-dependent interaction
(MDI) [24] tends to decrease the stopping at energy below
500A MeV. While the weight of MDI tends to vanish above
500A MeV. Near the Fermi energy, we also observe a minimum
of stopping with its minimal width for all EOS. The EOS with
MDI favors more penetration and consumes less energy to
reach the minimal stopping. The present experimental results
seem to favor the soft EOS around Fermi energy. This is
consistent with recent conclusions on the soft hadronic matter
based on Kaon spectral analysis at higher energy [6,7]. At
300 − 400A MeV, a maximum of stopping accompanied by
its maximal width is seen for all EOSs. This is comparable
to the recent experimental results of the FOPI Collaboration
[11,17,19].

The smaller size collision system 58Ni + 58Ni is also
investigated to see the stopping behavior, and similar behaviors
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FIG. 5. (Color online) Same as Fig. 4, but for the 58Ni + 58Ni
system. One more case (HM) is added in (c) to see the distribution
of RE .

are found in comparison with the case of 129Xe + 120Sn, except
that 58Ni + 58Ni shows lower stopping power. Again, note
that the INDRA data seems to support the soft EOS case
[Fig. 5(b)].

Figure 6(a) displays the atomic number (Z) hierarchy of the
degree of stopping at different fragment levels and different
incident energies. From small fragment Z = 1 with stopping
value 0.7 − 0.9 to an intermediate one Z = 10 with 0.1 − 0.2,
it is seen that the stopping power drops quickly as Z of the
fragment increases. A similar trend has been experimentally
observed Au + Au, Xe + CsI, and Ni + Ni central collisions
at 150A MeV, 250A MeV, and 400A MeV by the FOPI
Collaboration [11,19,30].

The hierarchies also show the incident energy dependence.
On the one hand, at 300A MeV [open diamond in Fig. 6(a)]
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FIG. 6. (Color online) Stopping hierarchy in IQMD with the
soft EOS for central 129Xe + 120Sn collision. Four energy points,
namely, 40, 100, 300, and 1200A MeV, are investigated. (a, c)
Z-dependent stopping at the fragment level and the yield of fragments
(scaled by Z = 1), respectively. (b, d) Bidimensional distributions
of transverse and longitudinal rapidity for different fragments at
40A MeV, respectively.
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the fragments show stronger stopping than those at the others,
which is consistent with the maximum event-level stopping
at the same energies in Fig. 4. This may suggest a state
close to equilibration. On the other hand, at 40A MeV [open
square in Fig. 6(a)] where the stopping at event level reaches
a minimum [Fig. 4(b)], the stopping at fragment level does
show its corresponding smallest value. At this incident energy,
most of the nucleons are confined in certain fragments, which
also reduces the stopping value at the event level. Near Fermi
energy, the relative yields of intermediate-mass fragments
(scaled by Z = 1) are higher than those at the others, as
shown in Fig. 6(c), which will lead to the smallest effective
power-law exponents in charge distribution [31]. For a further
understanding of the minimal stopping near Fermi energy,
Figs. 6(b) and 6(d) present a holographic two-dimensional
(2D) histogram of transverse and longitudinal rapidity for
different charge of fragments (rapidity has been scaled by the
projectile rapidity in the center-of-mass system). From Z = 1
to larger Z, the longitudinal rapidity distributions become
relatively broader than the transverse rapidity distributions.
In addition, for those fragments with Z larger than about 4,
two clear peaks in the longitudinal rapidity stand prominently,
corresponding to projectilelike and targetlike contributions.
This means at Fermi energy, equilibration is far from being
reached and entrance channel effects remain strong even in
central HIC, while at high energy 1.2A-GeV fragments are the
most transparent.

It is highly expected that the hierarchy would help to
determine nuclear EOS. Figure 7 shows Z-dependent stopping
for four different energies with different EOS in IQMD.
The hard EOS case shows higher stopping at the fragment
level than the soft EOS case, and the MDI always makes
it easy for the fragments to penetrate. At lower energy
[150A MeV in Fig. 7(b)], the EOS without MDI agrees with
FOPI data [11] much better (Xe + CsI are similar system as
Xe + Sn). On the contrary, at higher energies [Figs. 7(c) and
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FIG. 7. (Color online) Atomic number dependence of the stop-
ping observable vartl for fragments emitted in central 129Xe +
120Sn collisions. Open symbols represent our calculations with
different EOS and solid symbols with error bar denote the available
experimental data [11]. (a) 45A MeV (no experimental data available
yet); (b) 150A MeV; (c) 250A MeV; and (d) 400A MeV.

7(d)] in order to reproduce experimental data, the weight
of MDI should be increased. More information could be
extracted once more experimental data are provided to lower
the statistical fluctuation. In addition, at energy near Fermi
energy, as shown in Fig. 7(a), it would be worthwhile to
perform experiments to obtain Z-dependent stopping, which is
important to understanding the minimal stopping at the event
level at Fermi energy as well as to constrain the EOS.

The observable dependence of stopping on atomic number
suggests that the heavier fragments have less stopping. This
indicates that the heavier fragments are more transparent
and keep a stronger entrance channel memory even in the
central nuclear collision. This supports the argument that the
fragments are not formed in a globally equilibrated environ-
ment [21], which contradicts the assumption of equilibrium
required by ideal fluid hydrodynamics. A self-consistent
explanation is provided in [19]: if a heavier fragment can
survive during the process of HIC, its constituent nucleons
should have suffered a less violent collision history. Based on
this consideration, the stopping hierarchy at the fragment level
would also reflect the N-N cross section. This explanation
is also quantitatively demonstrated in earlier versions of
QMD [32]. Another explanation is due to the corona effect
(geometrical) [33], even in very central collisions in which
those nucleons near the surface of a projectile or target would
suffer less collision history than those inside. Thus, they would
keep their original direction and compose the final heavy
residues.

In very central HIC, the incident energy dependence of
stopping can be understood in a unified structure based on Pauli
blocking, mean-field, and N-N collision. At intermediate en-
ergy, two-body collisions between nucleons always increases
the dissipation of the HIC system and tends to favor more
isotropy, while Pauli blocking suppresses N-N collision at low
energy and the mean field forms collective motion. This picture
shows incident energy dependence. Below Fermi energy, the
HIC system has enough time to reach an equilibration state
because of the slow process of the reaction. Near Fermi energy,
N-N collision is greatly suppressed by Pauli blocking and
nucleons tend to keep their original moving state and have
an entrance effect. Meanwhile, the mean field dominates HIC
and clusters are then favored. Above Fermi energy, two-body
collisions between nucleons come to play the dominant role
and reach their maximal effect at 300 − 400A MeV. At higher
energy, the mean-free path of the nucleon increases because of
the smaller N-N cross section; thus most of the nucleons will
pass through each other.

V. SUMMARY AND CONCLUSIONS

In summary, we successfully describe the wide-range
excitation function of nuclear stopping from 10A MeV to
1.2A GeV with a transport model IQMD. A minimum of
nuclear stopping value near Fermi energy and a maximum
at about 300A MeV in very central HIC matches the INDRA
and FOPI data very well. The former indicates that in statistical
average, the equilibration state is far from being reached
near Fermi energy, even in very central HIC. Meanwhile, the
hierarchy of stopping observable together with the yields of
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fragments provides us a decomposition way to understand
the whole stopping excitation function. Around Fermi energy,
the soft EOS seems the best, while at energy from 250 to
400A MeV, the role of MDI becomes important. In addition,
it is also highly expected that the isospin, which has been
regarded to reach its equilibration the fastest at the early HIC
process, might also get a great penetration in very central HIC
near Fermi energy.
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