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The finite-range adiabatic wave approximation (ADWA) provides a practical method to analyze (d,p) or (p,d)
reactions; however, until now the level of accuracy obtained in the description of the reaction dynamics has not
been determined. In this work, we perform a systematic comparison between the finite-range adiabatic wave
approximation and the exact Faddeev method. We include studies of 11Be(p,d)10Be(g.s.) at Ep = 5, 10, and 35
MeV; 12C(d,p)13C(g.s.) at Ed = 7, 12, and 56 MeV; and 48Ca(d,p)49Ca(g.s.) at Ed = 19, 56, and 100 MeV.
Results show that the two methods agree within ≈5% for a range of beam energies (Ed ≈ 20–40 MeV) but
differences increase significantly for very low energies and for the highest energies. Our tests show that ADWA
agrees best with the Faddeev method when the angular momentum transfer is small �l = 0 and when the
neutron-nucleus system is loosely bound.
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I. INTRODUCTION

There is growing interest in using (d,p) reactions as a tool to
extract single-particle properties of nuclei away from stability.
Since the early studies on 11Be [1], an increasing number of
transfer experiments have been performed to obtain detailed
structure information. This includes experiments at the ISOL
facilities, performed around the Coulomb barrier, such as the
recent one on 132Sn [2], but also measurements at higher energy
in fragmentation facilities, such as the recent systematics on
Ar isotopes [3]. Because the information extracted from these
experiments relies on reaction models, it is critical to validate
these models and assess their uncertainties.

There are a number of aspects that need to be considered
when validating reaction theories. At present, reaction theories
for (d,p), applicable to nuclei with mass A > 10, require a
reduction of the many-body problem to a few-body problem.
A consequence of this first point is the introduction of effective
interactions between the composite constituents, the so-called
optical potentials, and single-particle binding potential. These
are the physical inputs to the problem. In addition, there are
often approximations in solving the few-body problem. It is
this last aspect that is the focus of the present work.

For 40 years, the tradition has been to use the distorted
wave Born approximation (DWBA) to extract spectroscopic
information from (d,p) or (p,d) reactions [4]. Even though
still in use, this method has been challenged repeatedly. Just
in the last decade, a variety of reaction theory studies have
been carried out. In Ref. [5], it is shown that the choice of
the deuteron optical potential in the DWBA introduces a very
large ambiguity which can be significantly reduced when using
the zero-range adiabatic wave approximation developed by
Johnson and Soper (ZR-ADWA) [6] built on the nucleon-target
optical potentials. In the ZR-ADWA deuteron breakup is
taken into account to all orders, while making a zero-range
approximation for the deuteron. The formalism for a finite-
range version of the adiabatic wave method (FR-ADWA) was
developed in Ref. [7], and is also built on nucleon optical

potentials. Perhaps even larger than the uncertainties in optical
potentials, the ambiguity introduced by the single-particle
potentials that describes the many-body overlap function has
also been a focus of study [8,9]. Target excitation is known to
be relevant for specific cases and should be considered case by
case [9,10].

To add to the long list of reaction theories, one should still
consider the continuum-discretized coupled-channel (CDCC)
method [11] and the Faddeev-type method for transition
operators, usually referred to as the Alt-Grassberger-Sandhas
(AGS) method [12]. Although the CDCC method is probably
most widely used to describe breakup (e.g., Ref. [13]), the
CDCC wave function has also been used in the context
of (d,p) reactions (e.g., Refs. [14,15]). The AGS method
including the Coulomb interaction, originally developed for
describing few-nucleon reactions [16], has recently been
extended to handle (d,p) and (p,d) nuclear reactions [17].
The CDCC method takes breakup effects into account to
all orders without making any further approximations (in
some ways, the ADWA is an approximate version of the
CDCC method), but the Faddeev method goes a step further
in that transfer channels are also included explicitly in the
expansion. The Faddeev calculations represent thus the exact
solution to the full three-body problem when rearrangement
channels are present. While both CDCC and AGS methods
make less approximations compared to the DWBA and
the ADWA, they are computationally demanding. Moreover,
their technical implementations are limited, for example, the
present treatment of Coulomb in the AGS method has been
successfully applied only to nuclei with charge Z < 30 [18].
Finally, and most importantly, these two methods are based on
a more complex expansion of the wave function, in such a way
that the final cross section depends not only on the many-body
overlap of interest but also on nontrivial interferences between
many overlap functions including overlaps with states in the
continuum. As a consequence, simpler approximate methods
are often preferred by experimentalists.
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Recently, a systematic study [19] using the finite-range
version of the adiabatic wave approximation (FR-ADWA)
[7,20] found large finite-range effects in (d,p) reactions,
especially at the higher energies. The transfer cross section
in the FR-ADWA depends on the overlap function of inter-
est, and not on a complicated superposition of terms with
many overlap functions. Also important, the method is not
computationally expensive and is of practical use for the
nonexpert. Nevertheless, one needs to appreciate that the
FR-ADWA relies on a Sturmian expansion that is truncated
to first order (first order should not be confused with the
DWBA, because the adiabatic method relies on an entirely
different expansion). This first-order truncation of the exact
solution of the three-body problem has never been systemat-
ically tested before. FR-ADWA calculations in Ref. [21] are
used to analyze 34,36,46Ar(p,d) data at 33 MeV/u and com-
pared to the Faddeev calculations to determine the error in the
treatment of the reaction dynamics. Discrepancies between
the FR-ADWAs were found to vary considerably (6–19%).
The work in Ref. [21] calls for a better understanding of the
range of validity of the FR-ADWA.

The aim of the present work is exactly to determine the
range of validity of the ADWA (we drop FR from now on,
since all ADWA calculations presented here are finite range).
In order to do that, a systematic comparison between ADWA
and Faddeev calculations is performed. We cover a wide range
of beam energies, light- and intermediate-mass nuclei, and
well-bound and loosely bound systems. We choose energies
for which there are data to ensure that the reaction theory
performs sensibly, although our focus is on comparing two
theories starting from the same three-body Hamiltonian, not
on dwelling on detailed comparisons with data. In Sec. II, we
provide some key aspects of the ADWA and Faddeev methods,
and in Sec. III results are presented and discussed. Finally in
Sec. IV conclusions are drawn.

II. THEORETICAL DESCRIPTION

The starting point for both the ADWA and Faddeev methods
is the three-body Hamiltonian for n + p + A:

H3B = Tr + TR + UnA + UpA + Vnp. (1)

The interactions between the nucleons and the composite
target A (UpA and UnA) should contain an imaginary term
representing the absorption or transfer to other channels not
explicitly included. We focus the discussion on the reaction
A(d,p)B to the ground state (g.s.) of B = n + A (note that
the formalism for (p,d) in prior form is identical to that for
(d,p) in post form presented here [15]).

Following the work on the ZR-ADWA [6], Johnson and
Tandy [7] introduced a full finite-range version considering
the square-integrable Sturmian expansion. The Sturmian basis
is complete within the range of the interaction and is defined
by

(Tr + αiVnp)Si(�r) = −εdSi(�r) (2)

for each given state corresponding to the number of nodes
i = 0, 1, 2, .... The inner product between Sturmian states is

defined by 〈Si |Vnp|Sj 〉 = −δij , and at large distances, all basis
states decay exponentially according to the deuteron binding
energy. The three-body wave function is now expanded in
terms of Si :

�(+)(�r, �R) =
∞∑

i=0

Si(�r)χi( �R). (3)

This form for the three-body wave function is then intro-
duced in the three-body Schrödinger equation for scattering
H3B� = E� which, when imposing the appropriate boundary
conditions, allows one to calculate χi( �R). This procedure leads
to a nontrivial coupled-channel equation [7,19] that could be
solved exactly [22].

Simplicity is recovered when considering only the first term
in the expansion equation (3):

�
(+)
AD (�r, �R) = S0(�r)χAD

0 ( �R). (4)

Then the coupled-channel equation reduces to an optical-
model-type equation with distorting potential,

UAD(R) = −〈S0(�r)|Vnp(UnA + UpA)|S0(�r)〉, (5)

where, apart from a normalization factor, S0 is the ground-state
wave function of the deuteron.

The three-body wave function equation (4) is now inserted
in the post-form T matrix for the (d,p) process [15]:

T = 〈φnAχ
(−)
pB |Vnp + �rem|�(+)

AD 〉 , (6)

where χ
(−)
pB is the outgoing proton wave, distorted by U ∗

pB ;
φnA is the wave function of the final bound state, generated
by a binding potential VnA; and the remnant term is �rem =
UpA − UpB .

Even if we were not truncating the Sturmian basis, one
would expect the method to be at its best when remnant
contributions are small, because then the resulting cross section
is only sensitive to short distances between the neutron and the
proton, where the basis is complete. However, it is not clear that
this condition is sufficient when the additional simplification,
Eq. (4), is introduced.

As opposed to the ADWA, in the Faddeev approach,
elastic scattering, transfer, and breakup channels are treated
on equal footing. Therefore, it represents the exact solution
to the problem once a three-body Hamiltonian equation (1)
is defined. In the Faddeev method, the wave function is
expanded in an overcomplete basis, involving all three Jacobi
coordinates [4]. In the AGS method [12], one starts from the
Faddeev formalism and arrives at coupled integral equations
for the transition operators

Tβα = (1 − δβα)G−1
0 +

3∑

γ=1

(1 − δβγ )tγ G0Tγα, (7)

whose on-shell matrix elements 〈ψβ |Tβα|ψα〉 are scattering
amplitudes and therefore lead directly to the observables. In
Eq. (7), G0 = (E + i0 − H0)−1 is the free resolvent, with E

being the available three-particle energy in the center of mass
(c.m.) system and H0 the free Hamiltonian. The two-particle
transition matrix is a solution of the Lippmann-Schwinger
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equation

tγ = vγ + vγ G0tγ , (8)

where vγ is the potential for the pair γ ; we use the odd-man-
out notation. The channel states |ψγ 〉 for γ = 1, 2, 3 are the
eigenstates of the corresponding channel Hamiltonian Hγ =
H0 + vγ with the energy eigenvalue E; thus, |ψγ 〉 is a product
of the bound-state wave function for pair γ and a plane wave
with fixed on-shell momentum corresponding to the relative
motion of particle γ and pair γ in the initial or final state.

The Coulomb interaction is an additional complication in
the AGS method; nevertheless, when only two particles are
charged and charge numbers Z are not too large, the Coulomb
interaction has been successfully included [17,18] using the
method of screening and renormalization [23,24].

We solve the AGS equations in the momentum-space
partial-wave framework [25]. The Coulomb screening radius
needed for the convergence of the results increases with Z,
thereby increasing also the number of partial waves that have
to be included. Such calculations are not only time-consuming
but also for very high angular momenta the partial-wave ex-
pansion may even become unstable. This limits the application
of the technique with respect to Z; so far no calculations have
been performed beyond Z = 30 [18]. Another limitation of the
method comes from the Pade summation technique for solving
the AGS integral equation iteratively [26]; usually it is hard
to achieve convergence for heavier nuclei at low energies. For
more details on the numerical techniques we refer the reader
to Refs. [23,25–27].

III. RESULTS

We perform Faddeev AGS and finite-range ADWA
calculations for a number of cases that have been re-
peatedly studied: 11Be(p,d)10Be(g.s), 12C(d,p)13C(g.s), and
48Ca(d,p)49Ca(g.s.). For the ADWA calculations, the code
[32] is used to calculate the deuteron adiabatic potential, and
the code [33] is used to calculate the transfer amplitude and
cross sections. Because we are interested in establishing the
range of validity of the ADWA, we explore these at several
beam energies. For nearly all cases we choose beam energies
for which data are available and we make sure that the present
theories are able to provide a fair description of the angular
distributions. However, since in this work we are concerned
with testing the ADWA against the exact Faddeev AGS theory,
we do not include data in the plots.

One of the main inputs to these calculations is the pair
interactions. In both calculations, a realistic NN interaction is
used. Because the ADWA is performed in coordinate space,
and a local form of the NN interaction with spin-orbit coupling
is needed, the Reid interaction [28] is used. The more recent
momentum-based CD-Bonn [29] is straightforward to use in
AGS calculations, contrary to potentials in coordinate space.
These two NN interactions reproduce the low-energy NN

phase shifts, the deuteron binding energy, and the quadrupole
moment. In fact, apart from the short distances, the deuteron
densities produced with Reid and CD-Bonn are identical, this
being true also for the 3N and 4N systems. We have verified
that the use of different NN interactions does not induce

differences in the predicted (d,p) calculations by repeating
both Faddeev and ADWA calculations with a simple Gaussian
interaction, which reproduces low-energy phase shifts and the
deuteron binding energy. We concluded that the transfer cross
sections are not sensitive to the details of this interaction but the
consistency between the Vnp used to obtain the deuteron wave
function and the interaction in the transfer operator [Eq. (6)].
This same conclusion was found in previous works [17].

For the nucleon optical potentials we use the global
parametrization CH89 [30]. Like all global optical potentials,
the parameters of CH89 are functions of the beam energy. In the
ADWA, when determining �AD in Eq. (6), half the deuteron
energy is used for UnA and UpA, whereas the exit proton energy
is used for the auxiliary potential UpB (for calculating χpB

and the remnant contribution). The same UpA used for �AD

is used in the transfer operator. A real interaction VnA is used
to calculate the bound state φnA: it consists of a Woods-Saxon
potential plus spin-orbit form with the Woods-Saxon depth
adjusted to reproduce the experimental binding energy of the
nucleus under study. In all cases we fix the geometry of
the Woods-Saxon potential, the radius r = 1.25 fm and the
diffuseness a = 0.65 fm, as well as the spin-orbit parameters
Vso = 6 MeV, rso = 1.25 fm, and aso = 0.65 fm. Thus, strictly
speaking, since the neutron interaction is different in the
incoming and outgoing channels, two different three-body
Hamiltonians are used in the ADWA.

In the Faddeev calculation, energy dependence in the
interactions can introduce orthogonality errors. It is thus
important to make a wise choice for the energy at which UpA

is to be calculated. Our standard choice is to fix UpA at the
energy in the proton channel (FADD); however, we also show
results using half the deuteron energy (FADD2). Concerning
the neutron-target interaction, for the partial wave where a
bound state exists, the same VnA interaction is used as for the
ADWA. For all other partial waves, the neutron interaction is
UnA, taken from CH89 at half the deuteron energy [30]. In our
standard Faddeev calculation (FADD), there are two subtle
differences in the interactions as compared to the ADWA:
(i) UpA for the deuteron channel is obtained at the proton
energy, and (ii) for the partial waves where a neutron-bound
state exists, the neutron scattering potential UnA has no
absorption. Because we have seen a larger dependence on
the transfer cross sections to UpA than to UnA in previous
calculations (see, e.g., Fig. 10 of Ref. [31]), we believe the
uncertainty due to (i) dominates the overall uncertainty.

In Fig. 1 we present the angular distribution for
11Be(p,d)10Be, at Ep = 5 MeV, Ep = 10 MeV, and Ep =
35 MeV. The blue (solid) lines are the results obtained
with the ADWA and the red curves are those obtained with
Faddeev calculations. To understand the subtle difference in
the interactions included in the Faddeev calculations compared
to the ADWA, we perform two test calculations: (i) a Faddeev
calculation using the proton optical potential calculated at half
the deuteron energy (red open circles labeled FADD2) and
(ii) an ADWA calculation where the initial proton distorted
wave is calculated with an optical potential determined at half
the deuteron energy (purple solid squares labeled ADWA2).
The comparison between FADD and FADD2 provides an
estimate of the sensitivity to the choice of energy at which the
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FIG. 1. (Color online) Angular distributions for 11Be(p,d)10Be:
(a) Ep = 5 MeV, (b) Ep = 10 MeV, and (c) Ep = 35 MeV.

proton-target optical potential is evaluated. If the two methods
were exact, the comparison between FADD2 and ADWA2
would provide an estimate of the effect of replacing, in the
calculation of �AD, the appropriate neutron optical potential by
a real bound-state potential in the partial wave where a bound
state exists. Of course ADWA2 is not exact, and therefore
the comparison of FADD2 and ADWA2 contains both the
difference due to the neutron optical potential (which should
be small) and a genuine difference between the treatment of
the three-body dynamics. Note that if �AD were exact, the T

matrix of Eq. (6) should provide cross sections independent
of the auxiliary potential UpB (used in χpB and �rem). This
was recently demonstrated within the CDCC method [15].

Therefore, differences between ADWA and ADWA2 indicate
inaccuracies in ADWA.

First of all, there are differences between Faddeev and
ADWA cross sections at the lower and higher energies. At
Ep = 10 MeV the agreement is perfect. Comparing FADD
with FADD2, we find that only at the higher energy is there
a dependence in the choice of energy at which the proton
interaction is calculated, and then Faddeev calculations using
the proton interaction at half the deuteron energy become
slightly closer to the corresponding ADWA results (compare
FADD2 and ADWA2). At Ep = 35 MeV, ADWA and ADWA2
differ by 11% at the peak, which indicates that the truncation
to the first term in ADWA is insufficient at these energies.

In Fig. 2 the same observable is shown for 12C(d,p)13C
at Ed = 7.15 MeV, Ed = 12 MeV, and Ed = 56 MeV. Dif-
ferences between the Faddeev and ADWA calculations are
smallest at Ed = 12 MeV. As for 11Be, only at the highest beam
energy are the results sensitive to the choice of energy at which
the proton optical potential is defined. In this case, calculating
the final proton distorted wave with UpB evaluated at half the
deuteron energy slightly improves the agreement (compare
ADWA2 versus FADD2). This is not to say that adiabatic
calculations for (d,p) should be performed using UpB at half
the deuteron energy. The standard ADWA makes the correct
choices. Here ADWA2 only helps to understand which part of
the disagreement with Faddeev calculations comes from the
slight differences in the proton interaction.

Our last case, 48Ca(d,p)49Ca, is shown in Fig. 3. Angu-
lar distributions were calculated at Ed = 19.3 MeV, Ed =
56 MeV, and Ed = 100 MeV. The comparison between the
ADWA and Faddeev results follows the same trend as in the
previous cases: good agreement at around 10 MeV/u, with
large deterioration at very high energies. It was not possible to
obtain Faddeev solutions for energies lower that 19.3 MeV due
to the lack of convergence of the Pade summation technique.
Oddly, for the reactions at 56 MeV, while the ADWA results
show a very strong dependence on the choice of UpB , the
Faddeev results only exhibit a dependence on the proton
optical potential around the second peak. At 100 MeV, the
angular distribution is extremely sensitive to the choice of the
proton energy used to determine the proton optical potential
parameters for both ADWA and FADD. This introduces large
ambiguity in the comparison of the ADWA and the Faddeev
approach at 100 MeV.

Overall, we find the differences between the ADWA and
Faddeev results to be below 10% except for the lowest and
highest energies. Our results suggest that there is an optimum
beam energy (around 10–20 MeV/u) where the ADWA is
at its best, differing from the Faddeev calculation by only a
few percent. Apart from the 100 MeV 48Ca(d,p), changes
introduced in the shape of the angular distributions by the
adiabatic approximation are small. A quantitative summary
of our results, plus additional detail in our calculations, is
given in Table I. Here �F−AD is the percentage difference
between cross sections from FADD and ADWA, relative
to the FADD cross section determined at the first peak of
the distribution (corresponding to θ ). To study the effect of
the choice of the energy at which the proton interaction is
determined, we also show �F−F2, the percentage difference
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FIG. 2. (Color online) Angular distributions for 12C(d,p)13C: (a)
Ed = 7.15 MeV, (b) Ed = 12 MeV, and (c) Ed = 56 MeV.

between Faddeev calculations using the energy in the proton
channel to determine UpA (FADD) and those using half the
deuteron energy (FADD2). This represents the ambiguity
in the three-body Hamiltonian for the Faddeev calculations
and can be used as an uncertainty in the comparison. It is
not important for low and intermediate beam energies, and
therefore in this beam-energy region, the agreement between
Faddeev and ADWA calculations is robust. For completeness,
the identical quantity for ADWA �AD−AD2 is also shown
(where the standard ADWA is compared with that where
the proton distorted wave is calculated with CH89 using
half the deuteron energy ADWA2). Because the exact T

matrix should be independent of the choice of the auxiliary
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FIG. 3. (Color online) Angular distributions for 48Ca(d,p)49Ca:
(a) Ed = 19.3 MeV, (b) Ed = 56 MeV, and (c) Ed = 100 MeV.

potential, �AD−AD2 provides an internal warning sign that the
approximation in the ADWA is not adequate. Consistent with
the comparison with Faddeev calculations, the effect becomes
significant for the higher beam energies.

In Sec. II, we pointed out that the Sturmian expansion
is expected to be good in the region of Vnp but not
for large neutron-proton distances. For this reason, we do
not expect the ADWA to work when the contribution of
the remnant term in Eq. (6) is large. The last column of
Table I contains the percentage difference between the original
ADWA and the ADWA calculation neglecting the remnant
term, relative to the original ADWA. The only case for which
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TABLE I. Percentage differences between the differential cross
section at the first peak of the distribution for the various formulations:
�F−AD, comparing the Faddeev approach with the adiabatic model;
�F−Up, the effect of changing the energy at which the proton-target
interaction is calculated in the Faddeev approach; and finally �AD−rem,
the effect of the remnant term in the adiabatic model. Also given is
the beam energy E (in MeV) and the angle θ at which the percentage
difference was calculated (in degrees).

Reaction E θ �F−AD �F−F2 �AD−AD2 �AD−rem

11Be(p,d) 5 1 −22.90 0.17 −0.10 1.36
10 1 −1.12 0.42 0.44 −1.13
35 1 18.50 15.25 10.9 26.82

12C(d,p) 7 20 −9.08 1.61 −0.42 −3.74
12 15 −2.74 2.18 −0.50 −3.92
56 1 −14.26 13.95 17.5 3.34

48Ca(d,p) 19 8 −6.12 7.16 −0.64 −0.74
56 1 −3.05 0.76 46.4 0.57

100 0 51.0 72.9 −42.7 9.73

the remnant contribution is large is for the high-energy reaction
with 11Be and then, indeed, the ADWA performs poorly in
comparison with the Faddeev calculation. However in the other
cases, it is not the remnant contribution that is responsible
for the disagreement ADWA versus Faddeev. Since the largest
disagreement comes at the highest beam energies, this suggests
that the main source for the ADWA disagreement with the
Faddeev method comes from the truncation of the Sturmian
expansion, Eq. (2). Equation (4) implies that all χAD

i (R) behave
as the elastic χAD

0 (R). However, at higher beam energies, large
excitation energies in the deuteron channel are expected to
affect the shape of the adiabatic distorted waves χAD

i (R).
An attempt to systematize the results is done in Fig. 4 where

the ratio of Faddeev cross sections at the first peak of the
angular distribution (θ from Table I) over the corresponding
ADWA cross sections is plotted as a function of Ec.m.

d /Vc,
the c.m. energy of the deuteron (Ec.m.

d ) over a simple estimate
of the Coulomb barrier Vc = 1.44Z/(1.2A1/3). We introduce
an error bar corresponding to the ambiguity in the choice of
the energy at which the proton interaction is calculated in
the Faddeev method (second column in Table I). Figure 4
provides a good illustration of the validity of the ADWA
for intermediate energies. For the lowest energies, differences
increase up to 20% and they become particularly large for the
highest energies where the Hamiltonian ambiguities are also
the largest.

In addition there should also be an error due to the fact that in
the Faddeev approach, the n-target interaction in the deuteron
channel has no absorption for the partial wave in which there
exists a bound state. Based on previous experience, we expect
this effect to be smaller than the effect on the choice of UpA

[31]. Additional Faddeev calculations for the lighter targets,
introducing energy dependence in the n-target interaction in
the partial wave corresponding to the bound state, suggest the
ambiguity on UnA is only comparable to �F−F2 for 11Be(p,d)
at 35 MeV.

We have also explored the dependence on the angular
momentum l of the neutron-bound state as well as its binding

0 2 4 6 8 10 12 14 16
Ed

c.m.
/Vc

0.0

0.5

1.0

1.5

2.0

σ F
A

D
D
/σ

A
D

W
A

11
Be(p,d)

12
C(d,p)

48
Ca(d,p)

FIG. 4. (Color online) Ratio of the Faddeev prediction for the
cross section at the first peak of the angular distribution versus
the adiabatic counterpart plotted in terms of the deuteron energy in
the c.m. over the Coulomb barrier.

energy −Sn. For this purpose, we repeat the calculations for
our best case, 11Be(p,d)10Be at 10 MeV. The neutron-bound
state in 11Be has l = 0 and Sn = 0.5 MeV. We first repeat the
calculations changing the angular momentum to l = 1, 2, 3
by adjusting the depth of the neutron-bound state interaction
VnA to reproduce the binding Sn = 0.5 MeV, while keeping
all other interactions fixed. We find that as l increases,
the difference between FADD and ADWA also increases:
�(F − AD) = 1% for l = 1; �(F − AD) = 15% for l = 2;
and �(F − AD) = 30% for l = 3.

Next we repeat the calculations fixing l = 0 and changing
the depth of VnA to reproduce Sn = 2.0, 4.0 and 6.0 MeV.
Again, all other interactions are unchanged. The percent-
age difference relative to the Faddeev result is as follows:
�(F − AD) = 1% for Sn = 0.5 MeV, �(F − AD) = 13% for
Sn = 2.0 MeV, �(F − AD) = 18% for Sn = 4.0 MeV, and
�(F − AD) = 23% for Sn = 6 MeV. In these calculations,
remnant effects do not change significantly. However, the
deeper the neutron initial state, the more delocalized is the
n-p system in the continuum, and one might expect the first
term of the Sturmian expansion χAD

0 (R) to have the wrong
radial behavior. Whereas with increasing l the ADWA diverges
from the Faddeev result in a rapid manner; the differences
with increasing binding appear to reach a saturation point
around ≈20%. These results explain the findings in Ref. [21].
In Ref. [21], the discrepancy between the ADWA and Faddeev
models was found to be much larger for 36Ar(p,d) than for
34Ar(p,d) and 46Ar(p,d). The hole state created by pulling out
a neutron from 36Ar has both, large l as well as large Sn.

IV. SUMMARY AND CONCLUSIONS

The finite-range adiabatic model provides a practical
method to analyze (d,p) and (p,d) reactions that goes well
beyond the DWBA. One of the great advantages is that it
uses nucleon optical potentials, rather than deuteron optical
potentials, which are far more ambiguous. However, it is by no
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means the exact solution and in this work we quantify the errors
introduced by comparing it to exact Faddeev AGS calculations.
We choose three emblematic reactions. 11Be(p,d)10Be(g.s.),
12C(d,p)13C(g.s.), and 48Ca(d,p)49Ca(g.s.), and span a large
range of beam energies. Overall, we find the agreement for
reactions with beam energies around 10 MeV/u to be better
than 10%. These results bear important implications for the
reactions being measured at the Isotope-Separator-on-Line
facilities as well as for the science program at the future Facility
for Rare Isotope Beams. The deviation of the ADWA from the
Faddeev model increases with the angular momentum of the
neutron-bound state as well as with the separation energy of
the neutron. The dependence on l was found to be stronger
than that on the separation energy.

The comparison with the Faddeev model is limited in
several ways. On one hand there are limitations with fixing the
three-body Hamiltonian. On the other hand there are technical
issues that limit the number of cases that can be studied. To
address the first point, we have explored in detail the effect of
different choices for the proton-target interaction, namely, on
the proton energy used to determine the optical potential. The
differences obtained are then used as a systematic uncertainty
in the comparison. They are only important at the higher
energy, exactly where the performance of the ADWA is at
its worse. In this sense, the conclusion that the ADWA fails
for energies larger than Ec.m.

d /Vc ≈ 12 is not robust.

As mentioned in Sec. II, there are several technical
limitations in the present implementation of the Faddeev
equations, namely, the AGS method in momentum space. In
this respect we found 48Ca(d,p) at 19.3 MeV to be most
challenging and close to the limit of present capabilities in
obtaining converged results.

Because the finite-range adiabatic model for (d,p)/(p,d)
at intermediate energies appears to be well suited to describe
the few-body reaction dynamics for many cases of interest,
is easy to use, and is not computationally intensive, it is
strongly desirable that the standard reaction codes incorporate
this option in a user-friendly manner.

In this work we did not consider target excitation; however,
it is understood that there will be many applications in which
target excitation is an integral part of the reaction mechanism.
It would thus be worthwhile to extend the ADWA to include
the inelastic channels in the formulation consistently.
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