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Microscopic optical model potentials, based on density-dependent effective interactions, involve multidi-
mensional integrals to account for the full Fermi motion of the target struck nucleon throughout the nucleus.
If a spherical matter distribution is assumed, then each matrix element of the optical potential requires the
evaluation of seven-dimensional integrals. In this work we provide a full account of these integrals, retaining
the genuine off-shell structure of the nucleon-nucleon effective interaction. The evaluation is based on the
asymptotic separation of the optical model potential for nucleon-nucleus scattering in momentum space, where
the potential is split into a free t-matrix contribution and another which depends exclusively on the gradient of
the density-dependent g matrix. The calculated potentials, based on the Paris nucleon-nucleon (NN) potential, are
applied to proton elastic scattering from 16O and 90Zr at beam energies between 30 and 65 MeV. The results were
compared with two approximations to the unabridged expression, revealing moderate differences among their
scattering observables. When comparing with results based on the Argonne v18 NN potential, these differences
appear smaller than those attainable by the choice of the internucleon potential.
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I. INTRODUCTION

The optical model potential constitutes an essential tool for
investigating nuclear collisions and reactions. Its use provides
not only a direct account for scattering observables but also
quantitative information about the distortion of the scattered
waves, a very useful input for the study of inelastic processes.
In the particular case of folding models for nucleon-nucleus
(NA) scattering, the optical model potential becomes a one-
body operator relying on a fundamental link between the
medium-free nucleon-nucleon (NN ) interaction and an effec-
tive interaction which embodies, in principle, all correlations
implicit in a (A + 1)-nucleon system [1–7]. However, the
complexity of the problem is such that this link becomes
feasible only with the introduction of simplifying assumption.
These simplifications come not only after truncations in the
perturbative expansions for the effective interaction but also
from the treatment of its coordinate- and/or momentum-space
structure. In this work we focus on the latter issue, providing
a complete account of the Fermi motion of the struck nucleon
while retaining the exact momentum structure of the genuine
effective interaction, as obtained from the Brueckner-Bethe-
Goldstone for infinite nuclear matter. This feature contrasts
with all previous density-dependent approaches [7–11], where
simplifications are introduced at the level of the effective
interaction (localization) or its momentum dependence.

The study we present here is based on a recent finding
indicating that intrinsic nuclear medium effects, namely those
arising from the density dependence of the g matrix, are
dominantly localized on the nuclear surface, i.e., regions
where the gradient of g is strongest [12]. The result is
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an analytic consequence of the momentum- and coordinate-
space structure of a two-body effective interaction spherically
symmetric in the mean coordinate of the interacting pair.
Quite generally, any two-body interaction can be expressed
as a nontrivial sum of a translationally invariant term and
another which is functionally—and exclusively—proportional
to the gradient of a reduced in-medium interaction. As a result,
the unabridged optical potential in momentum space becomes
the sum of medium-free (free t matrix) and medium-dependent
(g matrix) contributions, the latter depending exclusively on
the variations of the effective interaction with respect to the
mean coordinate. The term unabridged has been coined here
to stress the fact that the full momentum structure, as dictated
by the exact kinematics of the colliding nucleons, is retained
throughout.

A simplified version of the unabridged potential was
investigated in Ref. [11] within the framework of so-called
δg-folding. There the momentum dependence of the ef-
fective interaction on the struck-nucleon recoil was treated
approximately, by evaluating the relative momenta as if
the two-nucleon interaction conserves total momentum. This
simplification was referred to as a momentum-conserving
approximation, a feature which would emerge only if the
interaction was translationally invariant.

Current trends in nuclear research and applications have
resulted in the development and construction of novel research
facilities aimed at studying exotic nuclei. Such is the case
of radioactive ion beam accelerators in the United States,
Europe, and Japan [13–18], where intense rare isotope beams
are produced and collided against selected targets. When
these beams are scattered from hydrogen targets, the process
reduces to the traditional NA collision. For instance, if the
ion beam reaches an energy of 60A MeV, the collision would
be equivalent to that of a 60-MeV proton scattering from the
nucleus of the ion. This equivalence in the center-of-mass
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reference frame leads us—for ion beams below 100A MeV—to
revisit an energy regime where the inclusion of medium effects
is known to be critical. Hence, from the NA scattering point
of view, counting on accurate approaches capable of tracking
selectively the various contributions to the optical model
potential—particularly its surface structure—becomes essen-
tial for studying and interpreting data from rare-isotope beam
facilities. Along this line, an assessment of the implications of
alternative simplifications of the unabridged optical potential,
based on the actual evaluation of this operator, is quite relevant
if one needs to incorporate high-order effects to describe the
data.

This paper is organized as follows. In Sec. II we outline
the general framework, discuss the structure of the unabridged
optical model potential, introduce the δg-folding approach,
and make contact with known approximations. Additionally,
we examine more closely the various contributions to the
optical potential. In Sec. III we present and discuss results from
selected applications of proton elastic scattering at energies
between 30 and 65 MeV. In Sec. IV we summarize this work
and present the main conclusions.

II. THEORETICAL FRAMEWORK

From a broad perspective, diverse formal expressions of the
optical model potential for NA scattering can be found in the
literature [1–5]. Although they may differ in the way contact
is made with the bare NN interaction, they all take the form
of a ground-state expectation value of a generalized two-body
interaction. Thus, a general representation of the optical model
potential for collisions of nucleons with kinetic energy E off
a composite A-nucleon target can be expressed as

U (k′, k; E) =
∫

d p′ d p 〈k′ p′|T̂ (E)|k p 〉A ρ̂( p′, p), (1)

where the subscript A stands for antisymmetrization. Isospin
labels are omitted to simplify notation. In general, T̂ contains
information about the discrete spectrum of the many-body
system. In this expression ρ̂( p′, p) represents the one-body
(off-shell) mixed density corresponding to the ground state of
the target,

ρ̂( p′, p) =
∑

α

〈α| p′〉〈 p|α〉. (2)

Here α denotes occupied single-particle states of the target.
A comprehensive evaluation of the optical potential con-

sidering the full T̂ matrix would require the solution of the
(A + 1)-body system, a challenge which goes beyond our
current capabilities. This difficulty can be circumvented by
decoupling the two-body effective interaction from the ground-
state structure, a suitable strategy at intermediate and high
energies when the discrete spectrum of the many-body Green’s
function is away from the projectile energy in the continuum.
This allows the use of single-particle models to describe
the target ground state and the Brueckner-Bethe-Goldstone
reaction matrix to represent the effective interaction.

As expressed in Eq. (1), a central element in the eval-
uation of the optical potential is the representation of the

two-body effective interaction. Quite generally, regardless of
the physics content or particular structure conceived for the
NN interaction, the two-body operator T̂ in coordinate space
requires the specification of four vectors. This leads to matrix
elements of the form 〈r ′s′|T̂ |r s〉, where r and s denote
the “prior” coordinates of the projectile and target nucleon,
respectively. The primed vectors refer to “post” coordinates.
With these definitions, the mean coordinate z becomes

z = 1
4 (r ′ + r + s′ + s),

corresponding to the mean coordinate among the prior and
post coordinates of the interacting particles.

As demonstrated in Ref. [12], the momentum-space repre-
sentation of the T̂ matrix can be cast in terms of a reduced
interaction, gz, in the form

〈k′ p′|T̂ |k p〉 =
∫

d z
(2π )3

ei z·( Q−q) gz(K ‖; b′, b). (3)

Here we denote

q = k − k′, Q = p′ − p, (4)

accounting for the momentum transfer of the projectile and
recoil of the target nucleon, respectively. Additionally,

K = 1
2 (k + k′), P = 1

2 ( p′ + p) (5)

represent the mean momentum of the projectile and struck
nucleon, respectively. In terms of these momenta, the post and
prior relative momenta can be expressed as

b′ = 1
2 (k′ − p′) = 1

2

[
K − P − 1

2 (q + Q)
]
, (6a)

b = 1
2 (k − p) = 1

2

[
K − P + 1

2 (q + Q)
]
, (6b)

respectively. In Eq. (3)

K ‖ = K + P (7)

can be interpreted as the current of the interacting nucleons,
consisting of the sum of the prior and post mean momenta
of the colliding pair. With these definitions the integrals over
( p, p′) in Eq. (1) are accounted for by (P, Q), with d p′d p =
d Q d P .

What is appealing about the above representation for T̂

is that it prescribes naturally, without ad hoc assumptions,
the way the medium dependence of the two-body interaction
is mapped through the mean coordinate z in the reduced
interaction. In this respect we follow the conventional route
[7–9], assuming that this site dependence is driven by the
local density, i.e., a local density approximation. Thus, to
each site z in the nucleus we associate the isoscalar local
density ρ(z) with its corresponding symmetric nuclear matter
Brueckner-Bethe-Goldstone reaction matrix gz (g matrix)
satisfying

g(ω) = v + v
Q̂

ω + iη − ĥ1 − ĥ2
g(ω). (8)

Here v is the bare NN potential, ĥ1 and ĥ2 are the quasiparticle
energies at density ρ, and Q̂ is the Pauli blocking operator to
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suppress the propagation on occupied intermediate states. The
corresponding Fermi momentum is given by

kF = (3π2ρ)1/3. (9)

In a finite system, i.e., a system with a confined matter
distribution, we note that ρ(z) → 0 as z → ∞. Therefore

lim
z→∞ gz(ω) = t(ω), (10)

the free-space t matrix.
In the context of a spherically symmetric matter distribution

[ρ(z) → ρ(z)], the z integral in Eq. (3) can be split in such
a way that its asymptotic structure becomes isolated from the
z-dependent term [12]. Accordingly,

〈k′ p′|T̂ |k p〉 = δ( Q − q) t(K ‖; b′, b)

− 1

6π2

∫ ∞

0
z3dz S(z| Q − q|) ∂gz

∂z
, (11)

where the momentum dependence of ∂gz/∂z on K ‖, b′, and
b is implicit. Here S(x) = 3j1(x)/x, with j1(x) the spherical
Bessel function of order 1. This function peaks at x = 0, fa-
voring the recoil of the struck nucleon around Q ≈ q, namely,
k + p ≈ k′ + p′. Notice that total momentum conservation
becomes possible only under translational invariance of the
system, as expressed when ∂gz/∂z = 0.

It is worth noting that a critical shortcoming of Eq. (3) for
T̂ is its weak convergence for the spatial integration under
the z coordinate. This is evident by the fact that the reduced
interaction gz does not vanish as z → ∞. In this respect,
the asymptotic separation extracts the momentum-conserving
contribution (a δ function), leaving the medium contribution
localized in space. This feature becomes crucial in the actual
implementation of the unabridged integrals of the optical
potential.

Upon substitution of T̂ from Eq. (11) into Eq. (1) for the
optical potential we obtain for its unabridged form

U = U0 + U1, (12)

with

U0 =
∫

d P ρ̂(q; P) t(K ‖; b′, b), (13a)

U1 = −1

6π2

∫ ∞

0
z3dz

∫
d Q d P ρ̂( Q; P)S(z| Q − q|) ∂gz

∂z
.

(13b)

Here we denote

ρ̂( Q; P) ≡ ρ̂
(

P + 1
2 Q, P − 1

2 Q
)
.

The first term, U0, depends exclusively on the reduced matrix
in free space. This contribution is referred to as the full-folding
optical potential, with its first realizations in momentum space
reported in the early 1990s [6,19–22]. In this case the effective
interaction is taken as the off-shell scattering matrix in the
framework of the Lippmann-Schwinger equation. The second
term, U1, depends on the gradient with respect to the mean
coordinate of the g matrix. It involves a seven-fold integral,

one of them along the radial coordinate and the other six to
account for the Fermi motion of the struck nucleon [11].

We have been able to evaluate the unabridged optical
potential as expressed by Eqs. (12), (13a), and (13b). In
this paper we report applications for proton elastic scattering
and compare their corresponding observables with those from
two approximations in hierarchal order. One of them is the
so-called δg-folding [11], where the Q dependence of b and
b ′ in the gradient ∂gz/∂z is neglected, by setting Q → q.
This enables us to isolate the evaluation of the d Q integral in
Eq. (13b), ∫

d Q ρ̂( Q; P)S(z| Q − q|),

involving only the mixed density and the S function. With this
small change the reckoning time for the δg-folding becomes
shorter, by nearly a factor 25, than the one needed for the
unabridged evaluation. Still, both approaches are general
enough to treat explicitly the off-shell mixed density of the
target.

From a physical standpoint, under the δg-folding scheme
the recoil of the struck nucleon is treated as if the the total
momentum of the interacting pair was conserved. The extent
to which this consideration is reliable would depend on the off-
shell behavior of the medium-dependent effective interaction.
As noted previously, since medium effects appear in the form
of a gradient of the effective interaction, any manifestation of
these effects would stem from the surface of the nucleus.

The next level of approximation departs from the δg-
folding, approximating the mixed density according to the
Slater prescription [23]. In this case

ρ̂( Q; P) ≈ ρ̂SL( Q; P)

= 4π

∫ ∞

0
z2dz j0(Qz)ρ(z)

3

4πk̂3
z

	(k̂z − P ),

where the local momentum k̂z is dictated by the local density at
coordinate z through k̂z = [3π2ρ(z)]1/3. With this prescription
for ρ̂, the δg-folding optical potential takes the form of the
in-medium folding model introduced by Arellano, Brieva, and
Love (ABL) [10]. More explicitly,

U = 4π

∫ ∞

0
z2dz j0(qz) ρ(z) ḡz, (14)

with ḡz an off-shell average of the g matrix given by

ḡz = 3

4πk̂3
z

∫
d P 	(k̂z − |P |) gz(K ‖; b−, b+),

where b± = 1
2 (K − P ± q). Here again a significant reduction

in the computing time is achieved, making the ABL approach
nearly 20 times briefer than that for the δg-folding.

An appealing feature of the Slater approximation is that its
form factor is coincident with the one obtained for the local
density ρ(z) or shell-model wave functions, i.e.,

ρ̃(q) =
∫

ρ̂( Q; P) d P =
∫

ρ̂SL( Q; P) d P .

Therefore, a contrast between the δg- and ABL-folding
calculations serves to gauge the way the effective interaction
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FIG. 1. Measured [29] and calculated differential cross section (a)
and analyzing power (b), as functions of the center-of-mass scattering
angle, for 16O(p,p) scattering at 30.4 MeV. The solid, dashed, and
dotted curves represent the unabridged, δg-folding, and ABL-folding
results, respectively.

is weighed off shell—within this constraint—when the Fermi
motion under the P integral is accounted for.

The three forms of the optical potential just discussed yield
nonlocal operators, functions of the beam energy E, which in
momentum space depend on two momenta and their relative
angle, i.e., U (k′, k; E). The nonlocality is a consequence of
the momentum-space structure of the g matrix, solutions of
the Brueckner-Bethe-Goldstone integral equation. We stress
here that no parametrization nor localization procedures are
used to represent these solutions. The antisymmetrization of
the interaction accounts for additional nonlocalities.

III. APPLICATIONS

In this section we present results from applications based
on the three approaches for the optical potential described
above. These are, in decreasing hierarchy, the unabridged,
the δg-folding, and the ABL-folding models. We focus on
proton elastic scattering from 16O and 90Zr, two relatively
well known doubly-closed-shell nuclei. The one-body mixed
density is constructed using single-particle wave functions
based on Hartree-Fock calculations [24].

The microscopic calculations reported here are based on
the Paris NN potential [25]. The corresponding g matrix
was calculated off shell (J � 7) at 15 values for the Fermi
momentum, ranging from 0 to 1.5 fm−1. The starting energy is
given by the NA kinetic energy at the center of mass, plus the
single-particle average binding at the corresponding density
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FIG. 2. The same as Fig. 1 but at 49.48 MeV. The data are from
Ref. [30].

[26]. For simplicity, the calculations reported here take the
Fermi average of K‖, with |K | = k◦, the on-shell momentum
in the NA center of mass. Only under this consideration does
the evaluation of the unabridged potential become feasible.
Otherwise we would need to take into account contributions
due to bound pn pairs in nuclear matter, as discussed in
Ref. [27].

The self-consistent nuclear-matter fields were computed
prior to all runs following conventional approaches in the treat-
ment of the particle-particle propagator, i.e., angle-averaged
Pauli blocking and angle-averaged energy denominator. Since
our aim here is to provide a consistent comparison among all
three approaches, we have chosen to leave for future studies
other issues such as alternative treatments in the calculation of
the Brueckner-Bethe-Goldstone g matrix [36], the inclusion of
higher order effects, or exploration of nonconventional effects
such as three-body forces.

To evaluate U1 given by Eq. (13b) we carry out the P and
Q integrals using Gauss-Laguerre quadratures. We carried out
several tests of convergence, making sure that the numerical
quadratures were adequate enough to fulfill equivalences
under certain limit cases. The z integration is performed
using a uniform mesh with steps of 0.1 fm. The matrix
elements U (k ′, k; E) are calculated at 34 momenta in the range
[0, 10 fm−1]. The angular mesh follows a Gaussian setting
with as many knots as partial waves needed for convergence in
the scattering calculations. This feature makes the unabridged
calculations severely intensive for large targets at energies
above 100 MeV, an important consideration to leave them
unattended in this study. The actual CPU time to evaluate
the unabridged potentials reported here ranges from 400 h,
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FIG. 3. The same as Fig. 1 but at 49.48 MeV. The data are from
Ref. [31].

in the case of 16O(p,p) at 30 MeV, to 700 h in the case of
90Zr(p,p) at 65 MeV. This is using a standard 2.5-Gz processor.
The real execution time is significantly reduced with the use
of multiprocessor platforms. The scattering observables were
calculated by solving the Schrödinger equation with a nonlocal
coupling in the presence of the Coulomb potential [28].

A. Scattering applications

In Figs. 1, 2, and 3 we show the measured and calculated ob-
servables for 16O(p,p) at 30.4, 49.48, and 65 MeV, respectively.
Here the differential cross section dσ/d� (a) and analyzing
power Ay (b) are plotted as functions of the center-of-mass
scattering angle θc.m.. The data at each of these energies are
from Refs. [29], [30], and [31], respectively. Solid, dashed,
and dotted curves represent the unabridged, δg-folding, and
ABL-folding results, respectively.

At 30.4 MeV shown in Fig. 1 we observe that the cross
section is rather poorly described by the three approaches. For
instance, the shallow first minimum in the measured dσ/d�

gets overestimated by the theory, while near 90◦ and 150◦ the
calculated cross sections exhibit nonexisting minima. In the
case of the analyzing power, even though the calculated peaks
become comparable to the data, they appear shifted to forward
angles relative to the measured values.

In the cases of 40.48 and 65 MeV shown in Figs. 2 and
3, the agreement between the calculated and measured cross
sections improves considerably, with slight disagreements near
the shoulders exhibited by the data. However, the calculated
first peak of the analyzing powers are weaker by nearly 40%
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FIG. 4. Measured [32] and calculated differential cross section (a)
and analyzing power (b), as functions of the center-of-mass scattering
angle, for 90Zr(p,p) scattering at 30 MeV. The solid, dashed, and
dotted curves represent the unabridged, δg-folding, and ABL-folding
results, respectively.

relative to the data. Not only that, but also the calculated Ay

appears shifted to forward angles with respect to the data.
When comparing the three approaches at these energies we

note that they are quite similar to each other, with more visible
differences in the case of Ay at large scattering angles. This
finding is quite interesting since it validates the use of the
δg- and ABL-folding approaches to represent the unabridged
folding model. Apart from the computing time, the advantage
of the ABL approach lies in its versatility, whereas for the
δg-folding relies on its ability to provide an explicit treatment
to shell-model wave functions.

The cases for 90Zr(p,p) scattering are shown in Figs. 4, 5,
and 6. Here we plot the measured and calculated differential
cross section (a) and analyzing power (b), as functions of
the center-of-mass scattering angle, for proton energies of
30, 40, and 65 MeV, respectively. Their respective data are
from Refs. [32], [33], and [31]. Here we observe an even
closer similarity in the calculated observables among all three
approaches. Once again, differences among these schemes
appear more visible in the analyzing power.

B. Paris versus Argonne v18 potentials

In order to gauge the significance in the dispersion due to
the three approaches considered above, all of them based on
the Paris NN potential, we have calculated optical potentials
in the ABL approach using the Argonne v18 NN potential
[34]. These two realistic NN models constitute reasonable
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FIG. 5. The same as Fig. 4 but at 40 MeV. The data are from
Ref. [33].

representatives of the most complete current descriptions
of the basic interaction. Although they are not identical in
the description of the NN data, i.e., the on-shell g matrix
at zero density, they become useful for assessing the level
of uncertainty attainable to the representation of the bare
two-body potential.

In the upper frames (a) of Figs. 7 and 8 we present the
differential cross section based on the Paris (curves with error
bars) and the Argonne v18 (dashed curves) NN potential
models, as functions of θc.m.. The red curves represent the
average among the unabridged, δg-folding, and ABL-folding
results, whereas the error bars extend from their lowest to
highest value at a given angle. An identical procedure is
followed for the analyzing powers (b).

It is interesting to note that, overall, the calculated observ-
ables based on the v18 interaction can be discriminated from
the bars defined for the Paris potential. This means that the
uncertainties implied by the choice of a given approach to
evaluate the optical potential are smaller than those attainable
by the choice of a realistic NN model. As mentioned before,
these differences are a manifestation of on- and off-shell effects
at zero density and the way they manifest themselves in the
nuclear medium.

To complement these comparisons, in Table I we summarize
the resulting reaction cross section (σR) from all applications
discussed previously. In the sixth column we show the results
based on the ABL approach using the AV18 potential, whereas
the rest are based on the Paris potential. For this observable
we also note that σR based on the AV18 interaction, within
the ABL approach, falls outside the range defined by the three
folding approaches using the Paris interaction. Additionally,
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FIG. 6. The same as Fig. 5 but at 65 MeV. The data are from
Ref. [31].

the differences among these three schemes appear more
pronounced in the case of 16O, becoming marginal for 90Zr.

From the results we have reported thus far, some lack of
consistency in accounting for the data becomes evident. We
must stress, however, that our main goal here has been that of
providing a comprehensive account of the seven-dimensional
folding integral, contrasting its predictions with those based
on simplified expressions. Thus, we have chosen at this point
not to explore ways to improve the description of the data.

C. Sensitivity of the pair total momentum

A comparison of the results reported here with those based
on folding models at similar energies [8,35], using local
density-dependent effective interactions, poses the question
of what may be the causes for differences in the predictions.
In this respect it is important to keep in mind that in the
construction of local effective interactions for NA scattering,
specific prescriptions for the total momentum and starting
energies of the interacting pair are introduced. Indeed, in
Refs. [8,9] the density-dependent effective interactions are
localized by taking the on-shell momentum of the projectile
(k̄) from

E ≡ e(k̄) = k̄2

2m
+ UkF

(k̄), (15)

where E is the beam energy and UkF
(k) is the self-consistent

field in the Brueckner-Bethe-Goldstone equation at Fermi
momentum kF . In Ref. [35] instead, the total momentum is
given by an average which depends on the density and the
momentum of the beam, where the struck-nucleon momentum
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FIG. 7. (Color online) Calculated dσ/d� (a) and Ay (b) as
functions of θc.m. for 16O(p,p) at 30.4 MeV. The solid curves are based
on the Paris potential, representing the average from unabridged,
δg-folding, and ABL-folding; the bars extend from the lowest to the
highest values. Dashed curves represent ABL results using the AV18
potential.

is evaluated at the average value k∗ = 0.8536kF . These
relationships effectively boost the momentum of the projectile,
a feature not emulated in the calculations presented here. Not
only that, but the localization itself is designed to reproduce
only part of the g matrix: the forward on-shell amplitude in
the case of Refs. [8,9] and half-off-shell amplitude in the
case of Ref. [35]. In contrast to both approaches, in this
work no localization to the g matrix is pursued, with the
total momentum of the interacting pair kept at the Fermi-
averaged momentum 〈k + p〉, while k2 = 2mE and | p| � kF .
The starting energy is ω = E + 〈e(p)〉. The dependence on
the relative momenta is treated exactly as dictated by the
kinematics of the collisions.

For the purpose of illustrating the level of sensitivity
to a chosen prescription for the total momentum, we have
performed calculations of optical potentials in the ABL
framework by evaluating the g matrix at a total momentum
given by 〈k̄ + p〉, where k̄ is obtained from Eq. (15). For a
given energy E, each density (or Fermi momentum) defines
its corresponding k̄. In Fig. 9 we compare ABL-folding
calculations using the standard (solid curves) and boosted
(dashed curves) prescriptions for the total momentum, in the
case of proton scattering at 30 MeV. The data are the same
as in Figs. 1 and 4. As observed, a substantial improvement
in the description of the zirconium data is observed, with the
differential cross section in phase with the measurements. In
the case of the oxygen data, however, the improvement is
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FIG. 8. (Color online) The same as Fig. 7 but for 90Zr(p,p) at
65 MeV.

quite moderate. A broader exploration, including other targets
and higher energies, shows that the improvement is not robust
enough to be considered confidently. Additionally, we find
that the scattering observables become quite sensitive to the
choice of the starting energy at which one evaluates the g

matrix, particularly at low energies. In any case, the illustration
shown here suggests that there is room for improvement in
the description of the data. The issue then is to identify a
prescription, supported by the theory, which may lead to
an eventual improvement. Such an study is left for future
investigation.

An additional element which needs to be included in
these comparisons is the way the Brueckner-Bethe-Goldstone
integral equation is solved, particularly with respect to the
treatment of the angular structure of the energy denominator.
In Ref. [35] the self-consistent fields are given a quadratic

TABLE I. Calculated reaction cross sections for proton elastic
scattering following the unabridged, δg, and ABL folding models.

Target energy σR

Unabridged δg ABL ABLa(MeV)
(b) (b) (b) (b)

16O 30.4 0.656 0.643 0.650 0.619
49.48 0.527 0.510 0.515 0.491

65 0.461 0.444 0.448 0.427
90Zr 30 1.40 1.40 1.39 1.38

40 1.40 1.39 1.39 1.36
65 1.29 1.26 1.28 1.24

aBased on AV18.
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FIG. 9. Measured [29,32] and calculated dif-
ferential cross section (upper frames) and an-
alyzing power (lower frames), as functions of
the center-of-mass scattering angle, for 16O(p,p)
(30.4 MeV) and 90Zr(p,p) (30 MeV) scattering.
The solid and dashed curves represent ABL-
folding results with standard and boosted center-
of-mass momentum, respectively.

representation, leading to the so-called effective-mass ap-
proximation. In the work presented here we use the angular
average of the two-particle fields. However, as reported in
Ref. [36], a more refined treatment to the angular structure of
the energy denominator shows that NA scattering observables
are sensitive to the way the g matrix and corresponding
self-consistent fields are calculated. These observations need
to be taken into account for a broad and rigorous assessment
of the theory.

IV. SUMMARY AND CONCLUSIONS

We have presented the first realization of the seven-
dimensional in-medium folding optical model, where the
off-shell structure of the effective interaction, as well as the
exact kinematics of the colliding nucleons, is retained. This
unabridged potential is based on the general momentum- and
coordinate-space structure of any two-body interaction, where
the introduction of a mean coordinate leads naturally to a local
density approximation for the reduced interaction. The use of
the asymptotic separation introduced in Ref. [12] has been
pivotal for the actual evaluation of the potential, confining the
intrinsic medium contributions to regions where the gradient
of the density is more pronounced. The density-dependent
effective interaction is modeled by means of infinite nuclear
matter g-matrix solutions of the Brueckner-Bethe-Goldstone
equation. We have based our study on the Paris NN bare
interaction.

Applications were made for proton elastic scattering from
16O and 90Zr at energies between 30 and 65 MeV. Scattering
observables based on unabridged optical model calculations
were compared to those from two alternative approximations.
One of them is the δg-folding approach, where the recoil
of the struck nucleon is treated as if the total momentum
of the interacting pair was conserved. The other approach
was the ABL-folding where, in addition to the above con-
sideration, the mixed density is treated within the Slater
approximation. Their corresponding CPU times needed to

evaluate the potentials appear in the ratio 500:20:1. Despite
these significant ratios in computing time, only moderate
differences are observed among the three calculating schemes,
being more pronounced in the case of 16O(p,p) scattering at
30 MeV. In this respect, we conclude that the δg-folding and
ABL-folding approaches constitute reliable representations of
the unabridged optical model, at least above 30 MeV. The
advantage of the δg-folding lies in its ability to treat explicitly
the full (off-shell) mixed density, contrasting with the ABL
approach, which needs only the diagonal mixed density (or
radial density).

In order to estimate the error implied by approximate treat-
ments to the optical potential, we evaluated optical potentials in
the ABL approach using the AV18 NN interaction. We found
that, for the two NN potentials considered, the uncertainties
due to these descriptions are larger than the ones attainable
to the treatment of the kinematics and/or representation of the
mixed density. In this regard, the δg- and ABL-folding models
can be considered reliable representations of the unabridged
model. Certainly this statement depends on the expected
accuracy, but considering the fact that in many cases the
discrepancies between data and theory may be significant,
these two models convey enough simplicity and versatility
to make them useful for expedited studies. In any case, with
this study we have demonstrated that the evaluation of the
unabridged optical potential is feasible with current computing
capabilities.
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