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By calculating the Wigner distribution function in the reaction plane, we are able to probe the phase-space
behavior in the time-dependent Hartree-Fock scheme during a heavy-ion collision in a consistent framework.
Various expectation values of operators are calculated by evaluating the corresponding integrals over the Wigner
function. In this approach, it is straightforward to define and analyze quantities even locally. We compare the
Wigner distribution function with the smoothed Husimi distribution function. Different reaction scenarios are
presented by analyzing central and noncentral 16O +16O and 96Zr +132 Sn collisions. Although we observe strong
dissipation in the time evolution of global observables, there is no evidence for complete equilibration in the
local analysis of the Wigner function. Because the initial phase-space volumes of the fragments barely merge
and mean values of the observables are conserved in fusion reactions over thousands of fm/c, we conclude that
the time-dependent Hartree-Fock method provides a good description of the early stage of a heavy-ion collision
but does not provide a mechanism to change the phase-space structure in a dramatic way necessary to obtain
complete equilibration.
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I. INTRODUCTION

The time-dependent Hartree-Fock (TDHF) method was
originally proposed as early as 1930 by Dirac [1]. For a
long time, it was merely a formal tool to derive many-body
approaches as, e.g., in Ref. [2] to derive linear response
theory. The enormous progress of computational facilities has
made TDHF a practical scheme for describing the dynamics
of many-body systems. By now it has found widespread
applications in various areas of physics. Under the label
of time-dependent density-functional theory it is used in
electronic systems such as atoms, molecules, clusters, and
solids; see, e.g., Refs. [3–5]. The earliest practical applications
probably appeared in nuclear physics [6], where TDHF is a
powerful microscopic approach to simulate various dynamical
scenarios in the regime of large-amplitude collective motion,
such as fusion excitation functions, fission, deep-inelastic
scattering, and collective excitations; for early reviews, see,
e.g., Refs. [7–9]. These pioneering applications were still
hampered by the computational limitations of their time.
With the ongoing growth of computational power, fully
three-dimensional TDHF calculations without any symmetry
restriction became feasible and so renewed the interest in
nuclear TDHF; for a few recent examples of state-of-the-
art TDHF calculations in many different processes, see
Refs. [10–15].

The TDHF approach allows the self-consistent quantum-
mechanical description of nuclear dynamics on a mean-field
level. Self-consistency means an unprejudiced description
once a reliable energy functional is given. This explains the
versatility of TDHF. It remains, however, an approximation
since it is a mean-field theory. TDHF misses dynamical
correlation effects stemming from nucleon-nucleon collisions,
which contribute to (two-body) dissipation and thermalization.
Their inclusion in a fully quantum-mechanical treatment has

so far only been achieved in homogeneous systems, such as
those in Refs. [16,17]. Including dynamical correlations for
finite nuclei is presently still restricted to a semiclassical
description [18–20]. On the other hand, it was found that
nuclear TDHF calculations already include a great deal of
(one-body) dissipation if all terms of the functional, particu-
larly the spin-orbit terms, are properly accounted for [21] and
if all symmetry restrictions are removed [22]. This dissipation
within TDHF does not result from two-particle collisions but
from the collision of one particle with the boundaries of
the moving mean-field potential (“single-particle dissipation”
[23]) which randomizes the single-particle states. In a heavy-
ion collision, two pictures of single-particle dissipation can
be distinguished. The “window” picture describes dissipation
of relative momentum via nucleon exchange through a neck,
while the “wall” picture deals with the dissipation of kinetic
energy by reflection of the nucleons at a moving wall [24–26].
The latter results in a net increase of the nucleons’ thermal
energy provided there is no correlation between the nucleonic
and wall motions. However, these are idealized concepts which
are not always immediately applicable to realistic heavy-ion
collisions [27–29]. To date, it is not understood at a detailed
level how rapidly and how strongly equilibration works within
the TDHF approach.

Although there are recent efforts to go beyond the mean-
field level of description provided by the TDHF approach,
such as the stochastic approaches considering mean-field
fluctuations [30–35], it is the aim of this paper to probe
dissipation and equilibration processes purely at a mean-field
level. A rough global measure of dissipation is given by
comparing initial and final kinetic energies of the fragments
in a heavy-ion collision [22]. More detailed analysis should
look at dynamical processes in a space-resolved manner, and
the maximum of information is considered when looking
at the local momentum distribution. This naturally leads to
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the concept of a Wigner function which provides a phase-
space picture of a quantum state. Originally introduced in
Ref. [36], it is often used for establishing the connection
between quantum and classical physics [37]. The result
of such semiclassical limits is a mean-field dynamics in
classical phase-space called the Vlasov equation [38], which
is widely used in simulating nuclear dynamics [18–20]. In
this paper, we want to stay at the fully quantum-mechanical
level and employ the Wigner function as a useful observable
helping to analyze TDHF dynamics. An early analysis of
that kind is found in Ref. [39]. The Wigner function has the
weakness that it is not positive semidefinite, thus preventing
a strict probabilistic interpretation. This defect is cured by
some phase-space smoothing leading to the Husimi function
[40,41], which also turns out to be the better starting point
for the semiclassical expansion [42]. We will also briefly
address the Husimi function in connection with TDHF results.
As the Wigner function is six-dimensional and thus rather
difficult to handle, we deduce from it more compact measures
of dissipation and equilibration by considering local quantities
integrated with some weights over momentum space, e.g.,
the eccentricity of the momentum-space distribution. These
observables are complemented by others computed without
recurring to the Wigner picture, e.g., the intrinsic excitation
energy which is computed from the local kinetic energy
density. We will explore these different analyzing tools for two
realistic applications: collisions of 16O +16O and 96Zr+132 Sn.

The paper is organized as follows: Section II describes
briefly the numerical handling of TDHF used in this work. In
Sec. III we present the transformation from the TDHF wave
function to the Wigner and Husimi representations. Results
for the ground states in static calculations are presented to
compare both pictures. Observables are defined in Sec. IV to
allow a quantitative discussion of equilibration. In Sec. V we
show results for dynamical calculations with different nuclei,
energies, and impact parameters.

For the sake of generality, the formal considerations of
Sec. III are presented in n-dimensional coordinate and 2n-
dimensional phase space. The results in this paper are obtained
in the reduced two-dimensional reaction plane (assumed to
be the x-z plane). For clarity, we will label the number of
coordinate dimensions n of the applied distribution function f

with f (n).

II. FORMAL AND NUMERICAL FRAMEWORK

The basis of the TDHF description is a set of occupied
single-particle wave functions ψl(r, t) where l labels the states.
These wave functions are two-component spinors. The Skyrme
mean-field Hamiltonian is computed for given densities and
currents in the standard manner [43]. For all calculations
reported here we have used the Skyrme parametrization SkI3
[44].

The TDHF equations are solved on a three-dimensional
Cartesian coordinate-space grid. Using the fast Fourier trans-
formation (FFT), derivatives can be evaluated very efficiently
in Fourier space. The mesh spacing is dx = dy = dz = 1 fm.

The stationary ground states of the initial systems are
computed via the damped-gradient iteration algorithm [45,46].
The initial state is obtained by placing the ground states of the
two fragments in a safe distance and giving them a boost toward
each other. These states are then propagated in time by use of
a Taylor-series expansion of the time-evolution operator [47]
where the expansion is taken up to sixth order. The actual time
step is t = 0.2 fm/c.

III. WIGNER AND HUSIMI DISTRIBUTIONS

The Wigner function is a transformation of the density
matrix to a phase-space function. There are various levels
of density matrices in many-body systems and accordingly
various Wigner functions. TDHF can be considered as de-
scribing the dynamics of the one-body density matrix ρ(r, r′),
neglecting all correlations between the interacting nucleons
above the mean-field level. This is related to the one-body
Wigner function which is obtained by a partial Fourier
transform acting on the relative coordinate s = r − r′, i.e.,

f
(n)
W (r, k, t) =

∫
dns

(2π )n
e−iksρ

(
r− s

2
, r+ s

2
, t

)
, (1)

ρ(r, r′, t) =
∑

l

�
†
l (r, t)�l(r′, t) . (2)

Note that these are, in fact, a spin-averaged density matrix
and correspondingly a spin-averaged Wigner function. The
dimensionality of the transformation is a very compact
notation and needs some explanation. Of course, our TDHF
calculations are always three dimensional. The full Wigner
function is then a six-dimensional object, obviously a bit
bulky. Therefore, we often take cuts and look at the Wigner
transformation in reduced dimensions. The notation f

(1)
W then

means that one coordinate, e.g., x, is transformed from the pair
(x, x ′) in the density matrix to the pair (x, kx) in the Wigner
function. The other two coordinates, y and z in the example
are fixed at a certain value y0 and z0, usually at the center of the
nucleus y0 = 0 and z0 = 0. In other words, f (1)

W (x, kx) denotes
ρ(x, y0, z0; x ′, y0, z0; t) transformed in the x dimension.

A direct interpretation of the Wigner function as a phase-
space probability distribution is not possible because fW is
not positive semidefinite. There can arise situations where the
quantum oscillations lead to negative values. These problems
are avoided by the Husimi distribution [40,41]. The Husimi
function fH (r, k, t) is obtained by a convolution of the Wigner
function with a Gaussian G(r, k)

f
(n)
H (r, k, t) =

∫
dnr ′dnk′ G(r − r′, k − k′)

× f
(n)
W (r′, k′, t), (3)

G(n)(r − r′, k − k′) = 1

πn
exp

(
− r2

2�r2

)
exp

(
− k2

2�k2

)
,

(4)

�r�k = 1
2 . (5)
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The Gaussian folding averages fW over the minimal phase-
space cell of volume (2πh̄)n and so successfully wipes out the
negative values. On the other hand, it induces some uncertainty
which, however, is physical, because one cannot localize a
particle in phase space better than within a volume of (2πh̄)n.
The Husimi folding has one free parameter, the folding width.
For best resolution in both directions, it should be chosen close
to the width of the wave functions. As a basis for our choice, we
use here the nuclear harmonic oscillator model with frequency
and width parameter given as

h̄ω = 41 MeV

A1/3
, λ = mω

h̄
.

This yields the estimate

�r2 = 1

2λ
= h̄2

2m
h̄ω = A1/3 fm2

2
, (6)

�k2 = 1

4�r2
= λ

2
= 1

2A1/3 fm2 . (7)

The choice is somewhat ambiguous for nuclear reactions,
because one could insert the mass number A for the com-
pound system or the average A of projectiles, or fragments,
respectively. However, these are details which do not hamper
the analysis; a good order-of-magnitude guess suffices for the
present analysis.

In a first round, we investigate the distributions for nuclear
ground states, to understand the basic pattern and to have a
benchmark from a case certainly free of excitation. Figure 1
shows slices through static one-dimensional Wigner and
Husimi distributions of the ground states for three nuclei: a
light, a medium heavy, and a heavy one. The Wigner distribu-
tions show marked shell oscillations. The Husimi distributions
have efficiently removed these oscillations and represent a
smooth curve averaged through the Wigner distributions. The
amplitude of the shell oscillations decreases with increasing
mass number, but very slowly such that smooth Wigner
functions (resembling classical phase-space distributions) are
only reached at an order of magnitude A ≈ 5000 [37,48].
The Husimi distributions look smooth already for the low
mass numbers of really existing nuclei. This, however, is
achieved at the price of somewhat blurring the details due
to the folding procedure. This is acceptable for the analysis
of the distributions as such, i.e., in phase space. It may
become misleading when reducing the distributions to compact
observables by integrating over phase space or parts thereof, as
will be done in Sec. IV. The Husimi folding may add an offset
to such averaged observables. In such a case, the integrations
suffice to average out the small-scale oscillations in the Wigner
functions. Therefore, in the following we will concentrate our
investigations on the use of the Wigner function only.

IV. MORE COMPACT OBSERVABLES

The Wigner and Husimi distributions are illustrative but
difficult to handle, being six-dimensional objects. They can
be looked at in some selected snapshots and by taking
cuts through the six-dimensional phase space. Observables
in lower dimensions down to single numbers are necessary

FIG. 1. (Color online) Comparison between slices through the
one-dimensional Wigner f

(1)
W (z, kz = 0) and Husimi f

(1)
H (z, kz = 0)

distribution functions for the static ground states of 16O (a), 96Zr (b),
and 230Th (c).

complements for the analysis of dynamical processes. In
this section, we will introduce local observables which
are distributed in three-dimensional coordinate space. They
are reduced to single-number observables by further spatial
integration.

034608-3



N. LOEBL, J. A. MARUHN, AND P.-G. REINHARD PHYSICAL REVIEW C 84, 034608 (2011)

A. Observables from the Wigner distribution

It is standard procedure in classical nonequilibrium statis-
tical physics to discuss dissipation dynamics in terms of the
local momentum distribution, i.e., the momentum distribution
at a given space point [49]. The basic features of the local
momentum distribution can be characterized by its moments.
The first moment

〈k(r, t)〉(n) =
∫

dnk k f
(n)
W (r, k, t)∫

dnk f
(n)
W (r, k, t)

(8)

plays a special role. It characterizes the center of the distri-
bution and it is associated with the average local flow. The
higher moments are taken as variances, i.e., relative to the first
moment. For the mth moment this reads

〈k(m)(r, t)〉(n) =
∫

dnk[k − 〈k(r, t)〉]mf
(n)
W (r, k, t)∫

dnk f
(n)
W (r, k, t)

. (9)

These moments serve as raw material for further reduced
observables. Note that they depend on the dimensionality of the
Wigner function used in their definition. This is communicated
by the index (n) in the moments.

The radial profile of the momentum distribution may be
characterized by the ratios of moments, in particular, the m = 4
to m = 2 ratio

R(n)(r, t) = 〈k4(r, t)〉(n)

〈k2(r, t)〉2
(n)

. (10)

The reference value is the thermal equilibrium which cor-
responds in the high temperature limit to a Maxwellian
momentum distribution. These “equilibrium” values are given
in Table I for various dimensions.

The ratios are plagued by the fact that cold equilibrium
distributions are Fermi functions rather than Gaussians and,
more importantly, are significantly smoothed by quantum
effects. This hampers an analysis at a detailed level. A
more robust signature of equilibration is obtained by the
deformation of the momentum distribution. The leading
term is the quadrupole deformation which can be char-
acterized by the eccentricity in the reaction plane, which
reads

ε(r, t) =
〈
k2
x(r, t)

〉 − 〈
k2
z (r, t)

〉
〈
k2
x(r, t)

〉 + 〈
k2
z (r, t)

〉 , (11)

where the dimensionality index has been skipped for
simplicity. The global eccentricity is obtained by spatial

TABLE I. Analytic values of the ratio R(n) as
defined in Eq. (10) for a Gaussian distribution
function, depending on the spatial dimension n

in which the ratio is evaluated.

n R
(n)
Gauss

1 3
2 2
3 5/3

integration

ε(t) =
∫

dx dz ε(r, t)ρ(r, t), (12)

ρ(r) =
∫

dkx dkz f
(2)
W (r, k, t), (13)

with ρ the local density.

B. Intrinsic kinetic energy

Another interesting observable is the intrinsic excitation
energy. Ideally, it is defined as the difference between the actual
energy and a “cold” reference energy which is obtained from a
stationary HF calculation constrained to reproduce the density
ρ(r) and current j(r) of the actual TDHF state [50,51]. The
cumbersome density-constrained calculations can be avoided
when evaluating the cold reference state in Thomas-Fermi
approximation. This shortcut was used successfully in cluster
physics [52]. The so approximated intrinsic kinetic energy
reads

Eint(t) = Ekin(t) − Ecoll,kin(t) − ETFW(t), (14)

Ekin(t) = 1

2

∑
i

∫
d3r |∇ϕi(r, t)|2, (15)

Ecoll,kin(t) =
∫

d3r
j2(r, t)
2ρ(r, t)

, (16)

ETFW(t) =
∫

d3r τTFW(r, t), (17)

τTFW(r, t) = 3h̄2

10m
(3π2)2/3ρ(r, t)5/3 + h̄2

18m

[∇ρ(r, t)]2

ρ(r, t)
.

(18)

It quantifies the nonadiabatic and noncollective component
of the kinetic energy, roughly corresponding to the intrinsic
thermal energy. The first ingredient for the calculation is
the total kinetic energy, Ekin, of the system. The second
term, Ecoll,kin(t), subtracts the hydrodynamic kinetic energy
contained in the collective flow j. The third term, ETFW(t), sub-
tracts the instantaneous kinetic energy of the zero-temperature
ground state at the given density ρ(r, t). The evaluation of this
kinetic energy density τ (r, t) is done in the Thomas-Fermi-
Weizsäcker approximation [3].

C. Estimate for the fragment distance

As a simple observable characterizing the geometry of a
collisional stage, we introduce the distance d(t) between the
fragments

d(t) = |〈r1(t)〉 − 〈r2(t)〉|. (19)

The coordinates ri of the right and left fragments were obtained
by splitting the density of the system symmetrically into two
half spaces and averaging over each half. This is an obvious
definition for well-separated fragments. It becomes somewhat
ambiguous in the overlap region, but still remains a useful
indicator of the overall geometry.

034608-4



EQUILIBRATION IN THE TIME-DEPENDENT HARTREE- ... PHYSICAL REVIEW C 84, 034608 (2011)

FIG. 2. (Color online) One-dimensional Wigner distribution f
(1)
W (z, kz, t) for a central 16O +16O collision is plotted at four different times

t . Three contour lines are plotted to highlight the levels of f
(1)
W (z, kz, t) at 2 × 10−3, 4 × 10−3, and 6 × 10−3.

V. RESULTS

We present TDHF results for different reaction scenarios:
16O +16O collisions head-on and with finite impact parameter,
and a 96Zr+132 Sn collision. The Skyrme parametrization SkI3
[44] is used for the calculations. We performed test calculations
with other Skyrme forces and found very similar results. Thus
we report the results only from this one force. The central
collisions were computed on a coordinate space mesh with
48 × 242 grid points and the noncentral ones with 36 × 242

points.

A. 16O +16O collisions

1. 16 O+16 O central

First, we analyze a 16O +16O collision with a center-of-
mass energy of Ec.m. = 100 MeV and zero impact parameter
b = 0 fm. Figure 2 shows the one-dimensional Wigner dis-
tribution f

(1)
W (z, kz, t) at four different stages of the collision.

Initially (a), there are two cold nuclei far apart from each
other. They are shifted in the kz direction depending on their
initial boost. At the intermediate stage (b), the phase-space

volumes of the two fragments seem to merge but are avoiding
each other, i.e. they maintain a division line. This is a
consequence of the Pauli principle. After a while (c), the
phase-space volumes start to separate, keeping some contact
still for some time. The final stage (d) shows two separate
fragments again. In coordinate space we would see that the
two nuclei merge, fully penetrate each other, and continue
their trajectories as two separate fragments again. This is what
is called “transparency” [47,53–56], which is most probably
an artifact of the mean-field treatment. Nucleon collisions
would induce exchange of matter between these two blobs. The
phase-space view in Fig. 2 sheds some light on the appearance
of transparency. We have seen that the two densities never
merge in phase space, although it may look like merging
in coordinate space. It seems that the fragments maintain
a memory about their initial configuration which eventually
reconstitutes the fragments if the contact phase is over.

The final stage (time 275.8 fm/c) deserves more inspection.
Here the structure is quite different as compared to the initial
state. Both blobs become strongly asymmetric. The kz position
of the maximal peaks (red spots) are not lower than initially.
But the asymmetry in the distribution extends very much
toward lower kz and also to values of opposite sign. This
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FIG. 3. (Color online) Global eccentricity ε(t) obtained from the
two-dimensional Wigner function f

(2)
W (x, z, kx, kz, t), the distance

between the fragments d(t), and the internal kinetic energy Eint(t)
for a central 16O +16O collision with a center-of-mass energy of
Ec.m. = 100 MeV.

indicates that the average slowdown in relative c.m. motion
in this case is not due to a global downshift of an otherwise
symmetric distribution, but to the strong asymmetry reducing
significantly the average kz. A possible interpretation is that
the wave functions maintain their initial momentum structure
to a large extent, but components from the other fragment are
also mixed in.

In a next step, we analyze the time evolution in terms of
compact (single number) observables. The time evolution of
the intrinsic kinetic energy Eint(t) and of the global eccentricity
ε(t) are shown, together with the fragment distance d(t),
in Fig. 3. The time of maximum overlap (compound stage)
is reached at 75 fm/c where d(t) has a minimum. Both
kinetic observables show a pronounced maximum there. As
the reaction continues, the eccentricity is strongly damped
and keeps oscillating at a low level. This indicates some
thermalization. The internal energy reaches its maximum at
Eint ≈ 86 MeV and saturates, again with some persisting
oscillations, at half of the maximal amount. Since the potential
energy plays a huge role in the compound stage, the values
for the kinetic energies have to be taken with care here.
The asymptotic values are more directly interpretable. They
show significant heating [from Eint(t)] and a great deal
of equilibration already within the short time span of the
simulation.

To visualize the oscillations in ε(t) and Eint(t), we
show in Fig. 4 the two-dimensional momentum distribution
f

(2)
W (kx, kz, t) in the exit channel for the fragment moving

to the left (with negative 〈kz〉). The shape is asymmetric
and oscillates back and forth. This indicates that the largest
collective effect in the exit channel is residual octupole
oscillations which have their counterpart also in similar
octupole oscillations of the fragments’ spatial shape.

FIG. 4. (Color online) A kx-kz cut of the two-dimensional
momentum distribution f

(2)
W (kx, kz, t) for a central 16O +16O collision

with a center-of-mass energy of Ec.m. = 100 MeV, plotted at the center
of the fragment moving finally with negative mean momentum in the
kz direction. The plots are taken at three different times t near the final
stage of the calculation. Two contour lines are plotted to highlight the
levels of f

(2)
W at 2 × 10−4 and 4 × 10−4.

We checked the momentum ratio R(n)(r, t) as given in
Eq. (10) for n = 1, 2 at different times to probe the closeness of
the momentum distribution to a Maxwellian distribution. The
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FIG. 5. (Color online) Global eccentricity ε(t) obtained from the
two-dimensional Wigner function f

(2)
W (x, z, kx, kz, t), the distance

between the fragments d(t), and the internal kinetic energy Eint(t)
for two 16O +16O fusion reactions with a center-of-mass energy of
Ec.m. = 20 MeV (a) and Ec.m. = 50 MeV (b) and impact parameter
b = 2 fm.

comparison with the analytic values RGauss from Table I is not
conclusive, because quantum effects blur the classical concept
behind this ratio by making the distributions too different
from Gaussians. This casts some doubt on the usefulness
of the global ratio R(t) in this still predominantly quantum-
mechanical domain. We will come back to this observable in
Sec. V B.

2. 16 O+16 O noncentral

In this section, we analyze 16O +16O fusion reactions with
nonzero impact parameter b = 2 fm and two different center-
of-mass energies Ec.m. = 20 and Ec.m. = 50 MeV.

FIG. 6. (Color online) Global eccentricity ε(t) obtained from the
two-dimensional Wigner function f

(2)
W (x, z, kx, kz, t), the quadrupole

Q20, and the internal kinetic energy Eint(t) for a 96Zr +132 Sn fusion
reaction with a center-of-mass energy of Ec.m. = 250 MeV and impact
parameter b = 2 fm.

Figure 5 shows the global eccentricity ε(t), the internal
kinetic energy Eint(t), and the fragment distance d(t) for both
reactions. The distance oscillates after the minimum reached
on first impact. This indicates that both cases describe a fused
compound state. The eccentricity ε(t) follows the oscillations
of the distance, reflecting a continuing vivid interaction with
the spatial deformation. This indicates that we are far from
equilibration. The intrinsic kinetic energy grows initially and

FIG. 7. (Color online) Local ratio R(2)(r) obtained from the two-
dimensional Wigner distribution f

(2)
W (x, z, kx, kz, t) for a 96Zr +132

Sn fusion reaction at t = 1279.8 fm/c. Four points are marked in this
plot to be analyzed later more precisely (Figs. 8 and 9). The reference
value from a Gaussian distribution is R

(2)
Gauss = 2. A contour line is

plotted to highlight the level of R(2)(r) = 1.5.
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FIG. 8. (Color online) The left column [(a), (c)] reviews the two-dimensional momentum distribution f
(2)
W (kx, kz) in the selected (outer)

points from Fig. 7. Contour lines are plotted to highlight the levels of f
(2)
W at 1 × 10−4, 2 × 10−4, and 3 × 10−4. Slices through f

(2)
W (kx, kz)

matching the (kx, kz) axis are shown in the right column [(b), (d)].

soon levels off, leaving small residual oscillations about a
constant mean value. This mean intrinsic energy is, of course,
larger for the higher-energy collision (Ec.m. = 50 MeV). The
example demonstrates nicely that one needs a couple of
observables to conclude on equilibration. One may be tempted
to take the constant Eint(t) as indicator of a thermalized state.
The still large values of eccentricity and the oscillations thereof
prove clearly that we are rather in a situation of substantial
coherent oscillations of the compound system. In this context,
it is to be remembered that the energy stored in the collective
motion of the compound system is subtracted in the evaluation
of Eint(t).

The demonstrated behavior of the observables was checked
up to t = 4000 fm/c, twice the time span shown in Fig. 5. The
pattern carried on unchanged also for these longer times.

B. 96Zr +132 Sn

As an example of a much heavier nuclear system, we present
fusion of 96Zr +132 Sn achieved with a center-of-mass energy
of Ec.m. = 250 MeV and impact parameter b = 2 fm. The

reaction between the neutron-rich 132 Sn nucleus and 96Zr
was already studied in TDHF with a focus on barrier heights
and widths of the heavy-ion potential as well as capture cross
sections [57].

It was not possible in the present analysis to calculate
the distance d(t) between the fragments as was done in the
16O +16O fusion scenario. The numerical algorithm selecting
the spatial expectation values for a two-body system was not
able to detect two distinct objects during the whole calculation,
and in this asymmetric system a simple symmetric division of
the grid was not possible. In Fig. 6, we therefore use the
expectation value Q20 ≡ 〈Q̂20〉 of the quadrupole operator
Q̂20 to visualize the global geometry of the reaction. Again,
large values indicate separated fragments and low values a
compound stage. It is obvious from the figure that the reaction
ends in a compound nucleus. The overall trends of intrinsic
kinetic energy and eccentricity are to some extent similar
to the results in Fig. 5. However, the final eccentricity is
much smaller, still maintaining some small oscillations. This
indicates a better thermalization than seen for 16O +16O, which
is no surprise because the single-particle phase space is much
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FIG. 9. (Color online) Same as Fig. 8, but for the selected (inner) points in Fig. 7.

larger for the heavier system. The trend of the intrinsic energy
does also differ in detail. There seem to be two stages of
growth: a fast initial rise on the way to the compound stage and
a slower, but steady, growth up to 1000 fm/c. This indicates
that some thermalization processes and energy transport from
deformation energy to kinetic energy are still going on. After
1000 fm/c we again see a rather constant Eint as seems to be
typical for energetic compound nuclei.

Figure 7 shows the local ratio R(2)(r, t) as defined in
Eq. (10) in the reaction plane at t = 1279.8 fm/c. The surface
region is distinguished by large values coming close to the
Maxwellian reference values, while much smaller ratios are
seen inside. To illuminate these results, we take a closer look
at the more detailed momentum distributions at four selected
points indicated in Fig. 7. Figure 8 shows results for the two
outer points at the surface. The first point (P1) is taken at
approximately half the maximum value of fW . The distribution
is very similar to a Gaussian overlayed by a slight asymmetry.
The next point (P2) shows a more pronounced asymmetric
shape. Moving farther to the inner points (P3, P4) reviewed in
Fig. 9, the momentum distributions differ substantially from
Gaussians and come closer to the idea of a Fermi distribution,
although heavily overlayed by quantum shell oscillations.

A similar analysis of the momentum distribution at other
points near the nuclear center yields similar results. The inner
region of the merged systems seems to stay rather “cold”
during the reaction.

The strong quantum-mechanical shell oscillations hinder a
fit of the distribution functions shown in Figs. 8 and 9 to a
Fermi function from which one eventually could read off an
estimate of the system’s temperature distribution. Therefore
we compare the 96Zr+132 Sn system to be assumed “hot”
with the “cold” analog of this system. Figure 10 shows
the momentum distribution of the 96Zr +132 Sn compound
system at the point P4 indicated in Fig. 9. This is compared
with the result from the prolate ground state of 230Th. The
96Zr +132 Sn system consists of p = 90 protons and n = 138
neutrons. 230Th shares the same proton number with two
additional neutrons. The ground-state nucleus shows huge,
fully developed shell oscillations. Compared to these, the
remaining quantum oscillations in the hot compound state
become rather small. The disappearance of quantum shell
effects is a major thermalization effect [37,58]. The occupation
of high-momentum components, however, which would also
be expected for hot systems, remains insignificant. This is
because the nucleus is an open system from which high-energy
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FIG. 10. (Color online) Slices along kx (a) and kz (b) through f
(2)
W (kx, kz) for the merged 96Zr +132 Sn system (solid red) at t =

1279.8 fm/c in the point P4 from Fig. 7 in comparison with the ground state of 230Th (dashed blue).

particles escape, constantly depleting the high-momentum
parts of the distribution. This explains why a fit to Fermi
distributions failed. A measure of temperature may be deduced
from the suppression of the shell oscillations, but this analysis
is blurred by the large thermal fluctuations in the momentum-
space density. For the time being, the eccentricity remains the
cleanest indicator of equilibration.

VI. SUMMARY

In this work we have analyzed from different perspectives
the dynamics of the TDHF scheme during various reactions
involving the nuclei 16O, 96Zr, 132 Sn, and 230Th with various
center-of-mass energies and impact parameters. The key
quantity of the analysis is the Wigner distribution function,
which provides a detailed phase-space picture of the quantum
state. As complementing quantities, we also considered three
more compact observables in terms of local distributions: the
ratio R(r, t) of the weighted moments (weight four and two)
of the local momentum distribution described by the Wigner
function (i.e., integrating the Wigner function over momentum
space for fixed local position), the eccentricity ε(r, t) of
the local momentum distribution, and the intrinsic excitation
energy Eintr(r, t) as deduced from the kinetic energy density.

General properties of the Wigner distribution were dis-
cussed first for stationary states. It shows oscillations which
stem from the quantum shell oscillations of the underlying
single-particle states. We also looked at the Husimi function
derived from the Wigner function by some phase-space
smoothing. The latter indeed provides a cleaner and more
intuitive picture. We find, however, that the shell oscillations
are much reduced in the dynamical scenarios of heavy-ion
collisions, allowing us to continue the dynamical studies with
the Wigner function alone.

For the example of a head-on collision 16O +16 O, we
visualized the collision process through snapshots of a two-
dimensional cut of the six-dimensional Wigner function. This
shows that the two initially separated phase-space blobs never

fully merge, even at the compound stage. This nonmerging of
the distributions is a consequence of the mean-field treatment
and is probably the reason for the observed “transparency,” i.e.,
the fact that the two nuclei, although undergoing maximum
contact, penetrate through each other instead of fusing.
The distributions of the emerging fragments were found to
acquire a strong asymmetry in momentum space and nicely
show the phase-space rotations associated with the remaining
octupole oscillations of the final fragments.

The moment ratio R was intended as a means to compare
the shape of the TDHF-Wigner distribution with a Maxwellian
distribution corresponding to thermal equilibrium. We find for
all reaction parameters that the moment ratio remains below the
Maxwellian reference value, which means that thermalization
could not be asserted in this observable. The reason is that the
high-momentum tail of the actual distribution is immediately
depleted by particle emission. This exemplifies the fact that a
true equilibrium state is hard to establish in an open system.

The eccentricity ε turned out to be a more useful indicator.
It grows dramatically in the initial phase of the reaction and
relaxes to lower values quickly after the compound state
and then remains oscillating about some finite value. This
means that the final relaxation to a thermal state is probably
underestimated in mere TDHF. Similar patterns are shown by
the intrinsic kinetic energy Eint. The resulting “asymptotic”
value of Eint depends strongly on the initial conditions, e.g.,
growing with the initial collision energy.

We conclude that although TDHF includes dissipation
owing to single-particle viscosity, which acts strongly in the
initial phase of reactions, there is no evidence for complete
equilibration.
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